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Understanding the Shape of
the Hazard Rate: A Process Point of View
Odd O. Aalen and Håkon K. Gjessing

Abstract. Survival analysis as used in the medical context is focused
on the concepts of survival function and hazard rate, the latter of these
being the basis both for the Cox regression model and of the counting
process approach. In spite of apparent simplicity, hazard rate is really
an elusive concept, especially when one tries to interpret its shape con-
sidered as a function of time. It is then helpful to consider the hazard
rate from a different point of view than what is common, and we will
here consider survival times modeled as first passage times in stochastic
processes. The concept of quasistationary distribution, which is a well-
defined entity for various Markov processes, will turn out to be useful.
We study these matters for a number of Markov processes, includ-

ing the following: finite Markov chains; birth–death processes; Wiener
processes with and without randomization of parameters; and general
diffusion processes. An example of regression of survival data with a
mixed inverse Gaussian distribution is presented.
The idea of viewing survival times as first passage times has been

much studied by Whitmore and others in the context of Wiener pro-
cesses and inverse Gaussian distributions. These ideas have been in the
background compared to more popular appoaches to survival data, at
least within the field of biostatistics, but deserve more attention.

Key words and phrases: First passage time, hazard rate, survival
analysis, quasistationary distribution, Wiener process, Markov chain.

1. INTRODUCTION

In survival analysis one studies the time to occur-
rence of some event. This event may be death, or it
may be the diagnosis of some disease such as cancer.
On a more positive note, the event could be the birth
of a child or graduation from school. Whatever the
setting, one wishes to analyze the probability distri-
bution of the time to the event by means of survival
curves and hazard rates. What is, however, usually
disregarded in the standard approach to survival
analysis is that the event is the end point of some
process. Apart from pure accidents the events do not
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happen out of the blue, but there is a development
preceding each event.
The reason for ignoring this feature is, of course,

that the underlying process leading to the event is
largely unknown. This, however, does not imply that
it should be ignored. Considering the underlying
process, even in a speculative way, may improve our
understanding of the hazard rate and give alterna-
tive regression models. Here we will study first pas-
sage time models for stochastic processes moving in
a transient space until ending up in an absorbing
state. This is of relevance for studying both hazard
rates and regression models.
Hazard rates play a fundamental role in survival

analysis. Although useful, they may not be easy
to understand. Why, for instance, do hazard rates
sometimes increase, sometimes decrease and some-
times first increase and then decrease; see Figure 1
for a picture of typical hazard shapes occurring
in practice. Rates of divorce, for instance, as mea-
sured from time of marriage, first increase and then
decrease somewhat; see Figure 2. This has resulted
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Fig. 1. Typical shapes of hazard rates.

in speculation about a crisis in the typical mar-
riage after a few years leading either to divorce or
to consolidation of the marriage. Within the con-
text of frailty theory a different explanation has
been given. It has been pointed out that the hazard
rate is not merely a measure of the development of
risk in a single individual, but is also influenced by
selection effects among individuals. The most frail
individuals will tend to fail first, leaving the more
robust ones. This will imply that a population haz-
ard may decrease even though the individual rates
are increasing.
The process point of view assumed here gives

yet another explanation of these phenomena. The
shape of the hazard rate is created in a balance
between two forces: the attraction of the absorbing
state and the general diffusion within the tran-
sient space. It turns out that the various common
shapes of hazard rates, as illustrated in Figure 1,
occur naturally depending on how the starting dis-
tribution on the transient state space corresponds
to what is termed a quasistationary distribution.
Simplifying quite a bit, one could say that the

Fig. 2. Rates of divorce among Norwegian couples married in
1960 �lower curve�, 1970 �middle curve� and 1980 �upper curve�.
�Based on data from Statistics Norway.�

shape of the hazard rate depends on the distance
between the starting point, or starting distribution,
and the state of absorption. A great distance leads
to an increasing hazard rate; an intermediate dis-
tance leads to a hazard rate that is first increasing
and then declining; a small distance leads to an
(essentially) decreasing hazard rate. Furthermore,
the hazard rate will typically (when the underlying
process is reversible, i.e., can move back and forth)
converge to a constant value. (Note that we do not
use reversibility in the more precise sense of time
reversibility as defined in Keilson, 1979). Hence a
constant hazard should be expected as a limit in
certain cases. As an example, the hazard rates in
Figure 2 seem to exhibit an approximately constant
level after the initial rise (it should be noted though
that after 25 years of marriage divorce rates tend
to start declining).
The issue of an underlying stochastic process is

also relevant to the interpretation of covariates.
One may ask what covariates really influence. In
Cox’s and several other regression models it is
assumed that covariates influence the hazard of
an event. Generally, however, it would be more
correct to think of covariates as influencing the
underlying process. If I drive a car and fall asleep,
then this immediately influences the risk (hazard)
of an accident, so the time-dependent covariate
“being asleep” certainly has a direct effect on the
hazard. If, on the other hand, the blood pressure
rises somewhat over time and becomes perma-
nently increased, then this is something that does
not directly and in an immediate sense influence
the hazard of, say, myocardial infarction. Rather,
the increased blood pressure promotes an underly-
ing disease process and may only in the long term
influence the hazard of disease.
In fact, often the covariate is not something that

effectively influences even the underlying process,
but is rather a measure of how far this process has
advanced. This is the case of many covariates that



SHAPE OF THE HAZARD RATE 3

are used in the analysis of clinical studies. Promi-
nent examples might be bilirubin in liver disease,
CD4 counts in HIV infection and various staging
measures in cancer. When measured repeatedly
over time, covariates of this kind are often called
markers; see, for example, Nielsen and Linton
(1995) and Jewell and Kalbfleisch (1996).
Hence, it would be more fair to the real biologi-

cal meaning of covariates if one considered them in
relation to an underlying stochastic process.
The same holds for the, now popular, concept of

frailty (a review of frailty theory may be found, e.g.,
in Aalen, 1994). As opposed to covariates that cap-
ture the measured differences between individuals,
frailty denotes the unmeasured individual hetero-
geneity. In the standard frailty model it is assumed
that the frailty variable acts multiplicatively on the
individual hazard rate. This means that frailty is
purported to influence directly the hazard of the
event. Again it would be better to think of frailty
as something which influences an underlying pro-
cess. This is especially important when frailty is per-
ceived as changing over time. As mentioned above
for covariates, the biological meaning of frailty may
vary from case to case. Sometimes, frailty may be
best perceived as a measure of how advanced the
underlying process is.
Of course, the point of view promoted here is

not new. Much previous work has been done along
these lines. The accelerated failure time model,
where covariates are supposed to influence the
acceleration factor, is a prominent example. Here
one models one particular aspect of the underly-
ing process leading to failure, namely its speed. For
an interesting discussion of how this model adapts
much better to a frailty adjustment than the pro-
portional hazards model, see Keiding, Andersen
and Klein (1997). Another important class of mod-
els is the first passage time models based on Wiener
processes (see, e.g., Whitmore, 1986a). The inverse
Gaussian distribution comes up naturally in this
context, and no doubt this is an underused class of
distributions in survival analysis; in fact, it is our
distinct impression that more attention should be
payed, also in biostatistics, to the work of Whitmore
and others.
A further example of the use of a stochastic pro-

cess point of view are the phase type models, that is,
first passage time models in finite Markov chains.
An important practical example of this is the mod-
eling of progression of HIV disease by Longini
and co-authors (see, e.g., Longini et al., 1989). An
extended Markov chain model is studied by Aalen
et al. (1997).
In reliability theory considerable effort has gone

into proving results concerning the shape of the

hazard rate, e.g., deciding conditions under which
it is increasing, or increasing on the average. This
has also been related to shock models, wear pro-
cesses and first passage time distributions. Some
useful references are Patel (1983), Griffiths (1988)
and Shaked and Shanthikumar (1991). In relia-
bility there has also been considerable interest in
“bathtub”-shaped failure rates (i.e., first decreas-
ing and then increasing); see, e.g., Lynn and
Singpurwalla (1997). We will not consider that kind
of shape here, but they may certainly be modeled
within our framework; see Aalen (1995).
This paper focuses on the shape of hazard func-

tions derived from first passage time distributions.
We do not give general theorems concerning the
shape of the hazard, but look at examples, special
cases and illustrations. The quasistationary distri-
bution, which is an important concept in probability
theory, turns out to be useful in understanding the
shape of the hazard. Examples of quasistationary
distributions are exhibited for several models, both
discrete and continuous. The hazard ratios for some
models also are studied. A randomized version of
the Wiener process is studied in connection with a
practical example of analyzing survival data with
covariates. We also consider briefly general diffu-
sion processes on the positive real line with absorp-
tion in 0. Such a diffusion will have a distribution
on the positive half-line which, when normalized
to mass 1, converges to the quasistationary distri-
bution. The hazard rate of the time to absorption
is proportional to the derivative of the density of
the normalized distribution at 0, a relationship that
may give useful intuitive insight.

