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Comment

Paul D. Sampson

Dr. Bookstein has been working since the late 1970’s
to reorient the field of morphometrics to better rec-
ognize and exploit the fundamental geometric struc-
ture of morphometric data. I am very pleased that the
methodology he espouses is being presented here to
the audience of a major statistical journal for assess-
ment and critique, and I would therefore like to thank
Dr. Bookstein and the editors of this journal for pre-
senting this interesting paper. I hope that this paper
and the questions it raises will spur more statisticians
to research in the field of morphometrics, which was
featured in 1984 at sessions of the Western Regional
Meeting of the Biometric Society in Logan, Utah, and
the XIIth International Biometric Conference in To-
kyo. To lend further perspective on this work within
the field of morphometrics I would like to recommend
Bookstein’s own review paper (Bookstein, 1982a) and
the recently published second edition of Multivariate
Morphometrics by Reyment et al. (1984; see especially
Chapter 12 on The Analysis of Size and Shape).

I hope that Dr. Bookstein will not be too disap-
pointed in my admitting that I have heard of people
who have found some of his writings on the subject of
morphometrics difficult to follow. I would like to re-
assure any readers who may have skipped to this
discussion before finishing the paper that this work
provides, in my opinion, a very clear exposition of
Bookstein’s approach to the analysis of morphometric
data. Some parts, such as the sections on deformation
and factors, may be difficult at first reading because
of their novelty, but they are well worth rereading.
The connection between the deformational descrip-
tion of shape changes/differences and the selection of
size and shape variables (Sections 1 and 4) is the key
theme of this work and is, I believe, very important.

In my discussion I will first comment and elaborate
on the interpretation of the size and shape variables
Bookstein proposes in Sections 2-5. I will then raise
a number of practical issues (including assumptions,
nonparametric tests, simultaneous inference, and sta-
tistical computing) faced in our own recent experience
applying Bookstein’s methodology to a study at the
University of Washington of minor facial dysmor-
phology associated with the fetal alcohol syndrome
(or, more accurately, “probable fetal alcohol effects”).
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INTERPRETING THE SIZE VARIABLE S AND
“OPTIMAL” SHAPE VARIABLES

As a prelude I would like to remark briefly on
Bookstein’s mathematical notation. Bookstein pro-
vides rigorous support for the definition of a space of
size variables as the space spanned (redundantly) by
the set of K(K — 1)/2 distances among K landmarks,
and for the definition of a space of shape variables as
the space spanned by the complex affine shape ratios
for any K — 2 triangles used to triangulate the K
landmarks. However, the differential notation used in
this exposition may be unfamiliar to some statisticans
(as it was to this statistician) who more commonly
represent random displacements in multivariate data
by &’s rather than differentials dz; in the complex
plane. The “first order” operations are perhaps more
often expressed as “delta method” or “propagation of
error” approximations based on first order Taylor
series expansions. It may be helpful for some readers
to recognize that, for example, Lemma 1 can easily be
verified by the delta method applied to Z;’s considered
as real vectors rather than complex numbers. The
corresponding two-dimensional diagram, expressed in
terms of either the complex plane or the real Euclidean
plane, is also helpful.

Bookstein makes a convincing argument for the
central role that the size variable S should play in
studies of allometry and trends in size. It will be
instructive to relate S explicitly to the unique (log)
size variable Y, a;V; orthogonal to variation in shape
which he also cites. However, we should note first that
stochastic independence of this size variable and
shape, referred to in connection with Mosimann

. (1970), holds only when the V; follow a multivariate

normal distribution, i.e., when the original size vari-
ables are log normally distributed (cf. Sampson and
Siegel, 1984, 1985).

It is important to recognize that the null hypothesis
motivating the use of S is a statement of no pattern
in shape variation at all. One may observe systematic
variation in shape, reflected in noncircular scatters
for the shape coordinates Q(Z,, Z,, Z3), so that the
null hypothesis is not true, and yet find that S is still
uncorrelated with shape. Acknowledgment of this is
suggested in the discussion of the example at the end
of Section 3. Other interpretable size measures are
necessarily correlated with shape, and therefore we
must be careful about general claims of isometry with-
out qualification. On the other hand, Bookstein notes
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in his concluding remarks, point (2), that observed
size shape covariances may not in fact represent
“allometry.” It would seem therefore that issues of
allometry/isometry will remain difficult to establish
unambiguously even with such geometric multivariate
data.

