
Connes-amenability of
multiplier Banach algebras

Bahman Hayati and Massoud Amini

Abstract Let B be a Banach algebra with bounded approximate identity, and let
M(B) be its multiplier algebra. If there exists a continuous linear injection
B∗ → M(B) such that, for every b ∈ B and every u, v ∈ B∗, 〈u, vb〉B = 〈v, bu〉B , then
M(B) is a dual Banach algebra and the following are equivalent:

(i) B is amenable;
(ii) M(B) is Connes amenable;
(iii) M(B) has a normal, virtual diagonal.

1. Introduction

The concept of amenability of groups was first defined for discrete locally com-
pact groups by John Von Neumann [Von]. Later this notion was generalized
to arbitrary locally compact groups by Mahlon Day [Day]. In 1972, Barry E.
Johnson [Joh2] introduced the concept of amenability for Banach algebras. He
proved that a locally compact group G is amenable if and only if the group
algebra L1(G) is amenable as a Banach algebra. After the pioneering work of
Johnson, several modifications of the original concept of amenability of Banach
algebras are presented. One of the most important modifications was presented
by Barry E. Johnson himself, in a joint paper with Richard V. Kadison and
John R. Ringrose [JKR], where they introduced a notion of amenability more
suitable for von Neumann algebras. It modifies the original definition in the
sense that it takes into account the dual space structure of a von Neumann alge-
bra. We note that a von Neumann algebra is a C∗-algebra that is also the dual
of a Banach space. (It has a unique predual.) Due to an important contribution
of Alain Connes [Con1], [Con2], Alexander Ya. Helemskii [Hel] coined the term
Connes-amenability for this concept. Later Volker Runde [Run1] extended the
notion of Connes-amenability to the more general setting of dual Banach alge-
bras. He also showed that the notion of a normal virtual diagonal (which is the
analog of virtual diagonal introduced by Johnson in [Joh2]) adapts naturally to
the context of general dual Banach algebras. He showed that a dual Banach
algebra with a normal virtual diagonal is Connes-amenable (with an argument
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almost verbatim to that of Edward G. Effros [Eff] for von Neuman algebras)
but the converse is not true in general (see [Run2], [Run3]). Examples of dual
Banach algebras (besides von Neumann algebras) include the measure algebra
M(G) and the Fourier-Stieltjes algebra B(G) of a locally compact group G. In
particular, Runde showed that a locally compact group G is amenable if and
only if its measure algebra M(G) is Connes amenable (see [Run3]). This result
sounds more interesting when compared to a deep result of H. Garth Dales, Fer-
eidoun Ghahramani, and Alexander Ya. Helemskii [DGH] showing that M(G)
is amenable if and only if G is discrete and amenable. The idea of this arti-
cle started with the simple observation that the measure algebra M(G) is the
multiplier algebra of the group algebra L1(G). It was natural to ask if, in gen-
eral, amenability of a Banach algebra B (with bounded approximate identity) is
related to Connes-amenability of its multiplier algebra M(B). For this to make
sense, we had to find suitable conditions under which M(B) is a dual Banach
space. These conditions were stated in a (not so well-known) article by E. O.
Oshobi and John S. Pym [OP]. Although this is not explicitly stated in [OP],
it is easy to see that under natural conditions on B set by the authors, the
multiplier algebra M(B) is a dual Banach algebra (see the paragraph after The-
orem 1.0.1). In a sense, our article could be compared to that of Matthew Daws
[Daw1] in which the relation between amenability of a regular Banach algebra B

and Connes-amenability of its second conjugate algebra B∗ ∗ (with Arens multi-
plication) is investigated. The main result of this article states that, under the
natural conditions set by [OP], amenability of a Banach algebra B is equivalent
to Connes-amenability of the multiplier algebra M(B) as well as to the existence
of a normal virtual diagonal. The proof is straightforward and gives some of the
results of Runde [Run2], [Run3], and Daws [Daw1] as a special case. There is,
however, a drawback. One of the conditions set by [OP] is a natural compatibil-
ity condition (see Assumption 2.1) that holds for B = L1(G) when G is compact.
We were not able to prove (or disprove) that for a noncompact locally compact
group G, L1(G) satisfies Assumption 2.1.