2. FIRST PASSAGE TIME MODELS

The basic approach in this paper is to model
failure times as times of first passage for suitable
stochastic processes. A discrete-space Markov chain
will be considered, as well as continuous-space dif-
fusion processes with the Wiener process being the
most prominent example.

2.1 Phase Type Models

Consider a time-continuous Markov chain on
a finite state space with constant intensities of
transition. The state space of the Markov chain is
assumed to consist of a set of transient states as
well as one absorbing state. The process starts out
according to a probability distribution on the tran-
sient state space, and the failure time is the time
until absorption. The distribution of time to absorp-
tion is called a phase type distribution, and these
have received quite a lot of attention in the liter-
ature (see, e.g., O’Cinneide, 1990, or the review in
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Aalen, 1995). We will consider such processes below
as well as an example with infinite state space.

2.2 Wiener Processes and Diffusion Processes

Consider a Wiener process which moves freely
until it is absorbed when it reaches a certain point.
If the process starts out at a specific point, then time
to absorption follows an inverse Gaussian distribu-
tion. There are a number of papers on the applica-
tion of Wiener processes in survival analysis; see,
e.g., Lancaster (1982), Whitmore (1986a, b, 1995),
Whitmore, Crowder and Lawless (1998), Eaton and
Whitmore (1977) and Doksum and Høyland (1992).
We study Wiener processes as well as more general
diffusion processes below.

2.3 Different Types of Models

When studying stochastic processes for biologi-
cal or social phenomena, a major distinction exists
between reversible and irreversible processes. Some
diseases, such as nontreatable cancer, might be irre-
versible, while others are clearly reversible in the
sense that the patient is cured. Many diseases, such
as rheumatism or migraine, might be chronic, but
still go back and forth between good and bad peri-
ods, that is, are at least partially reversible. As an
example of a social phenomenon, consider the inci-
dence of divorce: it is clear that most marriages will
have good and bad periods, undergoing reversible
processes of deterioration and improvement, before
some may end in divorce.
By reversibility we simply mean that the tran-

sient states of the process make up a single class.
This irreducibility of the transient state space is
important when considering quasistationary distri-
butions as is done below. Typically such distribu-
tions are well defined for Markov processes with
absorption when the transient states constitute a
single class.
Another distinction, which is related to that

above, is useful when studying hazard rates: by a
progressive model we mean that with probability 1
the process starts out in an “extreme” state which
represents the natural starting point in the state
space and then moves toward the end state. Even
though there may be temporary backward move-
ments and some reversibility, there is still a clear
direction in the development. An example, when
studying the development of a disease, is that the
individual starts out as completely disease free, but
that the disease has a progression once it is estab-
lished. A nonprogressive model, on the other hand,
has no clear direction in the development. The pro-
cess is not supposed to start in an extreme point,

and it does not necessarily have any force of move-
ment toward the absorbing state. Again, marriage
can be used as an example: the marriage might
improve or it might deteriorate after the wedding,
but there is no law that says that it has to move in
one direction.
The distinction between progressive and nonpro-

gressive models is somewhat tentative. Discussion
and examples for phase type models are given by
Aalen (1995).
Typically, progressive models will tend to have

increasing hazard rates. A complication may be
frailty (i.e., unobserved differences in transition
rates between individuals) which may result in
the hazard rate being “bent down” and eventually
decreasing.
For nonprogressive models, the most typical

shape, also in the absence of frailty, will be a haz-
ard rate that first increases and then decreases.
This will be further demonstrated below.

3. QUASISTATIONARY DISTRIBUTIONS

To understand the shapes of the hazard rates
that may result from first passage time distribu-
tions, an essential element is the quasistationary
distribution. It turns out that often there exists a
distribution on the transient state space such that
if the process starts according to this distribution
it will have a constant hazard of transition. This
means that although probability mass is continu-
ously being drained from the transient space, nev-
ertheless the remaining probability distribution on
this space converges to a limiting distribution.
The shape of the hazard rate is in many cases

determined by how the starting distribution of the
process relates to the quasistationary one, whether
it is closer to or further apart from the absorbing
state. Several examples of quasistationary distribu-
tions are given below.

3.1 Phase Type Models

A sufficient condition for a quasistationary dis-
tribution to exist is that the transient states make
up a single class (i.e., the process is completely
reversible prior to absorption); see, e.g., Aalen
(1995) for examples and references. Let A denote
the intensity matrix restricted to the transient
states. Then the quasistationary distribution is
defined by the unique strictly positive left eigen-
vector of A (normalized to sum 1). If the process
is started on the transient state space according to
this quasistationary distribution, the hazard rate
of time to absorption will be constant and equal
to minus the eigenvalue of the above eigenvector.
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If the process starts out according to some other dis-
tribution, then the distribution on the state space
will converge to the quasistationary one.

3.2 Finite Birth–Death Process (Reflected
Random Walk) with Absorbing State

Consider the birth–death process on states 0 to
5, with absorption in state 0, as shown in Figure 3.
The transition intensities are α for moving away
from the absorbing state and β for moving toward
it. The quasistationary distribution is a normalized
version of a left eigenvector of the transition inten-
sity matrix restricted to the transient state space,
that is, of the following matrix:



−α− β α 0 0 0
β −α− β α 0 0
0 β −α− β α 0
0 0 β −α− β α
0 0 0 β −β


 �

More precisely, the quasistationary distribution
is the left eigenvector corresponding to the dom-
inant eigenvalue (i.e., the one closest to zero).
Whenever the transient state space constitutes
a single finite class (which is the case here) the
quasistationary distribution is unique and strictly
positive on all states. The absolute value of the
dominant eigenvalue is the constant hazard rate
of absorption corresponding to a quasistationary
starting distribution.
For a numerical example, put α = 1�5 and β = 1�0.

The quasistationary distribution on states 1 to 5
is given as 0.037, 0.090, 0.167, 0.276, 0.430. The
absolute value of the dominant eigenvalue is 0.037,
which equals the constant hazard rate of absorption
under quasistationarity.
Assume now that the process starts out in a

single given state with probability 1. The hazard
rate of the phase type distribution in this case
depends on how the starting state is related to
the quasistationary distribution. Three cases are
considered here, namely those corresponding to
starting out in state 1, state 3 or state 5. The
first state is very close to the absorbing state,
while the second state is close to the average of
the quasistationary distribution. The third state

Fig. 3. State space of a phase type model.

(state 5) is clearly further removed from the absorb-
ing state than the major part of the quasistationary
distribution. In Figure 4 one sees how these cases
correspond to hazard rates with distinctly differ-
ent shapes. In particular, the hazard rate that first
increases and then decreases arises naturally in the
intermediate situation. The phenomenon observed
here probably has a general validity, as different
models below indicate.
When starting out in state 5, with probability 1,

the model is of a progressive type and one sees that
this yields an increasing hazard rate. Starting out in
other states gives nonprogressive models and haz-
ard rates that decrease from a certain time. A more
detailed discussion is given by Aalen (1995).

3.3 Infinite Birth–Death Process
(Infinite Random Walk)

Consider an infinite birth–death process with
absorbing state in 0, that is, an extension of the
above model where instead of five transient states
there is an infinite number. Just as in the above
example α and β denote the rates of moving up and
down the state space. The advantage of considering
this extension is that simple explicit formulas may
be given for interesting quantities. In particular,
explicit formulas for quasistationary distributions
are given by Cavender (1978) for the case when
such distributions exist, namely when α < β. There
is in fact a whole set of them, but one distribution
is a canonical (or minimal) choice in the sense that
it represents the limiting case for a process start-
ing out with probability 1 in a specific state. The

Fig. 4. Hazard rates for time to absorption dependent on start-
ing state in phase type model. (α = 1�5� β = 1�0)
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formula for this canonical distribution is

q1 =
α

β
+ 1− 2

√
α

β
�

qn = nq1

(
α

β

)�n−1�/2
� n = 2�3� � � � �

Note that this is a negative binomial distribution.
The rate of absorption with this distribution will of
course equal the probability q1 of being in state 1
multiplied by the rate β of passing down to 0. Hence,
the constant hazard rate of absorption that arises
under quasistationarity equals

