
Statistical Science
2001, Vol. 16, No. 1, 58–74

Computer Intrusion: Detecting
Masquerades
Matthias Schonlau, William DuMouchel, Wen-Hua Ju, Alan F. Karr,
Martin Theus and Yehuda Vardi

Abstract. Masqueraders in computer intrusion detection are people who
use somebody else’s computer account. We investigate a number of sta-
tistical approaches for detecting masqueraders. To evaluate them, we
collected UNIX command data from 50 users and then contaminated the
data with masqueraders. The experiment was blinded. We show results
from six methods, including two approaches from the computer science
community.

Key words and phrases: Anomaly, Bayes, compression, computer
security, high-order Markov, profiling, Unix.

1. INTRODUCTION

Intrusion detection in computer science is an
important and widespread problem, as evidenced by
the report of the President’s Commission on Critical
Infrastructure Protection (1998). Attacks on popu-
lar Web sites (such as occurred in February 2000)
inflict significant economic loss. In addition, intru-
sion threatens the privacy of individuals who use
computers and the Internet.
We address in this paper the question “What

opportunities and challenges does the problem of
intrusion detection offer to statisticians?”
The problem of intrusion detection is inherently

statistical because it is data-driven. The data, whose
sources range from network hardware to system log
files, are of both immense scale (gigabytes per day in
some settings) and unusual nature (many data ele-
ments are text). New techniques may be necessary

Matthias Schonlau is with RAND, 1700 Main Street,
Santa Monica, California 90407-2138. William
DuMouchel is with AT&T Labs Research, 180
Park Avenue, Shannon Laboratory, Florham Park,
New Jersey 07932. Wen-Hua Ju is with Avaya
Labs Research, 2C-280, 700 Mountain Ave., Murray
Hill, New Jersey 07974-0636. Alan F. Karr is with
the National Institute of Statistical Sciences, 19
Alexander Drive, Research Triangle Park, North
Carolina 27709-4006. Martin Theus is with VIAG
Interkom, Marsststr. 33, 80335 Muenchen, Germany.
Yehuda Vardi is with Rutgers University, Depart-
ment of Statistics, 110 Frelinghuysen Rd., Piscat-
away, New Jersey 08854-8019.

to analyze data that can be retained only fleetingly
or not at all.
There is still another challenge: data with real

intrusions are very difficult to obtain. Some intru-
sions are undetected, and many system operators
are reluctant to release data that, in effect, admit
that intrusions have occurred.
To provide a partial answer to the question in

view of these difficulties, we designed and conducted
an experiment, using synthesized intrusions that
make the problem hard. Intruders are “other” users
from a population similar to the legitimate users.
To help assess the opportunities for statistics and
to understand the richness of the problem, multi-
ple statistical approaches were employed. Like any
experiment, ours involved seemingly “arbitrary”
decisions, but their net effect was to stress the
methods.
As discussed in more detail in Section 6, we con-

clude that statistical methods can find intrusions,
even in difficult circumstances. Moreover, different
methods have identifiable (and even quantifiable)
strengths and weaknesses. Significant challenges
for statistics and statisticians remain.
This article is structured as follows: In the next

section we discuss the background of the problem. In
Section 3 we describe the data and the experiment
that we designed to compare several anomaly detec-
tion methods. In Section 4 we describe our methods
and also two approaches from the computer sci-
ence community. Section 5 then analyzes the results
of the experiment and Section 6 concludes with a
discussion.

58

COMPUTER INTRUSION: DETECTING MASQUERADES 59

2. BACKGROUND

There are many different types of intrusions.
Denning (1997) divides attacks into eight basic
categories:

• Eavesdropping and packet sniffing (passive
interception of network traffic);
• Snooping and downloading;
• Tampering or data diddling (unauthorized

changes to data or records);
• Spoofing (impersonating other users, e.g., by

forging the originating e-mail address, or by gaining
password access);
• Jamming or flooding (overwhelming a system’s

resources, e.g., by an e-mail flood or HTTP requests);
• Injecting malicious code such as viruses

and Trojan horses (via floppy disks or e-mail
attachments);
• Exploiting design or implementation flaws

(often buffer overflows, which overwrite other data
and can be used to get control over a system);
• Cracking passwords and keys.

We focus here on a common form of spoofing,
namely on detecting masquerades—people who
hide their identity by impersonating other people
on the computer. Masqueraders could be insiders or
outsiders. In practice, though, they are mostly insid-
ers because most outside intruders immediately try
to gain access to the account of the superuser and
therefore are a special case.
The annual computer crime and security survey

(Power, 1999, page 26) shows that attacks detected
stemming from “insider abuse of net access” and
“unauthorized access by insiders” are on the rise.
Together, they surpass the number of viruses and
system penetrations detected. Financial losses
attributed to insiders are of the same order of mag-
nitude as losses attributed to outsiders (Power,
1999, page 32).
Methods for computer intrusion detection fall

into two broad categories: pattern recognition (also
called misuse detection) and anomaly detection. All
commercial intrusion detection systems and com-
prehensive research efforts of which we are aware
use pattern recognition, while some, like IDES
(Lunt et al., 1988), NIDES and Emerald (Porras
and Neumann, 1997) use both approaches. Com-
paring several intrusion detection systems based
on pattern recognition, Lippmann et al. (2000) con-
cluded that “research should focus on developing
techniques to find new attacks instead of extending
existing rule-based approaches.”
Pattern recognition refers to attempting to rec-

ognize the attack signatures of previously observed

intrusions (for example, frequent changes of direc-
tory or attempts to read a password file). Computer
scientists appear to consider pattern recognition as
the first line of defense. Clearly, pattern recognition
can be very powerful when the intrusion method is
known.
Unfortunately, like researchers, hackers come up

with new ideas but unlike researchers they do not
publish their work, at least not before an attack.
Anomaly detection can defend against novel attacks,
and it is here that statistics seems most useful.
In anomaly detection, usually a historical profile
is built for each user, and sufficiently large devia-
tions from the profile indicate a possible intrusion.
Anomaly detection is probably most appropriate for
detecting masquerades.
The literature contains a vast array of specific

approaches to computer intrusion detection. For a
general overview see Denning and Denning (1997)
or Amoroso (1998). Work in the area includes ideas
inspired by biological immune systems (Forrest,
Hofmeyr, Somayaji and Longstaff, 1996), applied
work for the statistical anomaly detector(s) at SRI
(Javitz and Valdes, 1993), black-box approaches
using neural networks (Tan, 1995), graph-based
systems for very large networks (Staniford-Chen
et al., 1996), characterizing machines by their
network activity and flagging low probability
events (Marchette, 1999), and stand-alone intru-
sion detection systems such as Bro (Paxson, 1998).
In Section 4 we describe two computer science
approaches to anomaly detection that are directly
relevant to this article. Scott (2000) develops a
Markov modulated nonhomogeneous Poisson pro-
cess model for telephone fraud detection. Scott uses
only event time data, but detectors based on Scott’s
model may be combined with other intrusion detec-
tion algorithms to accumulate evidence of intrusion
across continuous time.