2. Preliminaries

Let B be a Banach algebra, and let E be a Banach B-bimodule. A derivation
from B into E is a continuous linear map D : B → E such that D(ab) = Da ·
b + a · Db for all a, b ∈ B. The space of all derivations of B into E is denoted
by Z1(B,E). For example, for each x ∈ E, the map a �→ a · x − x · a is a deriva-
tion; these maps form the space N1(B,E) of inner derivations. Let H1(B,E) =
Z1(B,E)/N1(B,E) be the first cohomology group of B with coefficients in E.

Then B is amenable if H1(B,E∗) = {0}, for every Banach B-bimodule E (see
[Joh2], [Joh3]), where E∗ is the dual Banach B-bimodule whose actions are
defined by

〈x,a · x∗ 〉 = 〈x · a,x∗ 〉, 〈x,x∗ · a〉 = 〈a · x,x∗ 〉 (a ∈ B, x ∈ E, x∗ ∈ E∗).
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A Banach algebra B is called a dual Banach algebra if it is dual as a Banach
B-bimodule. One can see that a Banach algebra that is also a dual space is a dual
Banach algebra if and only if the multiplication map is separately w∗-continuous.
Examples of dual Banach algebras include all von Neumann algebras, the algebra
B(E) = (E ⊗̂ E∗)∗ of all bounded operators on a reflexive Banach space E, the
measure algebra M(G) = C0(G)∗, and the second dual B∗ ∗ of an Arens regular
Banach algebra B. Let B be a Banach algebra. We use the notation B ⊗̂ B and
L2(B,C), respectively, to denote the projective tensor product of B with itself
and the space of bounded, bilinear forms on B × B. A dual Banach B-bimodule
E is called normal if, for each x ∈ E, the maps a �→ a · x and b �→ x · b from B

into E are w∗-continuous. A dual Banach algebra B is called Connes-amenable
if for every normal dual Banach B-bimodule E, every w∗-continuous derivation
D : B → E is inner (see [Run1]). If ΔB : B ⊗̂ B → B is the diagonal operator
induced by a ⊗ b �→ ab, a, b ∈ B, then since the multiplication in B is separately
w∗-continuous, Δ∗

BB∗ ⊂ L2
w∗ (B;C), where B∗ is a closed submodule of B∗ such

that B = B∗
∗ , and L2

w∗ (B;C) is the set of w∗-continuous bilinear maps from B ⊗̂ B

into C. Taking the adjoint of Δ∗
B |B∗ , we may thus extend ΔB to L2

w∗ (B;C)∗

as a B-bimodule homomorphism Δw∗ . An element M ∈ L2
w∗ (B;C)∗ is called a

normal, virtual diagonal for B if

a · M = M · a, aΔw∗ M = a (a ∈ B).

Recall that a double multiplier τ on an algebra B consists of a pair of map-
pings of B into itself denoted by b �→ bτ and b �→ τb (b ∈ B) such that (aτ)b =
a(τb) for all a, b ∈ B. It is easy to see that every element of B gives rise to a
double multiplier via left and right multiplication. The set M(B) of all double
multipliers on B is an algebra (under composition of maps) with identity 1M(B).
The algebra B is called faithful if the only element b ∈ B such that abc = 0, for
all a, c ∈ B, is b = 0. When B is faithful, the natural map from B into M(B)
is injective and B is a subalgebra of M(B). Also, in this case, each double
multiplier τ is a left and a right multiplier. A normed algebra B with a bounded
approximate identity is faithful. The theory of double multipliers is due to B. E.
Johnson [Joh1] (see also [Lar]). If B is complete and faithful, then left and right
multipliers are continuous linear operators (see [Joh3]). For a double multiplier
μ, the norms

‖μ‖R(B)= sup
{

‖aμ‖B : ‖a‖B ≤ 1
}
, ‖μ‖L(B)= sup

{
‖μb‖B : ‖b‖B ≤ 1

}
are defined. We consider M(B) with the following norm:

‖μ‖M(B)= max
{

‖μ‖R(B), ‖μ‖L(B)

}
.