We can shed some further light on these issues by
returning to the log size variable Y, a; V;. Bookstein et
al. (1985, Section 2.2) provide a number of justifica-
tions for the common practice of analyzing log trans-
formed distances. These same arguments lead them
to use “length elements” (which is consistent with the
current work’s focus on differentials) instead of long
measured distances wherever possible. If we shift our
attention to logs of the interlandmark distances we
find, using the same notation and first order approx-
imations, that

dlog|Z; - Zj| = d|Z; — Z;|/| W: — Wjl,

and so a weighted average of log distances, or the log
of a weighted geometric mean,
S*=kYY | W:— W;|®log | Z; — Zl,
i<j
yields, for small variations of the Z; about the means
W;, the differential
dS*= kXY |W:— Wj| - d|Z; — Zj],
i<j

i.e., S* is also statistically equivalent to Bookstein’s
size variable S. Therefore, under the null model of
independent circular normal scatters about unob-
served landmark means, S* is also approximately
uncorrelated with the space of shape variables. The
first order equivalence of S, S*?, and now S* suggests
that a more detailed investigation of the adequacy of
first order approximations is necessary if we are to
interpret and choose among these size variables in
practice.

It is instructive to demonstrate the orthogonality of
S* and “shape” by a direct argument (which Bookstein
notes as unnecessary in view of his Theorem 1). We

take the uncorrelated circular disturbances dz; at the .

landmarks and propagate these into approximate co-
variances among the d log| Z; — Z;|. (One could also
assume that these log distances follow a multivariate
normal distribution.) Then, using the results in Samp-
son and Siegel (1984, 1985) or Bookstein et al. (1985,
Section 2.2), this covariance matrix specifies S* as the
unique size measure orthogonal to the space of shape
variables defined by (logs of) ratios of distances. Since
the vector of weights {| W; — W;|% i < j} is simply
derived from the vector of row sums of the inverse of
the covariance matrix of {log|Z; — Z;|, i < j},
we can readily specify other covariance matrices with
the same row sums, and hence other models for the
dispersion about the landmark means, for which S*

(or S) will still be approximately uncorrelated with
the space of shape variables. Further understanding
of the observed pattern of shape variation must then
be sought. See Bookstein’s discussion of size allometry
in Section 4.

In Section 5 Bookstein defines the “optimal” shape
variable for a group contrast, where optimal is explic-
itly defined to mean the greatest net proportional
change between the two groups. Although perhaps not
often of practical importance, we can evaluate this
optimal shape variable case by case using the construc-
tion indicated in Figures 10 and 11. It is worth noting
that, in this context of multivariate two (or many)
sample problems, we also have the usual “statistically
optimal” shape variable: that derived from Fisher’s
linear discriminant function. Fisher’s linear discrimi-
nant function is the linear combination of the (shape)
coordinates Q(Z,, Z,, Zs) given by the coefficient

“vector 2@, — Q.), where T denotes the (pooled)

covariance matrix of the scatter of shape coordinates
(as in Figure 11) and @, and Q. represent the group
mean vectors (@ and @ + d@ in Figure 10). This linear
combination specifies the projection of the € coordi-
nates on a gradient direction (the discriminant axis)
which will be the same as d@ (= @, — Q) only in the
case that = is a multiple of the identify, i.e., when the
assumption of circular scatters at the landmarks is

- satisfied. By the construction of Figure 10 we can in

general determine the simple ratio of orthogonally
measured distances that most clearly describes this
“Fisher’'s linear discriminant shape variable” ex-
pressed as a linear combination of the shape coordi-
nates of Q.

The definition and geometric depiction of the
Fisher’s linear discriminant shape variable may reveal
itself as relatively more important in the general case
of multiple landmarks where correlations among the
shape coordinates of different triangles are perhaps
more likely to arise (in violation of the null assumption
of no systematic variation in shape). Theorem 2 of
Section 5 shows us how the size variables (distances)
showing the maximum or minimum mean ratio of
difference between two configurations can be easily
determined. However, these distances are unlikely to
be determined from orthogonal distances and we
should probably not settle for their ratio as the optimal
shape variable. Indeed, trying to reduce a complex
deformation relating two configurations of landmarks
to one or two simple size or shape variables is generally
inadvisable in view of the highly multivariate and
nonlinear nature of the deformations that must be
expected for configurations of many landmarks. (See
Bookstein’s discussion of “visualizing mean changes
by biorthogonal grids.”)