3. DATA AND EXPERIMENTAL DESIGN

3.1 Data

Under the UNIX operating system users give com-
mands. For example, a user might type more myfile
in order to read myfile one screen at a time. In
this example more is the command and myfile is an
argument to that command. As a second example,
typing chmod +777 myfile allows all users to read,
write and execute myfile. Here both +777 and
myfile are considered arguments, +777 specifies
who exactly can read, write or execute myfile.
Our data source is the UNIX acct auditing mech-

anism. Examples of some auditing entries are given

60 M. SCHONLAU ET AL.

Table 1
Examples of accounting entries generated by the UNIX acct auditing mechanism

Command Start End Real CPU Memory
Name User Terminal Time Time (sec) (sec) Usage (K)

chmod matt pts/93 13:26:29 13:26:29 0.01 0.01 8.00
more karr pts/31 13:27:36 13:27:39 3.01 0.01 20.00
cat vardi pts/96 13:27:58 13:27:58 0.01 0.01 8.00
whoami theus pts/99 13:28:07 13:28:07 0.02 0.01 16.00
sendmail karr pts/91 13:28:17 13:28:17 0.02 0.01 124.00

in Table 1. Our analysis is only based on the first
two fields, “Command name” and “User.”
The first 15,000 commands for each of about 70

users were recorded over a time period of several
months. The time span required to collect 15,000
commands differs vastly from user to user. Some
users generate this many commands in a few days,
others in a few months.
While an analysis using arguments as well as

commands would be desirable, arguments of com-
mands were not collected because of privacy con-
cerns. Some commands recorded by the system are
not explicitly typed by the user. For example, a shell
file is a file that contains multiple commands, and
running a shell file will cause all of its commands to
be recorded. Other examples are so-called .profile
files and make files. Names of executable programs
are also interpreted as commands because they are
recorded in the audit stream.

3.2 Experimental Design

We randomly selected 50 users to serve as intru-
sion targets. We then used the remaining 20 users
as masqueraders and interspersed their data into
the data of the 50 users. Using users as masquer-
aders is a worst case scenario for an already dif-
ficult problem, for two reasons. First, there is a
good chance that a “real” masquerade will exhibit an
unknown unusual pattern, and it is easier to distin-
guish between unusual and normal patterns than it
is to distinguish among several normal usage pat-
terns. Second, using normal users instead of data
from real masquerades means that we do not make
any implicit assumptions about the masquerades.
This is desirable since we avoid restricting ourselves
to known attacks. Additional assumptions, however,
would make detection much easier.
In essence, in detecting masquerades we try to

classify data into two groups that one might label
“good” and “bad.” However, we have to characterize
“good” in the absence of training data for “bad.”
For simplicity, because it facilitates presentation

of the results, we decided to decompose each user’s
data into 150 blocks of 100 commands each. (We ran

this particular experiment only once because we did
not want to appear to use the best out of several
runs. Previously, the methods were used to investi-
gate block sizes of 100, 500 and 1000. As one would
expect, a longer block leads to somewhat better dis-
crimination.) The first 50 blocks (5000 commands)
of all users are kept aside as training data—as far
as we know they are not contaminated by mas-
queraders. For blocks 51 through 150 we made the
simplification that a block is contaminated either
completely or not at all; there are no mixed blocks.
Starting with block 51, we insert masquerading

data as follows: if no masquerader is present, a
new masquerader appears in the following block
with a 1% probability. If a masquerader is present,
the same masquerader continues to be present
in the following block with a probability of 80%.
While the exact values of the probabilities are arbi-
trary, they reflect the requirements that (1) there
are an arbitrary number of masqueraders in the
data (including the possibility of none), (2) the
length of the masquerading varies and (3) most of
the data are not contaminated.
Data that correspond to different masqueraders

are always separated by at least one block of
uncontaminated data. Inserting masquerading data
increases the number of commands observed. We
truncate the data to 150 blocks per user in order
not to give away the amount of masquerading data
inserted.
Masquerading data are drawn from the data of

masquerading users as follows: we determine the
length of the masquerade and choose a masquer-
ader and a start data block at random. The random
choice is repeated if there are not enough contigu-
ous masquerading data left or if the masquerading
data were previously used.
We conducted the study in a blind fashion: none

of the investigators knew the locations or number of
the masqueraders at the time they were analyzing
the data. (In some ways, therefore, the experiment
resembles “contests” held to evaluate intrusion
detection methods; these also typically use inserted
intrusions.) The investigators knew the probabili-
ties with which a masquerader would appear and

COMPUTER INTRUSION: DETECTING MASQUERADES 61

disappear but were not allowed to use this informa-
tion. The fact that intrusions have lengths that are
multiples of 100 commands also could not be used.
The only piece of information used was the fact that
masquerades only start at the beginning of blocks;
thus the individual tests for masqueraders also
started at the beginning of blocks. We started at
the beginning of a block for convenience. It makes it
much easier to keep track of false and true alarms.
It is also not clear how to interpret an alarm for a
semi-contaminated block for the ROC curves. Any
advantage that the detection system had by know-
ing that intrusion starts at the beginning of a block
would have been slight in the overall scheme. If the
masquerader started at arbitrary points, only the
first block in the masquerade would contain both
contaminated and uncontaminated commands, all
subsequent blocks for the same masquerader would
be contaminated (except for the last block).
The data used in this experiment are available for

download from http://www.schonlau.net and from
http://www.niss.org.

4. OVERVIEW OF METHODS

In what follows we describe distinct approaches
labeled, “Uniqueness,” “Bayes one-step Markov,”
“Hybrid multistep Markov,” “Compression,” and two
additional methods from the computer science lit-
erature labeled “IPAM” and “Sequence-Match.” All
methods attempt to detect anomalies and should
be thought of as subsystems rather than as stand-
alone intrusion detection systems. Integration of
subsystems is not discussed here and is one of the
areas that merit further research.
The methods all operate in essentially the same

way. First, the 5000 commands of training data are
used to construct user profiles. Then, for each block
of 100 commands, a score is computed and if the
score exceeds a threshold, an alarm indicating a
potential masquerade is triggered. When data are
deemed to be free of masquerades, they may be
used to update the profiles. For each method we
will describe how to generate the score as part of
the model, how to set thresholds, and how to update
the profile.
Before we describe the various methods, we first

introduce some notation that is common to several
methods.