The inclusion map B → M(B) is norm decreasing, and if B has a bounded
approximate identity (eα)α with bound M , then we have

‖b‖B = lim
α

‖eαb‖B ≤ M ‖b‖M(B),

so that the B-norm is equivalent on B to the M(B)-norm.
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ASSUMPTION 2.1

There is a continuous linear injection B∗ → M(B) such that, for u, v ∈ B∗ and
b ∈ B,

〈u, vb〉B = 〈v, bu〉B .

This assumption relates the action of elements of B∗ as double multipliers to
their role as linear functionals on B.

THEOREM 2.1 ([OP, THEOREM 3.4])

Let B be faithful, and let it satisfy Assumption 2.1. Then, there is a Banach
algebra A such that M(B) is isomorphic as a Banach space with the dual A∗,
and {

z ∈ A : zA = {0}
}

=
{
z ∈ A : Az = {0}

}
is a closed ideal Z of A. Also, C = A/Z is a Banach algebra that is algebraically
a subset of both B and B∗. Moreover, C is an ideal in M(B), and C∗ is a
complete normed algebra that can be identified with an ideal of M(B). Using the
identification of M(B) with A∗, the w∗-closure of B is C∗.

The basic idea in [OP] behind the construction of the Banach algebra A is quite
natural. For each a, b ∈ B and u, v ∈ B∗ the authors define two elements a ◦ u

and v ◦′ b of M(B)∗ by

〈a ◦ u, τ 〉M(B) = 〈u, τa〉B 〈v ◦′ b, τ 〉M(B) = 〈v, bτ 〉B (τ ∈ M(B)),

where the indices indicate on which space the corresponding functionals are act-
ing. Both τa and bτ belong to B since τ is a multiplier. Then A is defined by

A = c lsM(B)∗ span{a ◦ u : a ∈ B, u ∈ B∗ }.

Next, one may observe that ‖a ◦ u‖A ≤ ‖a‖B ‖u‖B∗ . Also, for each u, v ∈ B∗ and
a ∈ B, u ◦′ av = ua ◦ v. Indeed, by [OP, Theorem 3.2], B∗ is an ideal of M(B)
and M(B) = M(B∗). Now for each τ ∈ M(B),

〈u ◦ ′ av, τ 〉M(B) = 〈u,avτ 〉B = 〈vτu, a〉B = 〈v, τua〉B = 〈ua ◦ v, τ 〉M(B).

Hence we have B∗B ◦ B∗ = B∗ ◦ ′ BB∗. Finally, since both BB∗ and B∗B are
norm dense in B and w∗-dense in B∗ (see [OP, Lemma 3.3]), A is equal to
the closure of B∗B ◦ B∗ = B∗ ◦ ′ BB∗ in M(B)∗. In particular, for each b ∈ B

and v ∈ B∗, we get v ◦ ′ b ∈ A. By [OP, Theorem 3.8], we observe that multi-
plication in M(B) is separately w∗-continuous in the w∗-topology. Hence for
a faithful Banach algebra B satisfying Assumption 2.1, the multiplier algebra
M(B) is a dual Banach algebra. Our main theorem asserts that in this case,
Connes-amenability of M(B) is equivalent to amenability of B.
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3. Connes-amenability of M(B)

Throughout section, B is a Banach algebra that satisfies Assumption 2.1 and A

and C are as in Theorem 2.1. Note that by [OP, Corollary 5.2], if B has a bounded
right approximate identity, then algebraically, A = C and M(A) = M(B) = A∗.
In this case, B is faithful and w∗-closure of B in M(B) is equal to C∗; hence B is
w∗-dense in M(B). In particular, by [Run1, Proposition 4.2], amenability of B

implies Connes-amenability of M(B). In this section we show that the converse
is also true. The proof of the next lemma is straightforward and is omitted.

LEMMA 3.1

If B is faithful, then for each b ∈ B, the maps τ �→ τb and τ �→ bτ of M(B) into
B are w∗-w-continuous.

