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Comment

Persi Diaconis and Eduardo Engel

I. J. Good has given us a marvelous historical per-
spective, blending the subjective/objective dichotomy
with the mathematics of Poisson’s summation for-
mula. These subjects are intimately related to recent
work on probability in classical physics. We first de-
velop this connection, and then compare Poisson’s
techniques with Poincaré’s method of arbitrary func-
tions. We conclude by outlining generalizations con-
nected to Selberg’s trace formula.

1. A SUBJECTIVE GUIDE TO OBJECTIVE
CHANCE

Physics and mathematics offer a useful way of
relating subjective probability to objective chance de-
vices. Consider throwing a real dart at a real wall. If
the left half of the wall is painted black, and the right
half painted white, there is nothing very random about
the outcome: by aiming a bit to the left, the dart winds
up in the black section.

Now suppose the paint is rearranged to form stripes
which are alternately painted black and white. If the
distance between the stripes is large, things still aren’t
random, but as the distance gets smaller, black and
white will be judged nearly equally likely by almost
anyone.
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It is not difficult to give quite sharp quantitative
estimates: Suppose the thrower stands a distance [
from the wall, and the stripes have width d. Clearly
only the ratio //d matters, so without loss of generality,
take [ = 1. The situation is pictured in Figure 2.

Let 0 be the angle of release of the dart and suppose
f(6) is a probability density on (— w/2, =/2). If 6 is
chosen from f,
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A result due to Kemperman (1975) (discussed in Sec-
tion 2) and straightforward calculus lead to the bound

| P{Black} — 2| = cd
with

C=V(f‘)1+1

Now let us consider the philosophical implications
of the mathematics. If f(9) is Smith’s subjective dis-
tribution of the angle of release, and if f(6) is not too
sharply peaked, then Smith is forced to assign proba-
bility about % to the dart landing in the black region.

This gives an objective chance device in the follow-
ing sense: Most people will assign the same probability
to the outcome black even though they may have very
different prior beliefs about 6.

This is quite different from the usual argument for
multisubjective agreement (“the data swamp the
prior”). It applies to a single event: Agreement is
reached without the need of any data.

A similar analysis can be given for many other
objective chance devices. Consider flipping a coin in
the air and catching it as it lands. When the coin
leaves the hand, its upward velocity and angular mo-
mentum completely determine which side will land
uppermost. It is possible to carry out the physics and
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show that the partitioning of the velocity-momentum
space into regions corresponding to heads and tails
become very close together when the initial velocity is
sufficiently large. Thus small changes in initial con-
ditions make for the difference between heads and
tails.

Quantitative versions of the coin tossing argument
have been carried out by Keller (1985), Yue and Zhang
(1985), and Vulovic and Prange (1985). We have car-
ried out experiments to measure how fast a coin spins
in real tosses. In a toss of about 1 foot, a coin turns
over about 15 times. Experiments combined with the-
ory lead to the conclusion that coin tossing is fair to
two decimal places but not three.

The analyses above are versions of Poincaré’s
“method of arbitrary functions.” The phenomena con-
sidered are such that the conclusions we draw about
their outcome are valid for an arbitrary density f
describing the initial conditions.

Poincaré’s method was brilliantly developed by
E. Hopf in a series of papers published in the 1930’s.
Hopf treated problems such as Buffon’s needle and
the stopping place of a ball rolled on a floor with
general frictional force. Hopf began a classification of
low order differential equations damped by friction to
determine to what extent uncertainty about initial
conditions affects the distribution of the resting state.
A useful review, containing references, is given by
Von Plato (1983). Wolfram (1985) contains further
discussion.

Hopf and earlier workers interpreted f(6) as a
smooth approximation to the empirical distribution of
initial conditions. The subjective interpretation is
clearly discussed in the charming article by Savage
(1973).

We are currently actively involved in working on
both special cases and a general theory which we hope
to report on soon.

Thinking hard about randomness reveals that many
of the usual examples of randomizers are not very
good when looked at critically. For a discussion of
problems in drawing from an urn, see Fienberg (1971).
For a physical analysis of roulette, see Bass (1985).

Finally we note that many simple methods of ran-
" domizing cannot be analyzed by “doing the physics.”
Rolling dice or coins flipped on the floor require
physics beyond our power. A proper analysis of even
the simplest methods of shuffling cards (e.g., put n
cards in a row and randomly switch pairs of cards)
requires some insight into the psychology of the shuf-
fler. We are a long way from being able to give a
physical analysis. Aldous and Diaconis (1986) report
on some methods of analyzing card shuffling.