C Training data (command names)
c Test data (command names)
Cut tth command of user u of the

training data
Nujk Number of times user u used the

command sequence �j� k� in the

training data
Nuk Number of times user u used

command k in the training data
Nu Length of user u’s training data

sequence
nujk� nuk� nu As above for test data in a block

being evaluated
xub Score for user u at block b of

method presented
U Total number of users (here 50)
Uk Number of users who have used

command k in the training data
K Total number of distinct commands
T Number of commands in a test data

block (here 100)

Note that the subscripts u, t and k index users,
command order and commands, respectively. When
a second subscript is needed to index commands, we
use the subscript j.
The command stream for a given user is ordered.

To avoid cumbersome sentences we will occasionally
refer to that order as “time.”

4.1 Uniqueness

The uniqueness approach is based on the idea
that commands not previously seen in the training
data may indicate an attempted masquerade. More-
over, the fewer users that are known to use that
command, the more indicative that command is of a
masquerade. This approach is due to Schonlau and
Theus (2000).

4.1.1 Motivation. Uniquely used and unpopular
commands are very important for this method. By
“uniquely used command” we mean that in a pool
of users only one user is using that command. An
unpopular command is used only by few users.
It turns out that almost half of the UNIX com-

mands appearing in our training data are unique
and many more are unpopular. Moreover, uniquely
used commands account for 3�0% of the data, and
commands used by five users or fewer account for
8�3% of the data. This is a testimony to the diversity
within the user communities of UNIX systems. Note
that spotting unusual behavior is generally easier
in a homogeneous user community than in a highly
diverse one.
A command has popularity i if exactly i users

use that command. We group the commands such
that each group contains only commands with the
same popularity. We assign an ID to each command
so that commands from groups with unpopular
commands are assigned lower ID’s than commands
from groups with more popular commands. The

62 M. SCHONLAU ET AL.

Fig. 1. Visualization of command popularity. Each panel corresponds to one user. Within each user’s panel, each command is represented
by a single dot. Each command is assigned a distinct ordinate such that commands with higher popularities have greater ordinates than
those with lower popularities. Commands are plotted versus “time” within each panel. That is, for each user we plot 5,000 points. The
coordinates for any one point are given by its entry “time” (the position within the 5,000 points) and the command ordinate.

order within a group is arbitrary. When plotting
the command ID over “time,” the usage pattern
of uniquely used–unpopular commands emerges.
Such a plot is shown in Figure 1 for the first 5000
commands of each of 50 users.
Groups are separated by a horizontal line. The

fact that the popularity = 1 group takes up approx-
imately the bottom half of Figure 1 shows, as we
have already noted, that about half of all commands
are uniquely used. That many more commands are
unpopular can also be seen from Figure 1.

4.1.2 Model. We define a test statistic that
builds on the notion of unpopular and uniquely
used commands:

xu =
1
nu

K∑
k=1

Wuk �1−Uk/U�nuk�(1)

where the weights Wuk are

Wuk =
{−vuk/vk� if user u’s training data

contains command k,
1� otherwise,

where

vuk =Nuk/Nu

and

vk =
∑
u

vuk�

The fraction �1 − Uk/U� acts as a uniqueness
index. It is 0 if all users have used this command
before and 1 if none of the users has used it before.
The weights Wuk control whether the uniqueness
index should be added or subtracted, depending
on whether the command was seen before or not.
Hence, a user will tend to score low who uses com-
mands similar to the ones used in the training data.

COMPUTER INTRUSION: DETECTING MASQUERADES 63

The order in which the commands appear does not
matter. The quantity vuk/vk represents the com-
mand usage relative to other users. It reduces the
score contribution of commands that other users
often use and this user rarely.

4.1.3 Thresholds. We assign the same threshold
to all users. This threshold is estimated via cross-
validation: we split the original training data into
two data sets of 4000 and 1000 commands. Using
the larger data set as training data, we assign scores
for the smaller one. This is repeated five times, each
time assigning scores to a distinct set of 1000 com-
mands. We set the threshold to the 99th percentile
of the combined scores across all users and all five
cross validations. For our data the resulting thresh-
old is 0�2319.
We investigated assigning different thresholds to

different users, in the way to be described for the
compression method (Section 4.4.2). It turned out
that individual thresholds tended to yield a false
alarm–missing alarm trade-off inferior to the one
based on a common threshold for all users. This may
be due to the fact that scores are interpretable for
all users in the same way: for example, a negative
score indicates that the test data contains few or no
incidences of new commands and therefore are not
suspicious.

4.1.4 Updating. This method is particularly sen-
sitive to contamination of the training data. Using
all alarm-free test data for updating training data
therefore does not seem sensible. Instead we intro-
duce a more conservative second threshold for
updating: if the test score remains below the updat-
ing threshold then the corresponding data are
added to the training data.
In choosing the updating threshold, we note that

a masquerader who uses mostly common commands
can get a score of slightly below zero, and at the
same time contaminate the pool of commands by
using a few of his/her own uniquely used commands.
To avoid that possibility, we set the updating thresh-
old somewhat arbitrarily to −0�05.
Updating the training data set means updating

the vector of distinct commands and the matrix
that contains a count of how often each user used a
command. Updated scores can be recomputed from
that matrix. Here we recompute the scores after
every 2000 test commands (i.e., after commands
7000, 9000, 11,000 and 13,000). While nonsimul-
taneous updating is possible, we chose to update
simultaneously for all users, as if all users were
submitting commands at the same rate.

4.2 Bayes One-Step Markov

The uniqueness approach only considered com-
mand frequencies. The Bayes one-step Markov
approach goes further: it is based on one-step
transitions from one command to the next. The
approach, due to DuMouchel (1999), uses a Bayes
factor statistic to test the null hypothesis that the
observed one-step command transition probabilities
are consistent with the historical transition matrix.

4.2.1 Model. We form two hypotheses. The null
hypothesis assumes that the observed transition
probabilities stem from the historical transition
matrix; the alternative hypothesis is that they were
generated from a Dirichlet distribution,

H0� P�Ct = k�Ct−1 = j� = pujk�

H1� P�Ct = k�Ct−1 = j� = Qk�
(2)

�Q1� � � � �QK� ∼ Dirichlet�α01� � � � � α0K��(3)

where pujk is the historical transition probability
from command j to command k for user u, that is,

pujk = P�next command = k�previous
command = j� User = u��

We now explain how we estimate the histori-
cal command transitions pujk and the parameters
α01� � � � � α0K.
Choosing a Bayesian framework, we estimate the

pujk by shrinking the observed conditional probabil-
ities toward the marginal probabilities:

pujk = �Nujk + vujquk�/�Nuj� + vuj��
where quk are the marginal probabilities

quk = P�next command = k�User = u�
and vuj are Bayesian hyperparameters controlling
the shrinkage. The vuj in turn are estimated by fit-
ting conditional frequencies Nujk to a Dirichlet dis-
tribution with means quk.
The marginal frequencies quk are estimated by

shrinking marginal frequencies observed in the
training data toward the average command fre-
quencies for all users,

quk = �Nu�k + αuk�/�Nu�� + αu���
The αuk above and the α0k used in (3) to specify the
alternative hypothesis are estimated by fitting the
marginal frequencies Nu�k to a Dirichlet multino-
mial distribution with a modification of the usual
Dirichlet model to take into account the fact that
many commands are unique to particular users. See
DuMouchel (1999) for details of this modification,