β× q1 = α+ β− 2
√
αβ�

This is the limit of the hazard rate of the first pas-
sage time to 0 (starting out in a single state) when
time goes to infinity. In the case we study here
the probability density of this distribution may be
found, for instance, from Gross and Harris, 1985,
page 134, formula (2.109), and page 143. Starting
out in state n the density of time to absorption is
given as

n

(
β

α

)n/2

t−1 exp�−�α+ β� t�In�2
√
αβ t�� t > 0�

where In�t� is the modified Bessel function of
order n.
A general result of Keilson (1979) says that the

hazard rate of the first passage time to a neighbor-
ing state in a general birth–death process is always
decreasing. Hence, when starting out in the state
which is closest to absorption, namely state 1, one
will necessarily have a decreasing hazard rate. Oth-
erwise, when starting out in a single state with
probability 1, experience indicates that the hazard
rate will increase first and then decrease, but for
states far removed from the absorbing one, the haz-
ard will be virtually only increasing.
The present theory may give an explanation of

decreasing hazards arising in practice. It is well
known that after myocardial infarction the death
rate is initially very high and then falls sharply.
Data on this have been analyzed from a frailty point
of view by Hougaard (1986), that is, assuming that
some individuals have a much higher risk of dying
from the disease than others. The application of
a conventional frailty model fits the data well. A
quite different interpretation of the declining death
rate can be given in the present framework. If the
absorbing state 0 signifies death, then state 1 might
correspond to a very critical illness, such as myocar-
dial infarction, from which some individuals would
die, while others would soon improve, that is, move
upward in the state space. According to the present
theory, individuals starting out in state 1 would

experience a decreasing hazard rate of dying just
as observed for the myocardial infarction patients.
So it would be expected that patients in a very crit-
ical state would have a decreasing hazard rate.

3.4 Wiener Process with Absorption

Consider a Wiener process with drift −µ �µ > 0�
and variance coefficient σ2. Assume the process
starts out in some positive state and is absorbed
whenever it hits zero. Quasistationary distribu-
tions for this case have been studied fairly recently
(Martinez and San Martin, 1994), and it turns
out that there is a whole family of such distribu-
tions (due to the infinite state space) in the case
when µ > 0 (i.e., the process has a drift toward
zero). One of these distributions is “canonical” in
the following sense: starting out in a single given
state with probability 1, the distribution of “sur-
vivors” will converge to the canonical one. The other
quasistationary distributions are more heavy-tailed
and cannot be reached in this way.
The canonical one is given by �µ2/σ4�x exp�−µx/

σ2�, which is a gamma distribution. If the process is
initiated with this distribution on the positive real
line, then the hazard rate of absorption in zero is
constant and given as �µ/σ�2/2. Putting µ = 1 and
σ2 = 1 gives the distribution shown in Figure 5.
It is of some interest here to note that the hazard
rate depends on the square of µ. Say one considers
some rare event, with absorption corresponding to
this event occurring. If the drift toward this event
doubles, say, then the rate at which the event occurs
is multiplied by 4.
When the process starts at a given point c �>0�

the distribution of time to absorption in 0 is an
inverse Gaussian one (see, e.g., Chhikara and Folks,
1989), with density

fig�t� c� µ� σ� =
c

σ
√
2π

t−3/2 exp
[
−�c− µt�2

2σ2 t

]
�

Fig. 5. Quasistationary distribution for a Wiener process with
absorption �parameters µ/σ2 = 1�.
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The cumulative distribution function is

Fig�t� c� µ� σ� = 1−�

(
c− µt

σ
√
t

)

+ exp
(
2cµ
σ2

)
�

(− c− µt

σ
√
t

)
�

where ��·� is the cumulative standard normal dis-
tribution, and, accordingly, the hazard rate is

λig�t� c� µ� σ� =
fig�t� c� µ� σ�

1−Fig�t� c� µ� σ�
�

There are three parameters in the inverse Gaussian
distribution, namely c� µ and σ , but the distribu-
tion only depends on these through the functions
c/σ and µ/σ . Hence, from a statistical point of view,
there are only two free parameters. This means, for
instance, that we can put σ = 1 in a statistical anal-
ysis, without loss of generality. Note that this is only
true when considering time to absorption and not
when studying other aspects of the process as seen
from (1).
The shape of the hazard rate of this distribution

is similar to that observed for a phase type distri-
bution above. If c is close to zero compared to the
quasistationary distribution one gets, essentially, a
decreasing hazard rate; a value of c far from zero
gives essentially an increasing hazard rate, while
an intermediate value of c yields a hazard that first
increases and then decreases. The wording “essen-
tially” is used here because the continuous nature
of the model and the noncompact state space yield
hazard rates that will, strictly speaking, always
increase to a maximum and then decrease (see, e.g.,
Seshadri, 1998, Proposition 5.1), but for c small or
large they can be seen as just decreasing or just
increasing for most practical purposes. An illus-
tration is shown in Figure 6 where values 0.2, 1
and 3 are chosen for c. It is important to note how
these values relate to the quasistationary distri-
bution: From Figure 5 one sees that these values
are, respectively, placed at the beginning of the
quasistationary distribution, close to the mode of
the distribution, and in its tail.
Assume that the process starts out at the point c

at time 0. The probability density at time t of the
process to be at x > 0 may be found in Cox and
Miller (1965, page 221):

g�x� t� c� µ� σ�

= 1

σ
√
2πt

{
exp

[
−�x− c+ µt�2

2σ2 t

]

− exp
(
2cµ
σ2

)
exp

[
−�x+ c+ µt�2

2σ2 t

]}
�

(1)

Fig. 6. Hazard rates for time to absorption when process starts
out in c = 0�2 �upper curve�, c = 1 �middle curve� and c = 3 �lower
curve�. In all cases µ = 1 and σ2 = 1.

This density is a linear combination of two normal
distributions. The integral under the density will be
less than 1 and decrease with time since there is an
increasing probability of absorption at time 0.
The conditional distribution along the positive

axis given that absorption has not taken place is
given as

f�x� t� c� µ� σ� = g�x� t� c� µ� σ�
1−Fig�t� c� µ� σ�

�

The distribution illustrated in Figure 7 corresponds
to c = 1� µ = 1 and σ = 1. Here all individuals start
out at x = 1, and the distributions are shown at
times 0.05, 0.20, 1.00 and 10.00, together with the
quasistationary distribution. One sees that the dis-
tribution of surviving individuals is rapidly spread-
ing out from x = 1, and, in fact, approaching the
quasistationary distribution.

Fig. 7. Normalized distribution of “survivors,” f�x� t� c� µ� σ�,
for c = 1, µ = 1, σ = 1 at times t = 0�05�0�2�1�10. The
quasistationary distribution �qsd� is added for comparison.
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From results for diffusion processes given below
[see (4)], it follows that the hazard rate of the time to
absorption at time t equals the derivative at x = 0 of
f�x� t� c� µ� σ�, multiplied by σ2/2. In the example
this corresponds to half the slope at zero of the
curves in Figure 7. From the figure it is apparent
that the slope, and hence the hazard, increases for
small t to reach a maximum and then declines to the
value for the quasistationary distribution; see also
the middle curve of Figure 6. This development of
an increase followed by a decrease is quite reason-
able: the mass will rapidly approach the absorbing
state at zero resulting in an increasing slope, but
later on the slope declines as mass keeps moving
out into the extreme parts of the quasistationary
distribution.

3.5 Wiener Process with Absorption Initiated
According to Some Distribution

Instead of starting out in a single state, one may
initiate the process according to some distribution
on the positive real line. The results become particu-
larly simple if the starting distribution is related to
the quasistationary one. Assume for simplicity that
σ = 1, that is, that the canonical quasistationary
distribution equals µ2x exp�−µx�. Assume that the
Wiener process with drift is initiated according to
a distribution proportional to xk exp�−µx� for some
k. When k < 1 this will be a gamma distribution
which is closer to the absorbing state 0 than the
quasistationary one. If k > 1 the distribution is fur-
ther removed from zero than the quasistationary
one. By integrating the inverse Gaussian distri-
bution with respect to the above distribution, one
derives a new first passage distribution which is
simply a gamma distribution proportional to

x�k−1�/2 exp�−�µ2/2�x��
For k < 1 this is well known to have a decreasing

hazard rate, while for k > 1 it is known to have an
increasing hazard rate. Hence, this example demon-
strates how the shape of the hazard of the first
passage distribution is related to how the start-
ing distribution of the process compares with the
quasistationary one.
One may also start out with a distribution of the

type f�x� t� c� µ� σ�. One then gets the later part of
a hazard rate (leaving out the beginning) and can
hence achieve unimodal or decreasing hazard rates.