Rather than focus on a single optimal variable we
can, using any given triangulation of K landmarks,
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determine Fisher’s linear discriminant function de-
fined as a linear combination of the 2(K — 2) total
shape coordinates. This combination may be broken
down into its (K — 2) bivariate components, each of
which defines a linear combination and shape variable
for one of the constituent triangles. These (K — 2)
shape variables may then be considered as jointly
optimal for disciminating between the groups. Of
course, all (K — 2) of the shape variables may not
contribute significantly to the discrimination, and the
specific results obtained will be expressed in terms of
the given triangulation. However, the choice of a trian-
gulation will not affect the statistical discrimination
(up to the usual first order approximations). One
might consider extending the question of optimal size
variables to one of optimal triangulations for display-
ing group differences, at least in so far as it relates to
the problem Bookstein poses in Section 7 on the
selection of interesting landmarks.

Finally, for multiple population discrimination
problems we can define sets of shape variables in the
same manner using multiple canonical axes (rather
. than Fisher’s single discriminant axis) to provide geo-
metric depictions of the primary dimensions of shape
differences.

SOME PRACTICAL ISSUES

Researchers in fisheries, zoology, and medical sci-
ences at the University of Washington have begun
applying Bookstein’s methodology for analyzing land-
mark data. Here I will raise some practical issues that
we have addressed in a study of facial photographs
used to diagnose children at 7 years of age for fetal
alcohol effects. This particular study is one part of an
ongoing longitudinal study of the effects of maternal
alcohol consumption during pregnancy on the health
of the offspring. Background can be found in Streiss-
guth et al. (1981). A complete report on the current
analysis is in preparation.

For this study we digitized 23 landmarks judged to
be homologous and identifiable on standard full face
and lateral photographs of 21 seven-year-old children
gestationally exposed to “known,” high quantities of
ethanol (at least 2 ounces of average absolute alcohol
consumption per day during early pregnancy by moth-
er’s self-report; 10 children were exposed to at least 4
ounces of average absolute alcohol per day), and 21
children with negligible ethanol exposure. These “con-
trol” children were group-matched with the alcohol-
exposed children on the basis of marginal distributions
of race, sex, maternal education, nicotine use, and
certain other drugs used. Figure 1 provides a sketch
of the locations of landmarks on the lateral photo-
graph. In comparison with the cephalometric data
analyzed by Bookstein, the relative locations of these
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F1G. 1. Locations of 10 landmarks located on lateral photographs.

landmarks are generally less well defined and they
may be disturbed by variations in head position and
facial expression. A small number of photographs were
missing or judged unusable because of head position.
For purposes of this discussion I will cite only a few
examples from analyses using the lateral photographs
to contrast the 8 most heavily exposed children with
28 “control” and “moderately” exposed children.
(Children exposed to 2 to 3 ounces of alcohol per day
could not be distinguished from the control group.)

Little prior experience (with children of age 7) was
available to suggest facial shape features that might
distinguish the alcohol-exposed from the control
group; therefore, our exploratory analysis involved a
nearly exhaustive search for triangles which differed
significantly in shape between the two groups. Build-
ing on these analyses, triangles were combined to
assess the significance of shape differences in quad-
ralaterals, and in a five-sided polygon. Specific issues
we explored were: the adequacy of first order approx-
imations under which results are invariant with re-
spect to choice of baseline for triangle analyses (the
effects of first order approximations on allometry
studies and the choice of a size variable, S, SY/2, or S*,
has not been explored as we have not yet computed
absolute scales for the photographs); the assumption
of normally distributed scatters and a nonparametric
alternative to Hotelling’s 7 test; and concerns about
simultaneous inference in the face of our analyses of
numerous triangles.

To assess the effects of choice of baseline we need
more information than is provided by Figure 6 of
Bookstein. As an example providing some experience
with these effects, Figure 2 shows plots of the shape
coordinates Q(Z17, Zss, Z1g), Q(Z17, Z19, Z23), and
Q(Z19, Z23, Z141), for the triangle with vertices at the
top of the philtrum (17), the upper lip (19), and the
center of the ear (23). Although the pattern in these
scatters is somewhat irregular, there is some (weak)
suggestion of noncircularity (i.e., systematic variation
in shape) within both groups. Corresponding Hotelling
T?values and p values computed assuming the scatters
represent bivariate normal samples with a common
covariance structure are also given. For this triangle
the distance between points 17 and 19 (the length of
the philtrum) is not very large relative to the scale of
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(c) Baselinae 17-18: T2=11.52, p=.0079