64 M. SCHONLAU ET AL.

which was inspired by the success of the unique-
ness method of Section 4.1.
We test the hypothesis H0 versus H1 in (2) by

forming the Bayes factor BF, the ratio of the prob-
abilities of the data under the two hypotheses,

BF = P�C1� � � � � CT�H1�/P�C1� � � � � CT�H0��
The larger BF is, the more evidence there is against
H0 in favor of H1. In fact, x = log�BF� is often
called the weight of evidence. On the log scale there
is the nice property that evidence from two inde-
pendent data sets is the sum of their individual evi-
dence. We therefore use x = log�BF� as the test
statistic.
It turns out that the Bayes factor BF can be cal-

culated as

BF =
�

k

(
α0k�α0k + 1� · · · �α0k + nu�k − 1�)

α0��α0� + 1� · · · �α0� +T− 1��j� k p
nujk

ujk

�

4.2.2 Thresholds. We split the training data set
into two parts. The model was estimated from one
part and based on those estimates. Scores were cal-
culated for the other part. Let x̄u and x̄ be the
average such score for user u and across all users,
respectively.
We calculate individual thresholds for each user

as follows:

thresholdu = �x̄u − x̄�/2
The average threshold for all users is intentionally
set to 0. The value 0 is the log Bayes factor when the
hypothesis and the alternative are equally likely. It
thus emerges as a natural choice.

4.2.3 Updating. When any three blocks of test-
ing data (300 commands) in a row are alarm-free,
then the center block is added to the training data.
Should a fourth block be alarm free, then the third
block is added, and so forth. Not adding the first
and last blocks minimizes the contamination of the
training data with masquerading data.
Adding a block to the training data in practice

can be done by updating the values of quk and pujk.
The update algorithm is straightforward, involving
a modification of the nonzero counts Nujk. The val-
ues of pujk are never stored, but are only computed
as needed, based on quk, vuj and the nonzero values
of Nujk.
An exponential averaging method is used to

update the Nujk, to “age out” old data. It is of
the form Nujk ← Nujk2−nu/5000 + nujk so that com-
mand relative frequencies have a “half-life” of 5000
commands. The user specific thresholds are also
updated by an exponential weighting algorithm.

4.3 Hybrid Multistep Markov

A hybrid method based mostly on a multistep
(also called “high-order”) Markov chain and occa-
sionally on an independence model is employed.
This approach is due to Ju and Vardi (1999).
We overcome the high dimensionality inherent in

a multistep Markov chain as follows: (1) restrict
attention to a subset of the most used commands
(with the remaining commands represented under
a single “command” labeled other), (2) use a mixture
transition distribution (MTD) approach to model the
transition probabilities (Raftery, 1985; Raftery and
Tavaré, 1994).
When the test data contain many commands

unobserved in the training data, a Markov model
is not usable. In such instances a simple indepen-
dence model with probabilities estimated from a
contingency table of users versus commands may
be more appropriate. Our method automatically
toggles between the two models as needed.

4.3.1 The multistep Markov model. Let Ku be
the smallest number such that the most frequently
used Ku-1 commands of user u account for at least
99% of that user’s training data. All other com-
mands, including those not appearing in user u’s
training data, form a category labeled otheru. We
then combine the most frequently used Ku-1 com-
mands and otheru to constitute the Markov chain’s
state space Mu.
Let Cut� t = 1�2� � � �� be the sequence of com-

mands of user u. Assuming the MTD model, the
transition probabilities of an l-step Markov chain is

P�Cut=c0�Cu�t−1=c1�Cu�t−2=c2�����Cu�t−l=cl�

=
l∑

i=1
λuiru�c0�ci�� t=l+1�l+2�����

where Ru = ru�i�j�� i� j ∈ M� and �u = λui� i =
1�2� � � � � l� satisfy certain positivity constraints.
We fix l = 10 in our experiments and make

the simplifying assumptions that for all users u:
(1) ru�otheru�i� = ε� ∀ i ∈Mu, where ε is small (we
take ε = 0�00001), and (2) ru�i�otheru� = 1−ε

Ku−1 � ∀ i ∈
Mu except for i = otheru.
Assumption (1) forces transition probabilities to

infrequently used commands to be small. Assump-
tion (2) copes with the scarcity of the data by set-
ting all transition probabilities from infrequently
used commands to the same value. Note that otheru
contains rarely used commands. The rationale for
choosing ε = 0�00001 is that there is a 1% chance
to get a rare command and there are (roughly) 1000
commands in otheru.

COMPUTER INTRUSION: DETECTING MASQUERADES 65

The log-likelihood of a command sequence for
user u is

logL = ∑
i0∈Mu

· · · ∑
il∈Mu

n�i0� i1� � � � � il�

× log
(l∑
j=1

λujru�i0�ij�
)
�

(4)

where n�i0� i1� � � � � il� is the number of times that
the pattern il �→ il−1 �→ · · · �→ i0 is observed in
the command sequence. A maximum likelihood esti-
mate (MLE) maximizes (4) with respect to �u and
Ru, subject to positivity constraints. See Ju and
Vardi (1999) for computational details.

4.3.2 The independence model. This model ass-
umes that user u’s commands are independently
generated from a multinomial random distribution,

P�Cu1 = c1� � � � � CuT = cT�useru�

=
T∏
t=1

P�Cut = ct�useru� =
T∏
t=1

quct �

As with the previous methods, we use the fact that
commands used by few users have a greater power
to distinguish different users than those that are
used by many users. To that end, this method also
uses weights that depend on the popularity score,
and to achieve this, we transform Nuk as follows:

N′uk = wkNuk + �1−wk�
(
N·k

Nu·
N··

)
�

where wk = 1 + 1/U − Uk/U. Frequencies of the
more popular commands are shrunk toward their
marginal proportions �N·kNu·

N··
� to a greater extent.

Subsequently, the N′uk are renormalized to achieve
N′u� =Nu� and quk is estimated byN′uk/N

′
u· ifN

′
uk >

0 or ε if N′uk = 0 (to avoid taking the logarithm of
zero).