3.6 Wiener Process with Lower Reflecting
Barrier and Upper Absorbing Barrier

When modeling a phenomenon by a Wiener pro-
cess it is often natural to think that there should
be a lower bound, so that there is not the infinite

state space to be considered. Such an alternative
is a Wiener process with a reflecting lower bar-
rier and an absorbing upper barrier. There does
not exist too much theory on this kind of process
since it is difficult to handle. A very good paper is
that by Schwarz (1992), who presents formulas for
first passage time distributions. A simple formula
for the quasistationary distribution may be derived
from his work in the case of a process without drift,
a reflecting barrier at 0 and an absorbing barrier
at L. Then the distribution becomes

π

2L
cos

(
πx

2L

)

and the corresponding hazard rate of absorption is

π2σ2

8L2
�

It is interesting to note that the quasistationary
distribution is independent of σ . If there is drift,
then more complex formulas may be derived from
the work of Schwarz.

3.7 Geometric Brownian Motion

Another natural way of restricting the pro-
cess to positive values is to consider a geometric
Brownian motion. If Xt is a Wiener process with
drift −µ and variance coefficient σ2 starting in
c∗ = log�b� − log�c� > 0 and being absorbed in zero,
then Yt = b exp�−Xt� is a geometric Brownian
motion (Øksendal, 1998) with positive drift, start-
ing at Y0 = c and being absorbed when Yt reaches
the level b > c. The process Yt is thus restricted
to values in �0� b�. The hitting time distributions of
Xt and Yt are identical, and since Yt is a simple
transformation of Xt the distribution of Yt (con-
ditional on not being absorbed) can be computed
by a transformation of the inverse Gaussian dis-
tribution. The analysis of Yt is thus equivalent to
that of Xt. Geometric Brownian motion is used as
a model for unrestricted exponential growth. As a
model for an underlying biological process Yt can
spend a considerable amount of time close to zero,
but when it reaches larger values it picks up speed
and moves faster toward the barrier, since the drift
is proportional to Yt.

4. DIFFUSION PROCESS WITH ABSORPTION

We shall briefly view the situation from a more
general point of view, by considering a Markovian
diffusion process on the positive half-line with zero
as the absorbing state. Let ϕt�x� be the density on
the state space, denoted by x, at time t and let σ2�x�
and µ�x� be the variance and drift diffusion coeffi-
cients, respectively. The evolution forward in time is
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described by Kolmogorov’s forward equation (Karlin
and Taylor, 1981, page 220):

∂

∂t
ϕt�x� =

1
2

∂2

∂x2

[
σ2�x�ϕt�x�

]

− ∂

∂x

µ�x�ϕt�x���

(2)

4.1 An Equation for the
Quasistationary Distribution

Assume that the process is in a quasistationary
state. Then one can write ϕt�x� = e−θtψ�x�,
where θ is the constant hazard rate and ψ�x�
is the quasistationary distribution. Insertion into
the above equation yields

−θψ�x� = 1
2

∂2

∂x2

[
σ2�x�ψ�x�]− ∂

∂x

µ�x�ψ�x���

The constant drift µ and variance coefficient σ2 of
the Wiener process give:

−θψ�x� = 1
2
σ2ψ′′�x� − µψ′�x��

The quasistationary distributions of the Wiener
process with absorption can be found solving this
equation with appropriate boundary conditions.

4.2 A Formula for the Hazard Rate

Consider the process prior to quasistationarity,
and let θt denote the hazard rate of the time to
absorption. Let ψt�x� denote the normalized den-
sity (i.e., with integral 1) on the state space, that
is,

ϕt�x� = exp
(
−
∫ t

0
θs ds

)
ψt�x��(3)

Then the following result holds under suitable reg-
ularity assumptions:

θt =
σ2�0�
2

ψ′
t�0�(4)

that is, the hazard rate is proportional to the
slope of the normalized density at zero. The for-
mula can easily be verified for the Wiener process
with absorption studied above. Note that ψt�x� can
be considered the distribution of survivors in the
context of survival analysis.
Formula (4) is related to known results on first

passage time distributions [see, e.g., Goel and
Richter-Dyn, 1974, Section 3.2, formula (24)]. We
indicate briefly how the formula may be derived
from the forward equation. Inserting (3) into (2)
yields

−θtψt�x� +
∂

∂t
ψt�x�

= 1
2

∂2

∂x2

[
σ2�x�ψt�x�

]− ∂

∂x

µ�x�ψt�x���

Integrating on x from 0 to ∞ gives

−θt + ψt�∞� − ψt�0�

= 1
2

∂

∂x

[
σ2�x�ψt�x�

]�∞0 − 
µ�x�ψt�x���∞0

= 1
2

[
2σ�x�σ ′�x�ψt�x� + σ2�x�ψ′

t�x�
]�∞0

− 
µ�∞�ψt�∞� − µ�0�ψt�0��
Since ψt�x� is a proper probability density, one
will have ψt�∞� = 0 and ψ′

t�∞� = 0. Furthermore,
the absorption at 0 implies ψt�0� = 0. The above
equation then reduces to (4).

5. COMPARISON OF HAZARD RATES

Much of survival analysis focuses on relative haz-
ard rates, or hazard ratios, often assuming in fact
that the hazard rates are proportional, an assump-
tion which despite its popularity is problematic on
theoretical grounds. Two hazard rates, for different
values of c, the distance from the point of absorp-
tion, are shown in Figure 8. Computing the hazard
ratio, that is, one hazard divided by the other,
reveals a strongly decreasing function as shown in
the same figure. This feature, which is typical in
these comparisons, is the same phenomenon which
is observed in frailty models where the relative
hazards usually (but not always) decline (see, e.g.,
Aalen, 1994). In the present setting it means that
if a high-risk group is defined as being closer to
the point of absorption than the low-risk group,
then comparing the hazards in these two groups
would give a declining hazard ratio. In fact, the
convergence toward a quasistationary distribution
implies that the relative hazards decline toward the
value 1. Since, as mentioned in the Introduction,
covariates will often be indicators of how far the
underlying process has advanced, comparisons of
the kind given here are clearly of relevance to the
question of regression models in survival analysis
and is yet another indication that proportional haz-
ard models would not always be expected to give a
true picture.
It is also of interest to compare the hazard rates

when the starting point c is the same, while the drift
is different. The result of this is shown in Figure 9,
where a very different picture emerges from the pre-
vious one. In fact, the hazard rates seem more or
less parallel after some time has passed. It is inter-
esting to note the similarity with the divorce rates
in Figure 2; this might give a rough indication that
increasing divorce rates are to a large extent due to
cohort effects, with the drift toward divorce increas-
ing in the more recent cohorts.
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Fig. 8. �Left panel� hazard rates for time to absorption when process starts out in c = 1 �upper curve� and c = 2 �lower curve�. �Right
panel� ratio of the two hazard rates. Parameters µ = 1 and σ2 = 1.

Hence, when comparing hazard functions the
result is very dependent on the causes of the dif-
ferences between the groups. Difference in distance
from point of absorption gives one type of result,
while difference in the basic dynamics of the pro-
cess, for example, drift and variance of a Wiener
process, gives another type of result.

6. WIENER PROCESS WITH
RANDOMIZED DRIFT

It is often natural to think that some degree of
tracking is taking place, that is, that some individ-
uals have a higher drift than others. This makes
the processes into more flexible models, and we will
consider this for the Wiener process with absorp-
tion. The results will be used in the regression
model below. The model studied here is related
to the frailty models, since there is individual
heterogeneity.
Assume that the drift is randomized according to

a normal distribution with expectation −µ and vari-
ance τ2 independent of the Wiener process. We will

Fig. 9. Hazard rates for time to absorption when process has
drift parameters µ = 2 �upper curve� and µ = 1 �lower curve�. In
both cases c = 1 and σ2 = 1.

put the variance coefficient σ2 of the Wiener process
equal to 1. As noted above for the inverse Gaussian
distribution, this entails no loss of generality when
considering time to absorption.
By integrating with respect to distribution of the

drift parameter in (1) one gets the following den-
sity for transition from c to x over a time period of
length t:

b�x� c� µ� t� τ�

= 1√
2π�t2τ2 + t�

{
exp

[
−�x− c+ µ t�2

2�t2τ2 + t�
]

− exp
(
2cµ+ 2c2τ2

)

× exp
[
−�x+ c+ 2 c t τ2 + µ t�2

2�t2τ2 + t�
]}

�

(5)

(The computation of this distribution is basically
a straightforward integration manipulating the
quadratic forms in the exponents.) The probability
of not being absorbed by time t may be found, for
example, in Aalen (1994):

B�t� c� µ� τ� = �

(
c− µ t√
t2τ2 + t

)

− exp
(
2cµ+ 2c2τ2

)

×�

(−c− 2c t τ2 − µ t√
t2τ2 + t

)
�

(6)

The probability density of the position of the process
at time t conditioned on nonabsorption is found by
dividing (5) by (6).
The probability density of time to absorption is

the inverse Gaussian distribution with mixed drift
parameter. Carrying out the integration yields the
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Fig. 10. Wiener process with randomized drift� �left panel� hazard rates for time to absorption when process has mean drift parameters
µ = 1 �upper curve� and µ = 0�5 �lower curve� �right panel� ratio of the two hazard rates. Parameters c = 2 and τ2 = 1.

following density (Whitmore, 1986b; Aalen, 1994):

fb�t� c� µ� τ� =
c√
2π

1

t
√
t2τ2 + t

× exp
[
− �c− µt�2
2�t2τ2 + t�

]
�

(7)

It should be noted that this is a defective survival
distribution, because the crossing into the absorb-
ing state may never take place. Defective survival
distributions are important in practice, often under
the name of “cure models” and may also be studied
by means of frailty theory; see Aalen (1992). The
hazard rate for the time to absorption is given by

λb�t� c� µ� τ� =
fb�t� c� µ� τ�
B�t� c� µ� τ� �

When t increases the density and the hazard rate
go to zero as 1/t2, and hence the hazard rates for
different parameters will be asymptotically propor-
tional. An example showing that approximate pro-
portionality may be achieved very fast is given in
Figure 10.