LEMMA 3.2

If the map ∼: L2
w∗ (M(B);C) → L2(B;C) is defined by ψ̃ := ψ|B×B for

ψ ∈ L2
w∗ (M(B),C), then

(i) ∼ is a continuous linear map,
(ii) (Δ∗

M(B)(a ◦ u))∼ = a · Δ∗
Bu (a ∈ B,u ∈ B∗),

(iii) (ψ · τ)∼ = ψ̃ · τ ; (τ · ψ)∼ = τ · ψ̃ for each τ ∈ M(B), ψ ∈ L2
w∗ (M(B);C).

Proof
It is straightforward to show that ∼ is a continuous linear map. To show (ii), let
b, c ∈ B, and let φ be the natural map from B into M(B); then〈(

Δ∗
M(B)(a ◦ u)

)∼
, (b, c)

〉
B×B

=
〈
Δ∗

M(B)(a ◦ u),
(
φ(b), φ(c)

)〉
M(B)×M(B)

=
〈
a ◦ u,ΔM(B)

(
φ(b) ⊗ φ(c)

)〉
M(B)

= 〈u,φ(bc)a〉B.

On the other hand, since φ(bc) = (Lbc,Rbc),

〈a · Δ∗
Bu, (b, c)〉B×B = 〈Δ∗

Bu, (b, ca)〉B⊗B = 〈u,ΔB(b ⊗ ca)〉B = 〈u,φ(bc)a〉B.

To prove (iii), we first note that when φ is the canonical map from B into M(B),
then for each τ ∈ M(B) and b ∈ B, we have τφ(b) = φ(τb). Now let τ ∈ M(B)
and ψ ∈ L2

w∗ (M(B);C), and let b, c ∈ B; then

〈(ψ · τ)∼, (b, c)〉B×B =
〈
ψ · τ,

(
φ(b), φ(c)

)〉
M(B)×M(B)

=
〈
ψ,

(
φ(τb), φ(c)

)〉
M(B)×M(B)

= 〈ψ̃ · τ, (b, c)〉B×B.

Thus (ψ · τ)∼ = ψ̃ · τ . The second equality is proved similarly. �

THEOREM 3.1

If B has a bounded approximate identity, then the following are equivalent.
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(i) B is amenable;
(ii) M(B) is Connes amenable;
(iii) M(B) has a normal, virtual diagonal.

Proof
(ii) ⇒ (i). Let M(B) be Connes amenable, let E be a pseudounital Banach
B-bimodule, and let D : B → E∗ be a derivation. Since B is a closed ideal of
M(B) with a bounded approximate identity, there exists a unique extension of D

to a derivation D̃ : M(B) → E∗. Then D̃ is continuous with respect to the strict
topology on M(B) and the w∗-topology on E∗. We claim that E∗ is a normal,
dual Banach M(B)-bimodule and that D̃ : M(B) → E∗ is w∗-w∗-continuous.
Let τα → 0 in M(B) in the w∗-topology. For each x ∈ E, there exist b ∈ B and
y ∈ E such that x = b · y, and by Lemma 3.1, we have

〈φ · τα, x〉E = 〈φ, τα · by〉E = 〈φy, ταb〉B → 0,

where φy as an element of B∗, for each b ∈ B, is defined by φy(b) = b · y. Next,
let τα → 0 in M(B) in the w∗-topology. For x ∈ E, let y ∈ E and b ∈ B be such
that x = b · y. Then

〈D̃τα, x〉E = 〈D̃(ταb) − τα · D̃b, y〉E

= 〈D(ταb), y〉E − 〈τα · Db,y〉E → 0.

Now, since M(B) is Connes amenable, D̃, and so D, is an inner derivation, and
therefore B is amenable.

(i) ⇒ (iii). Since B is amenable, it has a virtual diagonal M ∈ (B ⊗̂ B)∗ ∗ ∼=
L2(B;C)∗ such that a · M = M · a, a · Δ∗ ∗