Poisson and Good both emphasize the distinction
between physical and subjective probabilities. The
argument given above identifies features of classical
chance devices that push most of us to make similar

predictions. It helps bridge the gap between the two
positions, identifying a variety of situations where
both lead to essentially the same results.

2. POISSON’S FORMULA AND. THE METHOD OF
ARBITRARY FUNCTIONS

A general ingredient of the arguments in the last
section may be called the method of arbitrary func-
tions. If a space is divided into small pieces and
alternately colored white and black, any density on
the space which is sufficiently spread out will assign
mass of about Y2 to white.

In the dart and wall example, the space was the unit
circle. In the coin tossing example, it was the velocn;y-
momentum space of initial conditions.

Such useful tools are worthy of careful analysis and'
extension. In Section 5 of his paper, Good uses Pois-
son’s summation formula to give bounds when the
space is the line with equal distance between the
pieces. Good’s bounds are most effective for scale
mixtures of normals.

In unpublished work, Joop Kemperman has devel-
oped sharp bounds for general densities. We would
like to describe a simple case of these bounds and
compare bounds on the normal distribution.

Let X be a random variable with distribution func-
tion F. Let F, denote the distribution function of
¢X (mod 1). Thus, for x <y < x + 1, F,(y) — F.(x)
= P{x < ¢X < y (mod 1)}. Kemperman uses the
discrepancy D(o) = sup,,,| Fo(y) — Fo(x) = (y — %) |
to measure the distance between F, and the uniform
distribution.

To begin with, D(c¢) tends to zero as ¢ tends to
infinity if and only if the characteristic function of F
tends to zero at infinity. Hence a density for F is not
required.

To get bounds, suppose X has density f (x) having k
derivatives (k = 0) such that the kth derivative f** is
of bounded total variation V.

THEOREM (Kemperman). There is a universal con-
stant c such that for all 6 >0

Do) = 52

In particular, co = 1/8, ¢, = 1/64, c; = 1/384.

As an example, suppose k = 0 and " is integrable.
Then:

+o
(2.1) D(o) = él-f | f/(x)] dx.
g & —x

Thus, the rate of convergence depends on how much
the density of f “wiggles.”

Kemperman shows that the theorem is sharp in the
sense that there are densities where asymptotic equal-
ity is achieved in the upper bound. On the other hand,
convergence is often more rapid than linear in ¢.
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Using Poisson’s summation formula as Good does,
one can show that for the standard normal density
D(o) converges to zero at a rate of exp[—(270)?]. For
the standard Cauchy the rate is exp[—(270)].

David Aldous has suggested that the normal density
has the fastest rate under all possible centerings of
the initial lattice. |

The method of arbitrary functions can easily be
varied to take account of variations in the underlying
assumptions. For example, consider the dart and the
wall again, but this time suppose that the distance [ is
not precisely specified.

If [ is chosen from the density h(l) and, for a given
distance [, 8 is chosen according to the density f(6),
the same argument gives

| P{Black} — %| < g E(&fl)*_l)

where

Vi(f) =f [ f{(0)] db.

If l = I, is assumed and V,(f) < V,, the bound can
be replaced by ((Vy + 1)/4ly) d. This gets smaller as Iy
gets larger, and is still linear in d.

Poisson’s formula exploits the symmetry arising
from considering random variables mod 1. Kemper-
man’s argument is basically integration by parts. It
gives bounds for two colorings of the line which are
not equally spaced. Both arguments are important in
generalizing to more complicated spaces that arise
naturally in physical problems. This is discussed fur-
ther in Section 3.

3. GENERALIZATIONS AND OTHER
APPLICATIONS OF POISSON’S FORMULA

In recent years, the mathematics community has
evolved and applied extensions of the Poisson sum-
mation formula to more general groups. To take a
special case, let G be a commutative group and T' a
closed subgroup. Let I'* be the set of characters in the
dual group which equal 1 for every v in I'. Then, for
all reasonable functions f,

fr () dy = f _f(0) do.