7. ANALYZING THE EFFECT OF COVARIATES

A test of the usefulness of the models presented
here is whether they can in practice be used to
analyze survival data with covariates. We will use
the Wiener process with absorption and randomized
drift, that is, a mixed inverse Gaussian distribution.
The model allows us to distinguish two differ-

ent types of covariates, namely those which really
only represent measures of how far the underlying
process has advanced, and those which represent
causal influences on the development. It is natural
to model the first type as influencing the distance
from absorption, that is, the parameter c, while the
causal covariates influence the drift parameter µ.

The distinction between two types of covariates
is similar to the distinction between internal and
external covariates (Kalbfleisch and Prentice, 1980),
or endogenous and exogenous effects, that is com-
monly considered in economics.
Writing the likelihood for a set of, possibly cen-

sored, data is quite easy. The likelihood is a product
of factors as follows: An individual which is cen-
sored at time t has a likelihood contribution equal
to B�t� c� µ� τ�. An individual which is noncensored
and experiences an event at time t has a likelihood
contribution equal to fb�t� c� µ� τ�. One or both of
the parameters µ and c are appropriate functions
of covariates. The likelihood can be maximized by
standard programs. The analysis presented here is
carried out by the program GAUSS.

Fig. 11. Regression model: histogram of estimated distances
from point of absorption for all individuals.
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Table 1
Estimated coefficients in the regression model survival time is measured in units of 100 days

Parameter Estimate s.e. Wald test

µ 0.341 0.112 3.06
τ2 0.061 0.080 —
a 5.73 0.996 5.75
Sex 0.101 0.292 0.35
Condition −0�884 0.198 −4�46
T-stage −0�548 0.201 −2�72
N-stage −0�224 0.134 −1�68

7.1 Example

Kalbfleisch and Prentice (1980, page 225) present
a set of survival data concerning treatment of carci-
noma of the oropharynx. These come from a clinical
trial carried out by the Radiation Therapy Oncol-
ogy Group in the United States. Survival time is
measured in days from diagnosis and some of the
patients are censored. The following covariates,
measured at diagnosis, will be considered here:
Z1 = sex (1 = male, 2 = female), Z2 = condition
(1 = no disability, 2 = restricted work, 3 = requires
assistance with self care, 4 = confined to bed),
Z3 = T-stage (an index of size and infiltration
of tumor ranging from 1 to 4, with 1 indicating
a small tumor and 4 a massive invasive tumor),
Z4 = N-stage (an index of lymph node metastasis
ranging from 0 to 3, with 0 indicating no evidence of
metastases and 3 indicating multiple positive nodes
or fixed positive nodes). Data are given for 195
patients, 2 of whom (cases 136 and 159) are not
included in the analysis due to missing values.
Apart from the covariate indicating sex, the

covariates above are clearly of the character that
they measure how advanced the disease is at time
of diagnosis. In our terminology they measure how
far some underlying disease process has advanced,
and it seems natural that the modeling should take
this into consideration. We apply here an inverse
Gaussian distribution with randomized drift, as
given by the density (7). The regression model is
placed on the parameter c, which indicates how far
the process is from the state of absorption. Specif-
ically, we assume that this parameter depends on
the covariates in a linear fashion:

c = a+ b′z�

where a and b are coefficients and z is the vector of
covariates. Since c must be positive, it might seem
more natural to use a function which is bound to
be positive instead of the linear one applied here.
However, the linear one seems to fit the data best.
For practical reasons survival time is measured in

units of 100 days when carrying out the statistical
analysis.
Estimating by means of maximum likelihood pro-

duces the results shown in Table 1. Figure 11 shows
the estimated values of c for all individuals. For a
check of goodness of fit two groups of individuals
have been considered, namely those who have all
three covariates Z2, Z3 and Z4 either above their
respective means or below their respective means.
Hence these constitute, respectively, a high-risk and
a low-risk group. Within each group the average
survival curve according to the estimated model is
computed. The negative logarithm of this is then
compared to the Nelson–Aalen estimate of the
cumulative hazard function within each group. The
results are shown in Figure 12.
Although this is a simple example it indicates

that the idea of covariates as measuring how
advanced an underlying process is, might be useful.
The estimated cumulative hazards in Figure 12 are
clearly nonproportional when comparing the high-
risk and the low-risk groups. Rather, the low-risk
group shows a delay in the hazard for the first year
or so (having almost zero hazard for a while), before
it gradually catches up with the other group. This
delay is a natural consequence when regarding
the low-risk group as having less advanced dis-
ease than the other group. It is our experience that
survival curves for groups with lower risk often
show this feature of delay compared to groups with
higher risk, which also implies nonproportionality.
Admittedly, regression in survival analysis is often
a coarse business where one is not very interested
in the details of how the hazard rates develop. On
the other hand, there is no harm in bringing the
insight one may have into the modeling.

8. CONCLUSION

By postulating some underlying process one may
gain insight into the properties of survival models.
One may also make practical models along these
lines and apply them to the analysis of survival
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Fig. 12. Cumulative hazards according to estimated model �smooth curve� compared with the Nelson–Aalen estimate �stepped curve�
within a high-risk and a low-risk group.

data. Probably models based on Wiener processes
give the simplest formulas, but Markov processes on
discrete state spaces may also be useful. A further
development of the present models to incorporate
time-dependent covariates might be of interest.
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Comment
Henry W. Block and Thomas H. Savits

In an interesting and well-written article Aalen
and Gjessing consider the shape of various hazard
rates. They ask the following question: “Why, for
instance, do hazard rates sometimes increase, some-
times decrease and sometimes increase and then
decrease.� � �” The authors might also have asked
why hazard rates decrease then increase, which is
the pattern for the standard bathtub-shaped failure
rate, but they do not present results which lead to
this pattern.
Their elegant explanation for these phenomena

comes by modeling survival distributions as first
passage times of underlying processes and then
explaining the monotonicities of the first passage
times as a function of the behavior of the underlying
processes.
The authors also mention that the shape of the

hazard rate can depend on selection effects among
individuals and in particular that frailty models
tend to deal with this. Frailty models are special
cases of mixture distributions where the conditional
hazard rates are multiplicative functions of a base-
line hazard. These are not, however, dealt with in
the present paper. We would like to focus on these
mixture models and discuss some of the various
results which have been obtained in determining
the shape of the hazard rate.
As mentioned by the authors, there has been a

tendency in the literature to study hazard rates
which are monotone. However, in practice, the
shapes of hazard rates often do not follow these sim-
ple patterns. Departures from monotonicity were
initially looked upon as aberrations. To initiate our

Henry W. Block is Professor, Department of Statis-
tics, University of Pittsburgh, 2703 Cathedral of
Learning, Pittsburgh, Pennsylvania 15260. Thomas
H. Savits is Professor, Department of Statistics, Uni-
versity of Pittsburgh, 2734 Cathedral of Learning,
Pittsburgh, Pennsylvania 15260.

discussion we look at some of these aberrations
which we call “apparent anomalies.”

APPARENT ANOMALIES

A much cited paper is Proschan (1963). In this
paper pooled data for airplane air conditioning sys-
tems whose lifetimes are known to be exponential
exhibit a decreasing failure rate. Since decreasing
failure rates are usually associated with systems
that improve with age, this was initially thought to
be counterintuitive.
A second anomaly, at least to some, was that mix-

tures of lifetimes with increasing failure rates could
be decreasing on certain intervals. Examples of such
lifetimes can be found in Vaupel and Yashin (1985)
as well as Barlow and Proschan (1975).
A variant of the above is due to Gurland and

Sethuraman (1994, 1995) and gives examples of
mixtures of very rapidly increasing failure rates
which are eventually decreasing.
A recent paper by Wang, Muller and Capra (1998)

(and many articles cited there) mentions that in
many biological populations, including human ones,
lifetimes of organisms at extreme old age exhibit
decreasing hazard rate. A natural question to ask
is whether this improvement extends to individuals
in the population or not.