B M = a for a ∈ B. We define
M̃ : L2

w∗ (M(B);C) → C by 〈M̃,ψ〉 = 〈M,ψ̃〉 for ψ ∈ L2
w∗ (M(B);C)). Then M̃ is

linear and ‖ M̃ ‖ ≤ ‖ M ‖ ‖∼‖; hence M̃ ∈ L2
w∗ (M(B);C)∗. To prove that M̃ is a

normal, virtual diagonal for M(B), it suffices to show that for each τ ∈ M(B),
M̃ · τ = τ · M̃ and τΔw∗ M̃ = τ. By the density of B in M(B) in the strict topol-
ogy, for each τ ∈ M(B) there exists a net (aα)α ⊆ B such that aα → τ in the
strict topology. Since L2(B;C)∗ is a pseudounital Banach B-bimodule, there
exist a ∈ B and M ′ ∈ L2(B;C)∗ such that M = a · M ′. Thus aαa → τa in the
norm topology, and aαa · M ′ → τa · M ′ in the w∗-topology. Next, let b ∈ B and
M ′ ′ ∈ L2(B;C)∗ be such that M = M ′ ′ · b; then since M ′ ′ · baα → M ′ ′ · bτ in the
w∗-topology, we have τ · M = M · τ , from which, along with Lemma 3.2(iii), it
follows that τ · M̃ = M̃ · τ . To complete the proof, we need to show that Δw∗ M̃

is 1M(B), the unit of M(B) = A∗. Let a ∈ B and u ∈ B∗; then by Lemma 3.2(ii),

〈Δw∗ M̃, a ◦ u〉A = 〈M̃,Δ∗
M(B)(a ◦ u)〉L2

w∗ (M(B);C)

= 〈M,a · Δ∗
Bu〉L2

w∗ (B;C)

= 〈Δ∗ ∗
B (M · a), u〉B∗

= 〈u,1M(B)a〉B

= 〈1M(B), a ◦ u〉A.
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(iii) ⇒ (ii). This holds for any dual Banach algebra (see [Run1]). �

4. Examples

EXAMPLE 4.1

Let G be a compact topological group; then L∞(G) ⊆ L1(G). L1(G) has bounded
approximation identity. The multiplier algebra of L1(G) is equal to M(G) (see
[HR]). We show that L1(G) satisfies Assumption 2.1. Define θ : L∞(G) → M(G)
by ψ �→ ψλ, where λ is the Haar measure on G. It is easy to check that θ is an
injective continuous linear map (even homomorphism). Let ψ,ϕ ∈ L∞(G) and
f ∈ L1(G); then

〈ψ, θ(ϕ)f 〉L1(G) =
∫

G

ψ(t−1)(ϕλ ∗ f)(t)dt

=
∫

G

∫
G

ψ(t−1)ϕ(s)f(s−1t)dsdt

=
∫

G

ϕ(s−1)(f ∗ ψλ)(s)ds

= 〈ϕ,fθ(ψ)〉L1(G).

Since G is compact, L1(G) is amenable (see [Joh2]). So by Theorem 3.3, M(G)
is Connes amenable and has a normal virtual diagonal, which is known as [Run1,
Proposition 5.2].

EXAMPLE 4.2

Let G be a discrete group, and let A(G), B(G), and V N(G) be the Fourier
algebra, Fourier-Stieltjes algebra, and the group von Neumann algebra of G (see
[Eym]). Let us show that A(G) satisfies Assumption 2.1. We know that A(G)∗ �
V N(G) (see [Eym, Theorem 3.10]). Let us show the pairing of T ∈ V N(G) with
u ∈ A(G) with 〈T,u〉. There is a left action of V N(G) on A(G) defined by
〈S,Tu〉 = 〈Ť S,u〉, where 〈Ť , u〉 = 〈T, ǔ〉 and ǔ(x) = u(x−1) for x ∈ G,u ∈ A(G),
and S,T ∈ V N(G). Define θ : V N(G) → M(A(G)) by θ(T )(u) = (Tδe)u, where e

is the identity of G and δe = δe ∗ δe ∈ A(G) (see [Eym, Proposition 3.4]). Note that
since A(G) is a commutative Banach algebra, here the left and right multiplier
are the same. By [Eym, Proposition 3.17.1], we have

‖(Tδe)u‖ ≤ ‖Tδe‖ · ‖u‖ ≤ ‖T ‖ · ‖δe‖ · ‖u‖ ≤ ‖T ‖ · ‖u‖

for each u ∈ A(G) and T ∈ V N(G); hence θ is continuous. Now each T ∈ V N(G)
could be written as T =