FiG. 2. Triangle 17-19-23 shape coordinates derived from different baseline choices (points set to coordinates (0, 0) and (1, 0)) with Hotelling’s
two sample T? statistics and p values. High alcohol exposure cases are marked with a “*” “moderate” and low alcohol cases are marked

with a “0.”

the scatter. Nonetheless, in this particular case our sults are much more nearly invariant under change of
inferences are not highly dependent on choice of base- baseline; T2 values are 5.66, 5.64, and 5.49.

line, although the p value increases by a factor of two As a check on the normal theory p values computed
to three when the short side 17-19 is made the base- using Hotelling’s T? we carried out a number of per-

line. For the slightly larger triangle 17-23-14 our re- mutation tests. For comparisons of 8 heavily exposed
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children with 28 “moderate” and “control” children
we repeatedly assigned 8 cases at random to a group
labeled “exposed,” the remaining 28 cases to the
“control” group, and computed the corresponding T
value. For example, for the observed sample groups
we obtain 7% = 13.0 (with 7 + 27 = 34 d.f. for error)
and associated p value of .0047 when analyzing the
triangle with vertices 19, 23, and 14. Computation of
400 permutation samples yielded only two T statistics
more extreme than 13.0, and thus a permutation p
value of 3/401 = .0075 which is quite consistent with
the normal theory value.

Our interest in permutation tests was raised as
much by an unexpected aspect of our experimental
design as it was by normal theory assumptions. Al-
though the “exposed” and “control” groups of size 21
were balanced by race and sex, we found ourselves
focussing on only the 10 most highly exposed cases.
Of these cases, 7 were nonwhite and 5 were nonwhite
females. Our exposed-control comparisons were there-
fore clearly confounded with race and sex. Small sam-
ple sizes prohibited individual modeling of race and
sex effects, so to obtain more interpretable signifi-
cance levels for the comparison of interest we com-
puted random permutation groupings subject to the
constraints that the race, or race and sex, proportions
matched those in the observed samples. For example,
conditioning on the observed race proportions we com-
puted 250 permutations and a p value of 8/251 = .032
for triangle 19-23-14; conditioning on both the ob-
served race and sex proportions in the exposed group
we obtained a p value of 13/201 = .065 from 200
permutation samples.

On the basis of these and other tests we conclude
that our data is reasonably consistent with Book-
stein’s normal model. We also generally confirm ap-
parently significant differences after adjusting for
confounding effects via permutation tests.

Our search for significant shape differences in tri-
angles selected from among 23 landmarks defined in
frontal and lateral views raises obvious questions
about simultaneous inference. The methodology
Bookstein introduces opens up the systematic geo-
metric and statistical analysis of large sets of land-
marks. In Bookstein’s craniofacial example attention
is focussed (on a priori grounds) on a small number of
landmarks, and primarily one specific quadrilateral.
In our application a larger number of landmarks were
eligible for consideration and prior information was
inadequate to restrict attention to a small number of
triangles of quadrilaterals. We now face the prospect
of analyzing much richer (higher dimensional) data
sets, but with corresponding concerns for simultane-
ous inference in the course of investigation. For de-
scriptive purposes the extra information contained in
large data sets is quite valuable, especially as it is used

in computing biorthogonal grids. In contrast with
other types of highly multivariate data, summaries of
morphometric multivariate analyses are guaranteed to
have clear two-dimensional representations. Book-
stein notes that most models for deformation analysis
have too few parameters, but with the current treat-
ment of landmark data we will often increase the
dimensionality of the parameter space to a point that
challenges us to interpret tests of group contrasts. The
research problem that Bookstein raises about the se-
lection of landmarks (or triangles) contributing sig-
nificantly to a group difference (Section 7) is based in
this simultaneous inference problem.

Formally, any particular triangulation of K land-
marks provides 2(K — 2) shape variables to be consid-
ered, and an overall T? test can be carried out on
p=2(K—2) and n= (N, + N, — 2) degrees of freedom
for samples of sizes N, and N,. Percentage points
of the T? distribution are given by multiples of F
percentiles, TI-27,n = [pn/(n — p + 1)]FP,(n—p+l)’ and
simultaneous inferences for all triangle comparisons
could be carried out by referring individual bivariate
T3 . statistics to T%, percentiles in accord with the
union-intersection test principle. However, for our
application, we would have p = 16 for the 10 land-
marks considered in the lateral photograph alone, and
p = 22 for the 13 landmarks in the frontal! I suggest
that the extreme conservativeness of formal simulta-
neous inference in this case suggests a logical flaw.