SOME EXPLANATIONS

Before discussing issues and solutions raised
by the above anomalies, we provide some stan-
dard language. In general we consider populations
of lifetimes which are heterogeneous. Often these
populations consist of a number of subpopulations
(sometimes only two) having distributions of a sim-
ilar type (e.g., the same distribution with different
parameters). The population lifetime distribution
can then be modeled as a mixture of the lifetime
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distributions of its various subpopulations. The
mixture can sometimes be of a specific form such as
having a multiplicative failure rate (a frailty model)
or an additive failure rate. We also use the terms
hazard rate and failure rate interchangeably.
The apparent anomalies of the previous section

lead to the following modeling issues:

• How do eventual failure rates of subpopulations
compare with the eventual failure rate of the
population?

• Which mixtures have failure rates that are
eventually decreasing?

• Whichpopulationsexperienceeventualwearout?
• What causes mixtures of subpopulations with
increasing failure rates to have failure rates
which decrease on certain intervals and is there
eventual wearout?

• When do mixtures have typical (e.g., bathtub-
shaped) failure rates?

In the Proschan (1963) paper, the author resolved
the apparent anomaly by showing that mixtures of
exponential distributions have decreasing failure
rates. In fact, it was shown that mixtures of life-
times with decreasing failure rates have decreasing
failure rates.
To discuss the other anomalies we introduce the

following notation. For w ∈ S, where S is a set of
real numbers, we consider the lifetime density func-
tion f�t�w�, the survival function F�t�w� and the
failure rate function r�t�w� = f�t�w�/F�t�w�. The
failure rate of the mixture is given by

r�t� =
∫
S f�t�w�P�dw�∫
S F�t�w�P�dw� �

Block, Mi and Savits (1993, Theorem 4.1) gave a
general result relating the limits of r�t�w� and r�t�.
Under the assumption

r�t�w� → a�w� as t → ∞ for w ∈ S

(and some technical conditions) it is shown that

r�t� → α = inf�a�w��w ∈ S�
that is, the failure rate of the mixture converges
to the strongest limiting failure rate. Note that the
above applies to general mixtures, including both
discrete and continuous mixtures.
The above result is pertinent to the first of the

modeling issues. It also helps to explain the third
anomaly, where a failure rate which is very rapidly
increasing is mixed with an exponential distribu-
tion with stronger failure rate. By the above result,
the failure rate of the mixture must eventually
come down to the stronger exponential failure rate.
This also gives an intuitive explanation for the last

anomaly. If there are stronger and weaker com-
ponents, the failure rate should eventually come
down to the stronger failure rate. In other words,
it is the weaker components that cause the failure
rate of the mixture to decrease toward the stronger
component as the weaker ones die out.
A second result (Block and Joe, 1997, Theorem 2.3)

which holds for finite mixtures (we state the result
for a mixture of two) is that if r1�t� = r�t�w1� and
r2�t� = r�t�w2� are the failure rates for two sub-
populations, where r2 is eventually stronger than
r1 (i.e., r1�t� > r2�t� for large t) and r1 and r2
are monotone and converge at polynomial rates,
then the monotonicity of the mixture is eventu-
ally in the same direction as the monotonicity of
the stronger component r2�t�. That is, the mixture
has the same eventual monotone behavior as its
strongest component. In particular a mixture wears
out (i.e., it has eventual increasing failure rate) if
the strongest component wears out. This has bear-
ing on the last anomaly. Assume that a population
has two subpopulations (e.g., males and females).
The weaker population (e.g., males) dies out first,
leaving the stronger population (e.g., females). This
should cause a decrease in the failure rate of the
mixed population at extreme old age. However, if the
stronger population by itself exhibits wearout, by
the above result the mixed population should also
eventually exhibit wearout. Block and Joe (1997)
also consider many results where mixtures have
eventually decreasing failure rates.
The comments of Lynn and Singpurwalla (1997)

and the paper of Finkelstein and Essaoulova (2000)
consider particular mixture models. The Lynn–
Singpurwalla comments propose an additive model
and the Finkelstein–Essaoulova paper considers
both the additive model and a multiplicative model.
These two models have the form

(Additive) r�t�w� = w+ r�t�
and

(Multiplicative) r�t�w� = wr�t��
Notice that the multiplicative model is a frailty
model.
Lynn and Singpurwalla (1997) state without proof

the result that, for the additive model, r�t� has a
bathtub shape if certain conditions involving E�W �
T� and Var�W � T� hold, where T is the mixture
lifetime and W is the mixture variable. Finkelstein
and Essaoulova (2000) prove this result, but require
additional conditions. These latter authors have also
given some results on asymptotic failure rates of the
type mentioned above but under conditions involv-
ing the conditional mean and variance.
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FRAILTY

We conclude with some special cases of our results
applied to the frailty case. The frailty model is a
special case of the general mixture model where
r�t�w� = wλ�t�, w ∈ S and S is a set of real num-
bers. Consequently

F�t�w� = exp
{
−w

∫ t

0
λ�u�du

}
�

Under the assumptions that λ�t� → a as t → ∞
for 0 ≤ a ≤ ∞, that S is a bounded set and that for
the case a = ∞ there are constants K and L such
that λ�t� ≤ K expLt, for large t, it is easy to show

that the conditions of Theorem 4.1 of Block, Mi and
Savits (1993) hold. In this case

r�t� → α = inf�wa�w ∈ S��
That is, the overall failure rate for the frailty model
converges to the strongest limiting failure rate.
To determine the eventual direction of the

monotonicity, assume that r1�t� = w1λ�t� and
r2�t� = w2λ�t�, where w1 < w2, and also that λ�t�
converges monotonically to α, 0 ≤ α ≤ ∞, as t → ∞
at a polynomial rate (see Block and Joe, 1997). Then
the eventual monotonicity of r is the same as the
monotonicity of λ.

Comment1

Lynn E. Eberly, Patricia Grambsch and John E. Connett

1. INTRODUCTION

The authors are to be congratulated; they are
performing a signal service in reintroducing first-
passage-time models to the statistics community.
As the authors point out, these models allow predic-
tor variables to perform two distinct roles: to mark
the initial state or to influence the rate of diffusion
through the state space to absorption. This flexibil-
ity sets these models apart from standard models
for time-to-event data, such as proportional hazards
or accelerated failure time, and gives them great
appeal for disease modeling. Our discussion focuses
on modeling survival in AIDS patients using the
Wiener process with randomized drift, the last pro-
cess described. We first summarize some simple
analyses showing the promise of this model and
then discuss some conceptual and computational

Lynn E. Eberly is Assistant Professor, Division
of Biostatistics, School of Public Health, Univer-
sity of Minnesota, 420 Delaware Street SE, MMC
303, Minneapolis, Minnesota 55455-0378 (e-mail:
lynn@biostat.umn.edu). Patricia Grambsch is Asso-
ciate Professor, Division of Biostatistics, School of
Public Health, University of Minnesota (e-mail:
pat@biostat.umn. edu). John E. Connett is Pro-
fessor, Division of Biostatistics, School of Public
Health, University of Minnesota (email: john-
c@ccbr.umn.edu).

1This is Division of Biostatistics Research Report
2000-014.

issues which must be addressed before it can become
a practical addition to the statistical toolkit.