4.3.3 Combining the two models. Based on the
test data sequence cu1� � � � � cuT� we test the
hypothesis

H0 � commands are generated by user u�

H1 � commands are generated by one of

the other users�

We define the log-likelihood-ratio statistic for the
Markov and independence models, respectively, as
follows:

X1u = log
maxv �=u L�c1� � � � � cT��̂v� R̂v�

L�c1� � � � � cT��̂u� R̂u�
and

X2u = log
maxv �=u

�
i qvci�

i quci
�

To bring the two statistics X1 and X2 into the
same scale, we regress X1 on X2 with no intercept,
X1 = ρX2, based on the training data. We use a
robust regression procedure based on least median
of squares to obtain the estimate ρ̂ of ρ.
Let su be the number of commands that are cate-

gorized as otheru in cu1� � � � � cuT�. We combine X1u
and X2u into a single “score,” xu:

xu =
X1u� if su/T ≤ ξ (we choose

ξ = 0�2 in our experiment),
ρ̂X2u� if su/T > ξ.

This results in a hybrid method that switches auto-
matically between the Markov and independence
models according to whether the test data are
“usual” or “unusual.” The latter occurred 8% of the
time in our data set.

4.3.4 Thresholds. We reject H0 if xu > µ + 3σ
where µ and σ are the mean and standard devi-
ation of the scores xu. We estimate µ and σ from
the pooled training data from all users. The same
threshold is used for all users.

4.3.5 Updating. When xu ≤ 0 for a given set of
test data, the corresponding test data are added to
the training data set. The updating threshold (zero)
is thus more conservative than the one for rais-
ing an alarm. The parameters �u and Ru, which
profile an individual user, are re-estimated based
on the augmented training data at each update.
The threshold parameters, µ and σ , are reestimated
from all training data scores xu and all previous test
data with a score lower than the old threshold.
In this experiment, the estimates of the parame-

ters �u and Ru were updated once exactly half way
through the test data.

4.4 Compression

By “compression” we mean a reversible mapping
of data to a different representation that uses fewer
bytes. This approach was implemented by Karr and
Schonlau.

4.4.1 Model. The premise of the compression
approach is that test data appended to historical
training data compress more readily when the test
data stems indeed from the same user rather than
from a masquerader. The compression algorithm
builds compression rules from the beginning of the
file. It seems more natural to us that the compres-
sion algorithm starts the training (rule building)
with the training data also. To accomplish that, the
training data needs to come before the test data
rather than the other way around.

66 M. SCHONLAU ET AL.

We define the score x to be the number of addi-
tional bytes needed to compress test data when
appended to training data,

x = compress�C� c�� − compress�C��
where C is the training data, c the test data, C� c�
is the test data appended to the training data and
compress() is a function that gives the number of
bytes of the compressed data.
There are several compression methods, many

of which are based on the Lempel–Ziv algorithm.
We use the UNIX tool “compress” which implements
a modified Lempel–Ziv algorithm popularized in
Welch (1984).

4.4.2 Threshold. The threshold is determined
from the training data (the first 5000 commands for
each user) by cross-validation. We assign an indi-
vidual threshold for each user. For each user and
each of the 50 blocks of 100 commands, we compute

xcv
ub = compress�C� − compress

(
C−C100

ub

)
�

b = 1� � � � �50� u = 1� � � � �U�

where C100
ub is the bth block of 100 commands for

user u. The superscript cv indicates that the scores
are cross-validated.
This yields 50 cross-validated scores for each user.

Because we cannot determine the 99th percentile of
only 50 empirical scores, we make the assumption
that each user’s threshold is a constant offset from
each user’s score average. That is,

thresholdu = x̄cv
u + *�

where * is determined from the pooled data across
all users,

* = xcv
0�99 − x̄cv�(5)

where xcv
0�99 is the sample 99th percentile of xcv

ub.
Note that the choice of xcv

0�99 = 0 leads to the thresh-
olds that were proposed in Section 4.2.2 for the
Bayes one-step Markov model (except for a shrink-
age factor of 1/2).

4.4.3 Updating. After every 2000 test commands
for a given user (i.e., after commands 7000, 9000,
11,000 and 13,000) we consider updating the train-
ing data. When no alarm was raised in the most
recent 5000 commands for a given user, then the
training data set is replaced by the most recent
5000 commands and the threshold for this user is
recomputed (more precisely, we recompute x̄cv

u only,
not *). If one or more alarms were raised, the pre-
vious training data and threshold remain in place.

4.5 Additional Methods

We have not been able to use commercial intru-
sion detection tools on our data. A problem with
the commercial systems is that they usually require
data at the system call level and then reconstruct
the UNIX audit trail from the system calls. Also,
because the commercial systems look at more than
one variable, it is difficult to isolate the detector for
any one variable.
We did, however, compare our methods to two

methods from the computer science community,
which we describe very briefly here.

4.5.1 IPAM. “Incremental probabilistic action
modeling” (IPAM) is the name of an algorithm by
Davison and Hirsh (1998). It is based on one-step
command transition probabilities estimated from
the training data. The estimated probabilities are
updated continually, using an exponential updating
scheme. That is, upon arrival of a new command all
transition probabilities from the penultimate com-
mand to another command are aged by multiplying
them with α, and 1− α is added to the most recent
transition. Davison and Hirsh’s choice of α is 0�9.
Given a command, it is then possible to predict

the next command by choosing the one correspond-
ing to the highest transition probability. A predic-
tion is labeled “good,” if the next command turns out
to be among the top four predicted commands. The
fraction of good predictions of the test data forms
the score. If the fraction falls below a threshold, an
alarm is raised. The thresholds are estimated from
the training data in an ad hoc fashion.

4.5.2 Sequence-match. For each new command,
Lane and Brodley (1998) compute a similarity mea-
sure between the most recent 10 commands and a
user’s profile. A user’s profile consists of command
sequences of length 10 that the user has used in
the past. The similarity measure is a count of the
number of matches in a command-by-command
comparison of two command sequences, with a
greater weight assigned to adjacent matches. This
similarity measure is computed for the test data
sequence paired with each command sequence in
the profile. The maximum of all similarity values
computed forms the score for the test command
sequence. Because these scores are very noisy, the
most recent 100 scores are averaged. If the average
score is below a threshold, an alarm is raised.
The threshold is determined based on the quan-

tiles of the empirical distribution of average scores.
The initial profiles based on the training data con-
tain 4991 command sequences for each user.

COMPUTER INTRUSION: DETECTING MASQUERADES 67

5. RESULTS

The experimental set-up described in Section 3
yielded a total of 40 masquerader incidents for the
50 users. These incidents account for 4�74% of the
data. There were at most three incidents for any
one user, and 21 of the users had no masquerader
at all. Half the masqueraders were present for four
or fewer blocks, while three masqueraders were
present for 20–22 blocks.

