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doubt to most nonprobabilists, that probability could
be treated as a rigorous mathematical discipline. In
fact it is clear from their publications that many
probabilists were uneasy in their research until their
problems were rephrased in what was then nonprob-
abilistic language. For example, difference and differ-
ential equations for transition probabilities were sug-
gested by sketchily described probability contexts,
contexts then avoided as much as possible in the
treatment and discussion of the equations. This uneas-
iness explains why it seemed more natural to Feller in
1935 than it does to Le Cam in 1985 to discuss con-
volutions of distribution functions rather than the
corresponding sums of independent random variables.

Comment

David Pollard

Professor Le Cam deserves our thanks for a fine
piece of scholarship. I hope that others will be inspired
by his example to share with us their understanding
of important ideas in probability and statistics.

I was particularly pleased to read the high praise in
Section 3 for Lindeberg’s proof of the central limit
theorem. It is indeed surprising that the proof does
not appear more often in standard texts (although
Billingsley (1968) and Breiman (1968) should be added
to the list of texts where it does appear), especially
since the characteristic function approach is an effec-
tive source of confusion for beginners.

As Le Cam notes, the proof has even more to
recommend it than its simplicity. It can be modified
to give more information on the rate at which S,
converges in distribution to T, and it is easily ex-
tended beyond the case of distribution functions on
the real line. I’ll indicate briefly how this can be done.

Lindeberg’s argument depends on not much more
than Taylor’s theorem to compare the expected value

-Pf(S,) of a smooth function of S, with the corre-
sponding expected value Pf(T,) for the sum of Gaus-
sian increments. This translates into a bound on the
difference A(x) = P{S, = x} — P{T,, = x} between
distribution functions when f is chosen as a smooth
approximation to the indicator function of (—, x].
The f used by Lindeberg was sandwiched between the
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Feller had a superb background in classical analysis,
and accordingly devised a heavily formal version of
the central limit theorem, whereas Lévy produced a
rather vague but correct in principle corresponding
version. As always, Lévy exploited his unparalleled
intuition to the despair of his readers, who found his
work vague and obscure, although insightful and in-
structive when finally mastered. Lévy was one of the
first probabilists to treat sample functions and se-
quences in depth, but never fully accepted measure
theory as the mathematical basis of probability. For
example, to him conditional expectations were a part
of the essence of probability, needing no formal gen-
eral definition.

indicator functions of (—, x] and (—, x + L], for a
small L, and was piecewise cubic in (x, x + L). The
Lipschitz constraint on the second derivative (ac-
tually, Lindeberg put a bound on the third derivative)
forces L to be of the order A~/3; a function with this
degree of smoothness cannot negotiate the descent
from 1 down to 0 in a shorter interval. Because this f
fits between the two indicator functions,

P{S, < x} < | Pf(S,) — Pf(T,)| + P{T, =< x + L.

As Le Cam shows, the first term on the righthand side
is bounded by AB, with 8 a sum of third absolute
moments; the second term exceeds P{T, < x} by the
probability that T, lies in (x, x + L], that is, by a term
of order L. An A of the order 3%/ balances these two
contributions to the difference A(x) between distri-
bution functions. A similar argument gives a similar-
looking lower bound. Since the method works uni-
formly in x, this produces the bound of order /4 that
Le Cam quotes from Lindeberg.

The same idea works for subsets of other linear
spaces. If B is such a subset, the challenge is to find a
smooth approximation f to the indicator function of
B: an f for which a Taylor expansion is possible; which
takes values close to 1 well inside B, and values near
0 well outside B; and which makes the transition
between these two levels as rapidly as possible near
the boundary of B. If a bound on

A(B) =P{S, € B} — P{T, € B}

is sought, attention must be paid to how much mass
the distribution of T, puts in the transition region
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near the boundary. If a bound is sought for the Pro-
horov distance

inf[e > 0:P{S, € B} = ¢ + P{T,, € B¢} for all B]

it is the width of the transition region that is impor-
tant. (Here B° dendtes the set of points no further
than ¢ from B: essentially B augmented by an e strip
around its boundary.) In either case there is a trade
off between the size of the transition region and
smoothness of f. :

There are several ways to construct the smooth f.
One can attempt a direct construction, as with Linde-
berg’s f. This requires ingenuity and, as Le Cam men-
tions, some sort of Lipschitz condition on a second
derivative of a norm. One can also get a smooth
approximation to the indicator function of B by con-
voluting it with a smooth distribution. Or one can
combine these approaches, by applying some convo-
lution smoothing to deterministic approximations
that go only part of the way toward rounding off the
rough edges of B. For example, Yurinskii (1977) got
bounds on Prohorov distances, for strange norms on
R., by such means. One can even get rate results of
Berry-Esseen type by convolution smoothing—the so-
called method of compositions.

Roughly speaking, the method of compositions
takes advantage of sources of smoothing untapped
by Lindeberg’s argument. Write Wj,; for the sum
Y-+ Y; of Gaussian increments (so Le Cam’s R, is a
sum of S;_; and the Gaussian W,.;). Write g:(t) for
the smooth function Pf(t + W,.;). When k& is small,
gi is very smooth, even if f is discontinuous like the
indicator of (—, x]. To capture the effect of the
increments X, and Y carry out a Taylor expansion

Rejoinder

L. Le Cam

Many thanks are due to my colleagues for their
constructive comments and criticisms, but particular
thanks are due to Professor Doob for his wonderful
explanation of why so many mathematical papers are
unreadable! Doob also accuses me of writing a “history
of (nonrigorous) early research in probability, of prob-
ability texts written by mathematicians ignorant of
the subject . ..”. This is partly true, but I believe that
the roles of Bertrand, Poincaré, and Borel in that kind
of history are particularly regrettable.

For the need to use “convolutions” instead of “sums
of random variables” mentioned by Professors Doob

of g,.
Pf (R. + X&) = Pgr(Sp-1 + X)
= Pau(Sims) + YPXHPEH(Shms)
+ VP Xi[gh(SE-1) — gX(Sk-1)]

and similarly for Y. For small k the Lipschitz con-
stant for g/ will be smaller than the Lipschitz constant
for f”.

A more subtle source of smoothing is the S, itself.
It should behave something like T%-;; to some degree

Pgr(Sk-1 + t) = Pgp(Tr-1 + ¢t).

For large values of k, the T.—; provides extra smooth-
ing for g,. The combined effect of this T%—, and the
W41 is almost that of convolution of f with a N(0, 1)
Gaussian. Of course, the last approximation is prac-
tically the same assertion as Pf(S,) = Pf(T.), except
that it involves a smaller sample size. There is a
glimmer of hope here for an inductive argument. If f
is an indicator function of an interval there are slight
complications for k = n. To overcome these one must
first apply some convolution smoothing to f. For the
details, as well as much more about the method of
compositions, see Sazonov (1981).
Lindeberg’s argument still has something to offer.
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and Trotter, one can only agree. Yet one can argue
that those who went ahead and used such concepts
before the publication of Kolmogorov’s booklet were
not as nonrigorous as it might seem. Most mathema-
ticians would probably agree that it is legal to deal
with certain objects called random variables without
defining them provided that one sets down clearly
what are the rules for handling them. Lévy, among
others, was probably unclear when stating such rules.
However, his attitude toward measure theory as a
basis for probability was more complex than what
Professor Doob implies. I think it was more in the