2. MODELING ISSUES

Our data came from the Terry Beirn Community
Programs for Clinical Research on AIDS (CPCRA),
a network of 15 community-based clinical units
studying HIV-related therapies in a primary-care
setting. The CPCRA has an extensive database on
12,330 HIV-infected individuals who have enrolled
in one or more CPCRA protocols from September
1990 through January 2000. We used a random sub-
set from this database (15%, n = 1�612) and con-
sidered two predictors, age (in years) and CD4+
cell count (in cells/mm3), measured at each indi-
vidual’s initial enrollment. There were 574 deaths
with a median follow-up time of 565.5 days. CD4+
count, a measure of immune system strength, is a
well-established predictor of survival with higher
values associated with longer survival; the square
root scale was used due to the skewness of its
distribution. Median baseline CD4+ count was
142.5 cells/mm3. Age is weekly associated with sur-
vival, where older ages are associated with shorter
survival. Median age at baseline was 38 years.
The model parameters, initial state c and nega-

tive expected drift µ, were for most analyses taken
to be exponentiated linear functions of the predic-
tors to keep c > 0 and µ > 0. Note that either τ2 �= 0
or µ ≤ 0 leads to a curve-type model with a defective
survival distribution which may not be appropri-
ate for some data. The models were fitted accord-
ing to a likelihood built from Aalen and Gjessing
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Fig. 1. Fitted survial curves superimposed on Kaplan–Meier curves, each stratified by CD4+ quintile. Fitted curves from Wiener models
with square root CD4+ (a) in c, (b) in µ, (c) in both µ and c and (d) from a Weibull regression model with square root CD4+.

equations (6) and (7) using a standard minimization
algorithm (nlminb() in S-PLUS version 3.4) on the
outcome “years to death” (range of values roughly
0–8). We supplied a gradient but not a Hessian.
The “null” model with no predictors had a maxi-
mized log likelihood of −1590�756 with parameter
estimates ĉ = 1�307� µ̂ = 0�007 and drift variance
τ̂2 = 1× 10−7.
The square root of CD4+ count was a highly sig-

nificant predictor (see our Table 1) whether mod-
eled as affecting µ only or c only. From a medical
perspective, either makes sense, so we then mod-
eled both c and µ as functions of the square root of
CD4+ count, which resulted in a significantly bet-
ter fit according to the log likelihood. This finding
suggests that CD4+ acts not merely as a marker of
disease state but may also be predictive of how fast
the disease progresses. This type of insight is not
available from the typical time-to-event models and

illustrates one of the most exciting aspects of the
Wiener process approach.
Our Figure 1 shows Kaplan–Meier plots of sur-

vival, stratified by quintiles of CD4+ count, with
superimposed fitted survival plots from each of the
models considered. The fitted curves were com-
puted by averaging fitted survival curves over the
members of each quintile. We can see that hav-
ing CD4+ affect only c (so that all individuals
are forced to have a common rate of progression
µ) inadequately models the lowest CD4+ quintile
(Figure 1a). This supports the conjecture that those
in the highest quintile progress toward absorption
at a significantly slower rate, which cannot be com-
pensated for by the dependence of the starting point
on CD4+. Likewise, having CD4+ affect only µ (so
that all individuals are forced to have a common
starting state c) inadequately models the highest
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Table 1
Maximum likelihood results for four Wiener process models with parameters as

exponentiated functions of CD4+

Maximized log Estimated slope Estimated slope
Model likelihood for

√
CD4+ in c For

√
CD4+ in �

Null (no CD4+) −1590.76 0 0√
CD4+ in c only −1405.62 0.056 0√
CD4+ in µ only −1489.77 0 −0�207√
CD4+ in both −1388.71 0.044 −0�132

CD4+ quintile (Figure 1b). Perhaps those in the
lowest quintile start significantly closer to absorp-
tion than those in other quintles, which cannot be
compensated for by the dependence of the rate on
CD4+. Allowing both c and µ to be functions of
CD4+ adequately models all quintiles, as shown in
Figure 1c.
The Wiener process with randomized drift also

forces the hazard of death to be 0 at time 0.
Although certain model parameter values can
direct the hazard to increase very quickly away
from 0, this may be inappropriate for HIV and
AIDS survival data. We next compared the fit of
our Wiener models to a Weibull fit with square root
of CD4+ count as the sole predictor. Even when
both c and µ are defined as functions of CD4+, the
fit of the Wiener model seems inferior to that of
a Weibull model (Figure 1d). This is particularly
true during the first four years of follow-up (when
most deaths occurred). This may be an indication
that the Wiener model is not flexible enough to
accommodate the need in our dataset for a nonzero
hazard at time 0.
When we removed the constraint that µ > 0 from

the model with CD4+ count in µ only (by modeling

µ simply as a linear function of the square root of
CD4+ count), we obtained fitted values of µ which
were negative (meaning drift away from the absorb-
ing state) for many of the patients with high CD4+
values. Our Figure 2 shows that the highest quin-
tile is now much more accurately modeled than in
Figure 1b, thus indicating that this subpopulation
may require a cure-type model. This presents an
interesting dilemma, since a cure-type model is not
appropriate for the lowest quintile. Surprisingly, the
model with µ > 0 and CD4+ in both c and µ some-
how compensates for the highest quintiles needing
a cure model without forcing τ2 to be nonzero (here,
τ̂2 = 1× 10−7).
Models using age as the only predictor maximized

the log likelihood at −1589�210 when µ was an expo-
nentiated linear function of age, but at −1589�056
when c was modeled as an exponentiated linear
function of age. Thus the likelihood ratio test (LRT)
statistics were 3.09 and 3.41, respectively, with 1
degree of freedom each. Age is thus not strongly
associated with either the rate of progress toward
death or the starting point (α = 0�05). However,
when µ was modeled as a (nonexponentiated) lin-
ear function of age, we obtained a log likelihood of

Fig. 2. Fitted survival curves superimposed on Kaplan–Meier curves, each stratified by CD4+ quintile. Fitted curves from Wiener models
with square root CD4+ in µ, where µ is not constrained to be nonnegative.
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−1588�384 and a LRT statistic of 4.744 (p-value =
0�03). An estimated slope of +0�03 shows that older
people progress faster toward death than younger,
as expected. Here we see conclusions regarding the
association of age with survival which differ depend-
ing on the scale in which the covariate appears, but
with such marginal p-values (just above 0.05 for the
exponentiated scale and just under for the linear
scale), this example does not provide convincing evi-
dence that this is a genuine problem.

3. FURTHER NEEDED DEVELOPMENTS

We have found the Wiener process model with
randomized drift to be very flexible and appeal-
ing. However, there are many computational and
modeling issues yet to be worked out. As with
most nonlinear models, multimodal likelihoods are
possible; we found at least one instance where the
algorithm converged to a local rather than global
maximum. Starting values are critical to the suc-
cessful convergence of the numerical likelihood
maximization algorithm. It is not clear if identifia-
bility issues arise when covariates are incorporated
into both c and µ, but we had no such difficulties.
Interpretation of this model even without covariates
is difficult. Note that if τ2 = 0, we have a proper
inverse Gaussian with mean c/µ, but it is not clear
either how to interpret c and µ when τ2 �= 0 or how
to interpret the magnitude of covariate regression
coefficients in any model.
The scale of the covariates is something only

briefly touched on by Aalen and Gjessing. The
question is whether to exponentiate the linear
combination of covariates, thereby forcing the
parameters to be nonnegative. We have shown that

this can make quite a difference, and the deci-
sion may depend on whether a cure-model makes
scientific sense for all members of the population
under study. We also fit models with additional
covariates for Karnofsky score, progression of dis-
ease and anti-retroviral use in c and for gender,
ethnicity, intravenous drug use and homosexual
contact in µ. Using an exponentiated form for the
covariates gave sometimes better and sometimes
poorer results in terms of the maximized log likeli-
hood. In general, it did seem slightly more difficult
to obtain convergence in models with exponential
parameterizations of c and µ.
Model building was straightforward, as we found

during our exploration of the 9-covariate model
mentioned above, since the likelihood is fully
parametric and nested models can be compared
with LRTs. Standard error estimates can also be
obtained, as demonstrated by Aalen and Gjessing.
Clearly, diagnostic tools with residuals, outlier
identification and ways to determine in which
parameter a particular covariate should be placed
are needed. One of the attractive features of other
time-to-events models is the ability to stratify on
a factor such as clinical unit. It is well established
that there are survival differences among clinical
units in the CPCRA, but it seems excessive and
perhaps risky from a numerical algorithm point of
view to introduce 14 indicator variables into one or
both of the covariate vectors. It would be useful for
the Wiener model to be adapted to such a situation.
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Comment
Niels Keiding

Hazard rate models are ubiquitous in survival
analysis: Tetens (1786) formulated the explicit one-
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DK-2200 Copenhagen N, Denmark.

parameter (nonproportional) hazards model

λ�t�
λ0�t�

= 1+ 2αS�t�
1+ αS0�t�

for the ratio between the “instantaneous decrement”
λ�t� in the select group and that �λ0�t�� of the gen-
eral population. Here S�t� and S0�t� are the cor-
responding survival functions since a fixed age at
entry.
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Very recently Bagdonavicius and Nikulin (1999)
formulated an ambitious approach to a unified
framework encompassing many survival models.
Their generalized proportional hazards model was
specified as

λX�·��t� = λ0�t�r�X�t��q�4X�·��t���
where X�·� is a time-dependent covariate function,
r and q are positive functions and

4X�·� =
∫ t

0
λX�·��s�ds�

Choosing r�X�t�� = eβX�t� and q�4X�·�� = eγ4X�t�

leads to what they call the generalized linear pro-
portional hazards model.
The Cox (1972) proportional hazards model