5.1 Overall Results

We will first visually inspect when various
methods gave alarms and when a masquerader
was present. This can be seen in Figure 2 for
hybrid multistep Markov, Bayes one-step Markov,
uniqueness and compression methods. Each row
corresponds to one user and each column to one
block of data. The presence of a color indicates
that the corresponding method gave an alarm. The
red background shading indicates the presence of
masqueraders.
Whether an alarm was raised or not was based

on thresholds supplied by the respective methods.
All methods except IPAM and Sequence-Match were
asked to target a false alarm rate of 1%. The false
alarm rates achieved for this data set are given
in Table 2. None of the methods accomplished this
goal, suggesting that it is difficult to control the false
alarm rate.
The missing alarm rates range from 30 to 60

per cent. In looking at these large percentages one
should keep in mind that the problem is very hard
and can be viewed as a worst case scenario, and
that these are not stand-alone intrusion systems.
Because of different false alarm–missing alarm
rates, some colors show up more often in Figure 2.
When a masquerader is present, often either

all four or none of the methods raise an alarm.
This may suggest that masqueraders fall into two
groups: easy to detect and very difficult to detect.
While the methods sometimes give false alarms
jointly (e.g., user 13, user 27), different methods
seem to be prone to false alarms for different users
(e.g., yellow: user 16; green: user 12; blue: user 33).
Particularly interesting is that false alarms often
appear in long sequences. It also appears that while
methods raise false alarms for different users,
they discover the same masqueraders at about the
same time.

5.2 Selected Individuals

Figure 2 showed alarms for all users. Now we will
look at the actual scores of all methods for selected
users.

The panels in Figure 3 correspond to eight partic-
ular users. Each panel displays standardized scores
over “time” for all methods. Each color corresponds
to a different method. The horizontal axis, labeled
1 through 100, corresponds to the 100 blocks of test
data. The scores are standardized such that the hor-
izontal line in the center represents the threshold
value for all 100 blocks and for all methods. Thus, if
any line crosses above the center line, that method
raises an alarm at that point. The thresholds used
here are the ones supplied by each method, mean-
ing that all methods have different false alarm rates
as given in Table 2. Standardized scores are not
comparable across plots since the standardizations
are different for each plot.
Gray shading in Figure 3 indicates the presence

of a masquerader. Lines crossing above the thresh-
old when no gray shading is present are thus false
alarms.
We only comment here on the first panel and

let the reader draw other conclusions from the
graph in Figure 2. For user 9, during the first 8
blocks of the first masquerader the scores of half
the methods jump up, indicating an alarm, while
the scores for the other methods jump down. The
features of the scores of the two groups are exactly
reversed. We hypothesize that during these blocks
this masquerader did not use unusual new com-
mands (uniqueness score is low) and the commands
were somewhat repetitive (compression score is low)
but the transition between familiar commands were
unusual (all transition methods have high scores).
It turns out that the data approximately between
commands 8200 and 8900 consist of repeated
sequences sed, ln, sh. User 9 had used all three
commands separately before, but the one-step tran-
sitions from sed to ln and from ln to sh had never
appeared before.

5.3 Correlation of Methods

Apparently, scores are correlated very highly. We
ran several cluster algorithms using the correla-
tion matrix as a measure of similarity. The meth-
ods uniqueness and hybrid multistep Markov with
a correlation coefficient of 0�79 clearly are part of
the same cluster. This may be because the hybrid
elements of the hybrid multistep Markov method
focus on rare and unique commands similar to the
way the uniqueness method does.
A second group is formed by the two methods

contributed from the computer science community,
namely IPAM and Sequence-Match. The correla-
tion coefficient between these two methods is 0�62.
Depending on the clustering algorithm, the Bayes
one-step Markov method could be associated with

68 M. SCHONLAU ET AL.

F
ig
.
2
.

P
lo

t
of

al
ar

m
s

gi
ve

n
by

va
ri

ou
s

m
et

h
od

s
fo

r
ea

ch
of

50
u
se

rs
.
C

om
pr

om
is

ed
d
at

a
h
av

e
a

re
d

ba
ck

gr
ou

n
d

sh
ad

in
g.

COMPUTER INTRUSION: DETECTING MASQUERADES 69

Table 2
False alarms and missing alarms for all methods

False Missing
Method Alarms (%) Alarms (%)

Uniqueness 1.4 60.6
Bayes one-step Markov 6.7 30.7
Hybrid multistep Markov 3.2 50.7
Compression 5.0 65.8
Sequence-Match 3.7 63.2
IPAM 2.7 58.9

aThe investigators corresponding to the first four methods were
asked to target a false alarm rate of 1%

either of these two groups. Given that both IPAM
and Bayes one-step Markov are based on the one-
step command transition matrix, it is surprising
that they are more highly correlated with other
methods than with each other.
The compression method stands by itself. Its

highest correlation coefficient, with the uniqueness
method is 0�57.

5.4 ROC Curves and Survival Analysis

Up to now it was difficult to compare methods
because the visualizations were based on differ-
ent false alarm rates. By varying the thresholds
we obtain different tradeoffs between false alarms
and missing alarms. The curve that shows the
functional relationship between false alarms and
missing alarms is called a ROC curve. Lippmann
et al. (2000) used ROC curves in their compari-
son of several intrusion detection systems based on
pattern recognition.
Because some methods have different thresholds

for different users, there is a question of how to vary
the thresholds. We add a constant to all individ-
ual thresholds and then compute the corresponding
alarm rates. We ignore the possibility that different
thresholds might have some effect on the updating
algorithm.
Figure 4 displays ROC curves for all methods.

The lower and the further left a curve is, the better
it is. For the best methods, 1% false alarms corre-
sponds to about 70% missing alarms, and 5% false
alarms corresponds to about 30% missing alarms.
The compression method seems to be uniformly infe-
rior to other methods. Between 1% and 5% false
alarms, the uniqueness method clearly dominates
the other methods. IPAM and Sequence-Match are
surprisingly similar for high false alarms. For a very
low false alarm rate (less than 0.5%), they do better
than all other methods.
When using ROC curves, the unit of analysis is

the block rather than the intrusion. (The unit of

analysis for ROC curves is the block rather than the
intrusion because if we only look at intrusion data
for the ROC curve, and ignore the “clean” data, we
would both ignore important data and would not be
able to establish false alarm rates.) It is also of inter-
est to see how long an intrusion “survives” before
it is detected. Figure 5 gives the probability of an
intrusion surviving as a function of the number of
data blocks when the false alarm rate for all meth-
ods is fixed at 1%.
After the first block between 15% and 30% of the

intrusions are caught; after about 10 blocks about
40%–50% are caught. The compression method does
worse than that.

5.5 ROC Curves without Updating

All analyses were based on the updating algo-
rithms as described in Section 4. Figure 6 gives the
ROC curves of algorithms based solely on the initial
training data.
Methods Sequence-Match and compression per-

form better without updating. For compression, this
is directly attributable to the following difficulties
associated with the updating algorithm: because we
do not update training data with test data that
had high scores (in order to avoid contamination
with masquerading data), the average score for the
training data tends to decrease. As a consequence,
the thresholds, calculated from the updated train-
ing data, decrease, too. Eventually normal varia-
tion in the scores starts looking like a masquerading
attempt. While this is a problem for all methods, it
turned out to be especially severe for the compres-
sion method.
Both the uniqueness and hybrid multistep

Markov methods benefited from updating. Given
that the updating may inadvertently contaminate
the training data with masquerading data, this
outcome was not obvious a priori.