Even if certain triangular regions of a figure of
interest are (statistically) stable in shape across a
group comparison, it will generally make sense to draw
a continuous, differentiable extension over the entire
figure of interest of the effects of a significant differ-
ence in shape observed in some subregion. Biortho-
gonal grids provide this extension. Formal simulta-
neous inference may prohibit a ¢conclusion of signifi-
cant differences in some region of a figure, but the
biological connectivity of triangular regions will often
justify examining this extension. Indeed, this is per-
haps a setting where knowledge of the proximity of
triangular regions provides prior information that
should not be ignored by formal simultaneous infer-
ences that recognize estimated statistical covariances
but not explicit “physical covariances” or connectivity.
In this setting the biologist should not pay a penalty
for measuring too many landmarks/variables in study-
ing a shape change or deformation. The association
that Bookstein draws between deformations and fac-
tor models leads me to believe that a proper resolution
to this issue can be expressed in terms of Herman
Wold’s “soft modeling” approach to the analysis of
factor models (cf. Bookstein, 1986).

My final remarks concern two aspects of statistical
computing for landmark data. Analyses suggested by
Bookstein involve only simple manipulations of
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coordinate data and standard multivariate statistical
analyses which are available in most major statistical
packages. At the University of Washington we have
found it especially convenient to carry out our analy-
ses using an interactive statistical programming lan-
guage such as “S” (Becker and Chambers, 1984), or
“ISP” (Dunlap, 1985), both of which have facilities
for user-defined special purpose macros. In this inter-
active macro environment we easily extract shape
coordinates (using the simple expressions of complex
arithmetic given by Bookstein) for arbitrary sets of
landmarks, compute the usual statistical analyses, and
generate various graphical displays of the results.
One of Bookstein’s most important contributions to
the field of morphometrics was the method of bior-
thogonal grids which he introduced in 1978. We are
finding biorthogonal grids very useful for graphically
synthesizing the findings from the discrete analyses
of multiple triangles (as Bookstein describes in Sec-
tion 6). However, to our knowledge no one but Book-
stein himself at the University of Michigan has ever
had software to generate a biorthogonal grid. This is
probably due to the complexity of the algorithms
originally described. We have recently implemented
(with Bookstein), in the “S” environment, new and
simpler algorithms for the computation of biorthog-
onal grids. The computed homology which maps and
smoothly interpolates one set of landmarks onto
another is derived from easily programmed “thin-
plate” spline interpolators (Meinguet, 1979). This
algorithm does not constrain the mapping to be
linear on a specified boundary as does Bookstein’s

Comment

Colin Goodall

Fred Bookstein’s energy, enthusiasm, leadership,
and innovative thinking about morphometrics are
,highly valued, greatly appreciated, and a spur to fur-
ther work. The present paper is a major advance in
multivariate morphometrics, and contains some of the
few substantive results available. The linear spaces
for size and shape statistics are derived, however, at
the cost of restrictive assumptions, including a simple
error structure (the null model), almost uniform
deformation (negligible curvature), and small errors

Colin Goodall is Assistant Professor, Engineering Sta-
tistics and Management Science Department, Prince-
ton University, E-Quad, Princeton, New Jersey 08544.

original algorithm. Our algorithm for drawing out the
biorthogonal grids, the integral curves of the symmet-
ric tensor field (Figure 15b), is based on a widely
available differential equation solver. A report describ-
ing this new biorthogonal grid software and applica-
tions is in preparation.
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(linearized, normally distributed, statistics). This dis-
cussion looks at a broader approach, and, while lacking
the detail and rigor of Bookstein’s paper, suggests that
statistical machinery, centered on function estima-
tion, is mostly available.

The author has convincingly demonstrated how to
move back and forth between deformations and mul-
tivariate statistics. These statistics are based directly
on linear combinations of landmarks. I prefer to em-
phasize a two-stage procedure, in which estimation of
the biological process, namely the deformation (strain)
tensor field varying in space and time, is primary.
Only at the second stage statistics that summarize
(are functionals of) the deformation tensor field are
used in multivariate comparisons. As Bookstein