λi�t� = λ0�t�eβXi

and other hazard regression models allowed con-
trol for observed confounders in survival analysis.
However, unobserved heterogeneity required its own
development.
With the primary aim of illustrating various

demographic consequences of admitting random
heterogeneity Vaupel, Manton and Stallard (1979)
let a positive random variable Z (termed frailty)
multiply an underlying standard hazard rate λ0�t�.
This model was motivated primarily by technical
convenience, as was the case for the Cox model.
Vaupel, Manton and Stallard’s main message was

to formalize a concept of survivor selection deriving
from the fact that the frail die first so the individ-
uals age faster than cohorts: the hazard of a ran-
dom survivor at age a is λ�a�E�Z � survival to a).
Vaupel, Manton and Stallard even proposed a calcu-
lus for correcting cohort life tables into “individual
life tables.”
That both Cox (1972) and Vaupel, Manton and

Stallard (1979) chose to model heterogeneity (deter-
ministic and random, respectively) multiplicatively
on the hazard scale made it obvious to combine
the models into a proportional hazards model with
frailty

λi�t�Zi� = λ0�t�Zie
βXi�

Vaupel, Manton and Stallard (1979) ended on an
optimistic note, having identified random hetero-
geneity as a possibly very important aspect of

mortality variation, neglect of which might lead to
serious bias. Vaupel, Manton and Stallard did note
that frailty “however defined, is difficult to mea-
sure.”
Subsequent literature has documented that this

may be rather an understatement. In the simple
one-sample problem of n independent (possibly left-
truncated and/or right-censored) survival times, the
marginal “population” distribution is observed and
no empirical distinction between individual hazard
and frailty (mixing) distribution is possible. For the
frailty model with proportional individual hazards
the frailty distribution is in principle identifiable,
at least if it has finite expectation. However, there
is no way of empirically verifying the proportional-
ity assumption, and even if it were true, Hougaard,
Myglegaard and Borch-Johnsen (1994) and Keiding,
Andersen and Klein (1997) provided case studies to
show that the regression parameter estimates may
be very dependent on the hardly identifiable choice
of frailty distribution, while reparametrization in
terms of accelerated failure time models yielded
much better identifiability of the parameters. This
situation lead Robins and Greenland (1989, 1991)
to argue forcefully against practical use of the “indi-
vidual hazard ratio,” specifically in connection with
compensation schemes in occupational insurance.
At this point it is important to step back and recall

the definition of hazard. Particularly as explicitly
formulated by Scheike, Petersen and Martinussen
(1999), the interpretation of the regression param-
eters in this model requires conditioning on all
observed covariates (as usual) but also on the unob-
served and unobservable frailty Z. In some cases
this is plainly uninterpretable in practice, and the
whole concept of individual frailty is really, in Aalen
and Gjessing’s phrase, elusive.
I welcome Aalen and Gjessing’s attempt at pro-

viding a fresh start for the interpretation of the
hazard rate, and I look forward to learning how
this approach will cope with the interplay between
observed and unobserved heterogeneity.
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Rejoinder
Odd O. Aalen and Håkon K. Gjessing

We are grateful to the discussants for taking the
time and effort to comment on our paper.
Keiding reviews the use of hazard functions in the

Cox model and in frailty theory, and supports our
assertion that hazard rate is a concept that needs
clarification. Frailty theory has been an attempt at
achieving a deeper understanding of the hazard rate
and of the selection effects which influence the haz-
ard. It is our opinion that frailty theory, in spite
of its somewhat speculative character, has made an
important contribution to a deeper understanding
of issues in survival analysis. However, as pointed
out by Keiding, the situation is far from satisfactory,
and we agree with him that a fresh start is needed
and hope that the one we offer here will be of use.
Block and Savits present a reliability point of

view. In reliability theory there is a long and strong
tradition of studying the shapes of hazard rates
with a number of elegant mathematical results. It
is important that biostatisticians also be aware of
this literature, and the review by Block and Savits
is a good starting point. Our approach differs from
the main tradition in this field in that we focus on
properties of the underlying process, in particular
the quasistationary distribution.
Block and Savits mention bathtub-shaped hazard

rates, which is an important theme in reliability
theory, because technical products often have a
higher incidence of failures early in their life, where-
after the rate decreases, before increasing again due
to ageing. In fact, bathtub-shaped hazards may eas-
ily be derived within our framework. An example
within the phase type distributions is given by
Aalen (1995, Figure 4).
Eberly, Grambsch and Connett give a detailed dis-

cussion of our regression model for analyzing the
effect of covariates. The model using randomized
drift for a Wiener process is primarily intended
as an illustration of the principles discussed in
the paper. However, we see it as important that
it should be possible to implement the ideas in
specific models, and we need more practical knowl-
edge about relevant models. It is thus very interest-
ing to see the model applied to a different type of
data, and we appreciate the effort Eberly, Gramb-
sch and Connett have taken in exploring the model.
Several of the issues concerning the application of
this particular parametric model to real data are of
course well known from other parametric modeling

situations. The model has a limited range of pos-
sible hazards, and inherently the hazards are non-
proportional, especially when varying c. Clearly, the
successful fit of a Weibull model suggests that the
proportional hazards assumption is valid through-
out the time period and that in this case the ran-
domized drift model should not be expected to be an
improvement.
Scale issues are essential to any modeling discus-

sion. For our data we did not encounter problems
with the restriction c > 0, so exponentiation was
not needed to avoid impossible likelihood values.
Our experience from other datasets suggests that µ
should not be restricted, thus allowing for a sub-
stantial probability of never hitting the barrier.
We note that Eberly, Grambsch and Connett have
restricted µ to be positive in most of their analyses,
and their Figure 2 shows that dropping this restric-
tion improves the situation. With an unrestricted
µ one would expect a considerably better fit than is
indicated in Figure 1 of their discussion. Whether or
not, say, exponentiation (or other transformations)
yields a better fit than the additive is another mat-
ter. We found the additive to provide the best fit, but
this is a discussion that will apply to any modeling
situation, and more experience needs to be accumu-
lated for this particular model.
Eberly, Grambsch and Connett comment on the

interpretation of the parameters in the model.
Since the distribution, with τ2 > 0, is defective, it
follows that expectation and variance are not well
defined. However, the main parameters, µ and c,
are well defined in terms of the underlying pro-
cess and have a simple intuitive meaning. Further-
more, changing the time scale of the model has a
simple effect on the parameter estimates. Scaling
time to a new variable t∗ = t/k, where k is a con-
stant, yields the exact same survival function when
the parameters µ, c and τ are replaced by µ∗ =
µ
√
k� c∗ = c/

√
k and τ∗ = τ

√
k, respectively. Thus,

B�t� c� µ� τ� ≡ B�t/k� c∗� µ∗� τ∗� as can be verified
from (6) or numerically. [Of course, if an exponential
model c = exp�a+ b′z� is used, this will correspond
to a shift −�1/2� log�k� of a and leave b unchanged,
whereas in an additive formulation c = a+ b′z both
a and b will be scaled.] This scaling property can be
understood from the fact that if Wt is a Wiener pro-
cess, then so is W∗

t∗ = �1/√k�Wt∗k that is, a scaling
of 1/k in time can be offset by a corresponding scal-
ing 1/

√
k of the distance axis, which in turn leads
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to a scaling �1/√k�/�1/k� = √
k of µ and τ� which

are in units of distance/time.
In our analysis we used a (rather arbitrary) scale

of days/100. To recover the results for the origi-
nal time scale the value for µ in Table 1 should
be divided by 10, the value for τ2 divided by 100,
and the estimates for a and the covariates should
be multiplied by 10. Apart from that, the attained
maximum likelihood is identical.
For the datasets where we have successfully fitted

the randomized drift model, our experience has been
that it is important to obtain good initial values
primarily for µ and c. The value of τ is usually
found during the estimation from a starting value,
say, between 0 and µ. When covariates are present,
obtaining a good starting value for the intercept a
in the centered model c = a+ b′�z− z̄� seems suffi-
cient; b is entered with starting value 0� To obtain
the starting values for µ and a we first computed
the Kaplan–Meier curve for the data, disregarding
covariates. From the Kaplan–Meier curve we esti-
mated values for the mean and harmonic mean of
the survival time. Finally, these values were used
in the explicit formulas for the maximum likeli-
hood estimators available in the case of no censoring
(Chhikara and Folks, 1989). Although far from per-
fect, it at least gives starting values of the correct
order of magnitude. We have made a set of simple
S-PLUS functions for computing the initial values
and performing the maximum likelihood estimation
available at http://www.uio.no/∼hakong/invgauss/.
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