6. DISCUSSION

Our first conclusion is that statistical methods
can detect intrusions, even in difficult circum-
stances. All of the methods presented here detect
anomalies in command usage, and do so surpris-
ingly well, considering the paucity of information.
In essence, in detecting masquerades we try to

classify data into two groups that one might label
“good” and “bad.” However, we have to characterize
“good” in the absence of training data for “bad.” It is
interesting to reflect on how our methods cope with
this problem: the hybrid multistep Markov method
explicitly assumes that the masquerader resem-
bles one of the other users. To a lesser extent, the

70 M. SCHONLAU ET AL.

S
ta

nd
ar

di
ze

d
S

co
re

s
U

se
r

 9

0 20 40 60 80 100

S
ta

nd
ar

di
ze

d
S

co
re

s
U

se
r

 1
0

0 20 40 60 80 100

S
ta

nd
ar

di
ze

d
S

co
re

s
U

se
r

 1
2

0 20 40 60 80 100

S
ta

nd
ar

di
ze

d
S

co
re

s
U

se
r

 1
8

0 20 40 60 80 100

S
ta

nd
ar

di
ze

d
S

co
re

s
U

se
r

 2
5

0 20 40 60 80 100

S
ta

nd
ar

di
ze

d
S

co
re

s
U

se
r

 3
0

0 20 40 60 80 100

S
ta

nd
ar

di
ze

d
S

co
re

s
U

se
r

 4
2

0 20 40 60 80 100

S
ta

nd
ar

di
ze

d
S

co
re

s
U

se
r

 4
4

0 20 40 60 80 100

H. Multi-Step Markov
Bayes 1-Step Markov
Compression
Uniqueness
Sequence-Match
IPAM

Fig. 3. Plot of standardized scores over “time” for eight different users.

COMPUTER INTRUSION: DETECTING MASQUERADES 71

False Alarm (%)

M
is

si
ng

 A
la

rm
 (

%
)

0.1 0.5 1.0 5.0 10.0 50.0 100.0

0
20

40
60

80
10

0

Hybrid Multi-Step Markov
Bayes 1-Step Markov
Compression
Uniqueness
Sequence-Match
IPAM

Good

Bad

Fig. 4. ROC curves for all methods. Methods use updating.

uniqueness method and the Bayes one-step Markov
method also make similar assumptions through
the concepts of command popularity and parameter
estimation of the Dirichlet distribution, respec-
tively. The compression method has an inherent
notion of what “bad” constitutes.
The second principal conclusion is that our

experiment demonstrates that the methods have
rather different characteristics. First, the unique-
ness method can be severely affected by accidental
contamination of the training data with rare com-
mands from the masquerading data. Further, a
single threshold for all users works better than
individual thresholds for each user. The uniqueness
method is the easiest to compute, yet it was the
most powerful at anomaly detection in our experi-
ment. It is an open question whether this success
can be repeated in other contexts.
The compression method is vulnerable to updat-

ing the training data with homogeneous data, and
also has difficulties with updating algorithms. The
multistep Markov method, while very successful, is
computationally demanding. Even though they were
only used 8% of the time, the hybrid elements of
the hybrid multistep Markov method did improve
its ROC curve.

Finally, the Bayes one-step Markov method did
slightly worse than the Markov and the uniqueness
methods, but it is less sensitive to contamination
in the training data than uniqueness and is not as
computationally intensive as the Markov method.
Previously, we investigated another approach

based on principal components analysis of one-step
command transition frequencies (DuMouchel, 1999;
DuMouchel and Schonlau, 1999). This approach
was abandoned because it required very volumi-
nous user profiles and was not easily extended to
make use of the information in unpopular–unique
commands.
To some extent, the performances of the various

methods are substantially the same. For example,
the ROC curves in Figures 4 and 6 do not differ
dramatically. Nevertheless, the curves do differ,
and we believe these differences to be meaningful.
One interpretation is that any sensible approach
(compression is a good example) works pretty well,
because some intrusions are easy to detect. But
going from working pretty well to working well
requires insight and effort.
Intrusion detection is a complex problem requir-

ing systems and strategies (authentication, attack
signatures, anomaly detection), rather than iso-

72 M. SCHONLAU ET AL.

Number of blocks of commands until detecting a masquerader

P
ro

ba
bi

lit
y

of
 In

tr
ud

er
 S

ur
vi

vi
ng

0 2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Hybrid Multi-Step Markov
Bayes 1-step Markov
Compression
Uniqueness
Sequence-Match
IPAM

Fig. 5. Survival plot of intrusions for all methods given a fixed false alarm rate of 1%. Ideally there would be no detection delay, that
is, instant “death” of the intrusion.

False Alarm (%)

M
is

si
ng

 A
la

rm
 (

%
)

0.1 0.5 1.0 5.0 10.0 50.0 100.0

0
20

40
60

80
10

0

Hybrid Multi-Step Markov
Bayes 1-Step Markov
Compression
Uniqueness
Sequence-Match

Good

Bad

Fig. 6. ROC curves for all methods except IPAM for which no data was available. Methods do not use updating.

COMPUTER INTRUSION: DETECTING MASQUERADES 73

lated techniques. None of the methods described
here could sensibly serve as the sole means of
detecting computer intrusions—the rates of suc-
cessful masquerades preclude this. These tools
could, however, be used in conjunction with pat-
tern recognition (or misuse detection) approaches,
or other techniques such as profiling based on
file–directories accessed and/or biometrics such as
keystroke timings. Such combined strategies could
be used to reduce false alarms.
To summarize, we have presented a framework to

detect masquerades by formulating hypotheses and
applying statistical theory to test them. We used
ROC curves to make comparisons between different
intrusion detection methods possible. We intro-
duced the popularity score as a valuable component
of a command profile for the uniqueness method.
We were able to combine the concepts of Dirichlet
priors, shrinkage estimation, Bayes factors and
sparse matrix computation for the detection of mas-
querades. We introduced a way to toggle between
different methods, in our case between the multi-
step Markov and the independence model. We found
ways to reduce the dimensionality of the multistep
Markov model.
Our final conclusion is that many challenges and

opportunities for statistics and statisticians remain.
These include:

• Dealing with the complexity of the problem.
Because intruder behavior is both complex and
diverse, intrusion detection does not easily lend
itself to the usual divide-and-conquer paradigm,
meaning that the problem cannot be broken into
obvious smaller pieces that can then be solved
separately.
• Dealing with the scale of the problem. The

potential amount of data to consider is enormous
and it is desirable to analyze the data in real time,
not only because rapid decisions may be essential
but also because the sheer volume of the data may
preclude its being stored for later analysis.
• Making use of more detailed data (not only user

and commands).
• Understanding the strengths and weaknesses

of statistical methods in comparison to other (“com-
puter science”) techniques such as pattern recogni-
tion. For example, which techniques are good for
sounding alarms, as compared to tracking someone
who seems suspicious but has not yet triggered an
alarm?
• Integration of statistical strategies into intru-

sion detection systems, including the opportunity for
meta-analysis.
• Constructing graphical tools for computer

intrusion detection.