∑
x∈G αxρ(x), where αx ∈ C and ρ : G → B(�2(G)) is

the right regular representation. The sum is convergent in strong operator topol-
ogy. Since δe ∈ A(G) ∩ �2(G), we have Tδe = T (δe) ∈ A(G) ∩ �2(G) (see [Eym,
Proposition 3.17.3]), where T on the right-hand side is considered as an operator
on �2(G). In particular, if Tδe = 0, then∑

x∈G

αxρ(x)(δe) =
∑
x∈G

αxδx = 0
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in �2(G). Hence T = 0 in B(�2(G)) or, equivalently, in V N(G). Therefore θ is
also one-to-one. Finally, if S,T ∈ V N(G) and u ∈ A(G), we want to show that
〈S, (Tδe)u〉 = 〈T, (Sδe)u〉. First, let us assume that T = ρ(x) and S = ρ(y) for
some x, y ∈ G. Then〈

ρ(y),
(
ρ(x)δe

)
u
〉

= 〈ρ(y), δxu〉 = δx(y)u(y) = δy(x)u(x) =
〈
ρ(y),

(
ρ(x)δe

)
u
〉
.

Next, if T =
∑

x αxρ(x) and S =
∑

y βyρ(y) are finite linear combinations, then
by linearity, we get

〈S, (Tδe)u〉 =
∑
x,y

αxβy

〈
ρ(y),

(
ρ(x)δe

)
u
〉

=
∑
x,y

αxβy

〈
ρ(x),

(
ρ(y)δe

)
u
〉

= 〈T, (Sδe)u〉.

Finally, taking limits in strong operator topology, we get the desired equality
for arbitrary S,T ∈ V N(G). It follows that when G is discrete and amenable,
then Connes-amenability of B(G) is equivalent to amenability of A(G). But the
latter is equivalent to G having an abelian subgroup of finite index (see [FR]).
Hence for a discrete amenable group, B(G) is Connes-amenable if and only if G

is abelian by finite. This was proved in [Run4] through different methods. The
same result is proved in [Uyg], without G a priori supposed to be amenable.

EXAMPLE 4.3

Let X be a reflexive Banach space with the approximation property. The norm
closure of the set of finite-rank operators on X is denoted by A(X ). Since X
has the approximation property, A(X ) is equal to K(X ), the algebra of com-
pact operators on X , and has bounded approximate identity (see [DU, p. 242],
[CLM, p. 86]). Let B = A(X ) = X ∗ ⊗̌ X (see [CLM, p. 63]), then B∗ = X ⊗̂ X ∗ =
N (X ∗), where N (X ∗) is the set of nuclear operators on X ∗. We use the canon-
ical isomorphism X ⊗̂ X ∗ ∼= X ∗ ⊗̂ X to identify B∗ with N (X ) = X ∗ ⊗̂ X ; then
the identity map on the algebraic tensor product X ⊗ X ∗ extends to a contrac-
tion θ : B∗ → B. Let us observe that B satisfies Assumption 2.1. Each operator
u ∈ B∗ = N (X ) acts as a linear functional on B via 〈u,x ⊗ x∗ 〉B = 〈x∗, ux〉X ,
x ∈ X , x∗ ∈ X ∗. Let x ∈ X and x∗ ∈ X ∗; then for u ∈ B∗, we have

θ(u)(x ⊗ x∗) = ux ⊗ x∗, (x ⊗ x∗)θ(u) = x ⊗ u∗x∗.

Hence for u, v ∈ B∗, x ∈ X , and x∗ ∈ X ∗,

〈u, θ(v)(x ⊗ x∗)〉B = 〈u, vx ⊗ x∗ 〉B = 〈x∗, uvx〉 X

= 〈u∗x∗, vx〉X = 〈v,x ⊗ u∗x∗ 〉B

= 〈v, (x ⊗ x∗)θ(u)〉B .

From Theorem 3.3, it thus follows that the following are equivalent: A(X ) is
amenable, B(X ) is Connes amenable, and B(X ) has a normal virtual diagonal.
This was shown in [Run4] by using a different method. Examples of Banach
spaces X for which A(X ) is amenable can be found in [GJW]. In particular, this
happens when X has property (A) (see [GJW, Theorem 4.2]).
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