• Statistical analysis of automatically generated
alarms to distinguish between important and less
important alarms (often the number of alarms gen-
erated is so large that they are partially or fully
ignored).
• Transferring methods and tools to similar set-

tings characterized by intrusions with anomalous
behavior, such as credit card and long distance tele-
phone fraud.

ACKNOWLEDGMENTS

We are very grateful to Brian Davison (IPAM)
and Terran Lane (Sequence-Match) who agreed to
run their intrusion tools on our data. We thank
Daryl Pregibon for generating the blinded experi-
mental data and Allan Wilks for helping us to col-
lect the command data in the first place. The work
of Ju, Karr, Schonlau and Vardi is funded in part
by NSF Grant DMS-97-00867. Schonlau’s work is
also funded in part by NSF Grant DMS-92-08758.
Ju’s and Vardi’s work is also funded in part by NSF
Grant DMS-97-04983 and NSA Grant MDA 904-98-
1-0027.
Schonlau was affiliated with the National Insti-

tute of Statistical Sciences, Ju with Rutgers Uni-
versity and Theus with AT&T Labs Research when
the research was conducted.

REFERENCES

Amoroso, E. (1999). Intrusion Detection: An Introduction to
Internet Surveillance, Correlation, Trace Back, Traps, and
Response. Intrusion.Net Books, Sparta, NJ.

Davison, B. D. and Hirsh, H. (1998). Predicting sequences
of user actions. In Predicting the Future: AI Approaches
to Time Series Problems. Technical report WS-98-07 (Pro-
ceedings of AAAI-98/ICML-98 Workshop) 5–12. AAAI Press,
Madison, WI.

Denning, D. E. (1997). Cyberspace attacks and countermea-
sures. In Internet Besieged (D. E. Denning and P. J. Denning,
eds.) 29–55. ACM Press, New York.

Denning, D. E. and Denning, P. J. (eds) (1997). Internet
Besieged. ACM Press, New York.

Dumouchel, W. (1999). Computer intrusion detection based
on Bayes Factors for comparing command transition prob-
abilities. Technical Report 91, National Institute of Sta-
tistical Sciences. Available at www.niss.org/downloadable-
techreports.html.

Dumouchel, W. and Schonlau, M. (1998). A fast computer
intrusion detection algorithm based on hypothesis testing
of command transition probabilities. In Proceedings of The
Fourth International Conference of Knowledge Discovery and
Data Mining 189–193. New York.

Dumouchel, W. and Schonlau, M. (1999). A comparison of test
statistics for computer intrusion detection based on princi-
pal components regression of transition probabilities. In Pro-
ceedings of the 30th Symposium on the Interface: Computing
Science and Statistics 30 404–413.

74 M. SCHONLAU ET AL.

Forrest, S., Hofmeyr, S., Somayaji, A. and Longstaff, T. A.
(1996). A sense of self for Unix processes. IEEE Symposium
on Security and Privacy, Oakland, California.

Javitz, H. S. and Valdes, A. (1993). The NIDES statistical com-
ponent: description and justification. Technical report, SRI
International, Menlo Park, CA.

Ju, W. and Vardi, Y. (1999). A hybrid high-order Markov chain
model for computer intrusion detection. Technical Report
92, National Institute Statistical Sciences. Available at
www.niss.org/downloadabletechreports.html.

Lane, T. and Brodley, C. E. (1998). Approaches to online learn-
ing and concept drift for user identification in computer secu-
rity. In Proceedings of the Fourth International Conference of
Knowledge Discovery and Data Mining 259–263. AAAI Press,
Menlo Park, CA.

Lippmann, R., Fried, D., Graf, I., Haines, J., Kendall, K.,
McClung, D., Weber, D., Webster, S., Wyschogrod, D.,
Cunningham, R. and Zissman, M. (2000). Evaluating intru-
sion detection systems: the 1998 DARPA off-line intrusion
detection evaluation. MIT Lincoln Laboratory. Unpublished
manuscript.

Lunt, T. F., Jagannathan, R., Lee, R., Listgarten, S., Edwards,
D. L., Neumann, P. G., Javitz, H. S. and Valdes, A.
(1988). Development and application of IDES: A real-
time intrusion-detection expert system. Technical report,
Computer Science Laboratory SRI International, Menlo
Park, CA.

Marchette, D. (1999). A statistical method for profiling network
traffic. In Proceedings of the 1st USENIX Workshop on Intru-
sion Detection and Network Monitoring 119–128.

Paxson, V. (1998). Bro: A system for detecting network intrud-
ers in real-time. In Proceedings of the 7th USENIX Security
Symposium.

Porras, P. and Neumann, P. (1997). Emerald: Event monitor-
ing enabling responses to anomalous live disturbances. In
Proceedings of the National Information Systems Security
Conference.

Power, R. (1999). Current and Future Danger: A CSI Primer on
Computer Crime and Information Warfare, 3rd ed. Computer
Security Institute, San Francisco.

President’s Commission on Critical Infrastructure Protec-
tion (1998). Critical Foundations. United States Govern-
ment Printing Office, GPO 040-000-00699-1. Washington,
DC.

Raftery, A. E. (1985). A model for high-order Markov chains. J.
Roy. Statist. Soc. Ser. B 47 528–539.

Raftery, A. E. and Tavare, S. (1994). Estimation and model-
ing of repeated patterns in high-order Markov chains with
the mixture transition distribution model. Appl. Statist. 43
179–199.

Scott, S. (2001). Detecting network intrusion using a Markov
modulated nonhomogeneous Poisson process. Available at
www-rcf.usc.edu/∼sls/research.html.

Schonlau, M. and Theus, M. (2000). Detecting masquerades in
intrusion detection based on unpopular commands. Inform.
Process. Lett. 76 33–38.

Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M.,
Frank, J., Hoagland, J., Levitt, K., Wee, C., Yip, R. and
Zerkle, D. (1996). GRIDS—A graph-based intrusion detec-
tion system for large networks. In Proceedings The Nine-
teenth National Information Systems Security Conference.

Tan, K. (1995). An application of neural networks to Unix com-
puter security. In IEEE International Conference on Neural
Networks. IEEE, New York.

Welch, T. A. (1984). A technique for high performance data com-
pression. IEEE Computer 17 8–19.