For example, if G is the real line and T the subgroup
of integers, then I't = {t:e’¥ = 1 for all integers j}.
Thus I't = {2rk:k integer} and the formula reduces to
the usual result. When G is taken as a finite commu-
tative group we get Good’s (5.2.4).

There are also noncommutative versions, collec-
tively known as Selberg’s trace formula. The inter-
ested reader can find details in Mackey (1978, pp. 325,
347-353) or Gelbart (1975, Chapter 9).

One interesting result connected to Poisson’s for-
mula but not emphasized in Good’s review is the

construction of two characteristic functions which
agree in an interval. One first constructs a character-
istic function of finite support and then considers its
periodic extension. The latter is shown to be a char-
acteristic function using Poisson’s formula. To appre-
ciate this, try thinking of a direct probabilistic inter-
pretation of the periodic continuation.

Feller (1971, Chapter 19) gives a motivated version
of this construction which apparently goes back to
Khintchine (see Lévy, 1961). Diaconis and Ylvisaker
(1985) use the idea to construct two different priors
with the same posterior mean for a location problem.

We have used Good’s version of the Poisson sum-
mation formula to construct versions of the curiosities
in Feller (1971, Chapter 15.2) for finite Abelian
groups.

Closely related to Poisson’s formula is the idea of
considering an integer random variable Z mod m. If Z
is sufficiently spread out we expect its remainder will
be close to uniformly distributed on {0, 1, ..., m —1}.
In (6.2) Good computes explicit bounds for a Poisson
Z. Diaconis and Stein (1978) and Bingham (1981) give
explicit bounds related to the central limit theorem.

Finally, Diaconis (1982) uses the discrete version of
Poincaré’s argument to get bounds in random walk
problems on finite Abelian groups.

4. LAST WORDS

One of the wounderful features of Good’s writing is
its pointers to goodies near and far. We have benefit-
ted from following several of his leads. A card trick
has been invented starting from Good’s amazing for-
mula for the number of permutations when repeats
are allowed. We thank him and Morrie DeGroot for
the chance to have a closer look at this material.
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Herbert Solomon

I. J. Good has done a service in highlighting some
of Simeon Denis Poisson’s (1781-1840) contributions
to statistics and probability. While his name is a
commonplace to us, the breadth and variety of Pois-
son’s work is neglected in formal courses undertaken
by even the most advanced students. It is good to view
Poisson as a member of the French school of proba-
bilists who thrived from the late 18th century to the
middle of the 19th century. Laplace overwhelms this
group but the contributions of Condorcet, Cournot,
and Bienaymé, as well as Poisson, among others, must
receive attention. This is especially so in model build-
ing and estimation in the behavioral sciences. Apply-
ing the calculus of probabilities to important societal
problems such as jury behavior was not beneath them.
All lived in dramatically changing times in France
where individual rights had assumed an importance
that did not exist before the late 18th century.

Unfortunately, this kind of endeavor was frowned
upon in the latter half of the 19th century by European
mathematicians and it was not until the middle of this
. century that we found this activity again receiving the
attention it deserves. For some reason or other, R. A.
Fisher also refers in a rather negative manner to that
earlier era when probabilists concerned themselves
with the veracity of witnesses and group decisions.
Yet one of Poisson’s most important works was his
1837 volume on the Calculus of Probability Applied to
Civil and Criminal Proceedings—the book in which
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what we now call the Poisson distribution first ap-
pears; albeit as a mathematical approximation artifice.

Much as we wish that Good would have elaborated
more on the themes in his paper, editorial constraints
and his own tastes no doubt limited the size of his
effort. Let us now look into the Poisson jury model in
some detail to catch the flavor of the statistical think-
ing and the concern with moral and societal values
demonstrated by Poisson.

It is important to note that Poisson in developing
his model paid heed to the data available in his day.
For the period 1825-1830, jury decisions were based
on 7 or more out of 12 jurors favoring either conviction
or acquittal. Cases based on verdicts of exactly 7 out
of 12 went to a higher court which could change the
verdict. For each year, the number of trials and num-
ber of convictions were registered and listed for crimes
against persons and crimes against property. Note
here that this distinction in crimes is definitely drawn
over 150 years ago. In the period 1831-1833, listings
were also available, except the majority required was
8 or more out of 12. In 1832 and 1833, the jury could
find extenuating circumstances in a conviction that
would then lead to a lighter penalty.

What impressed Poisson was the stability of the
conviction ratios over each of the years 1825-1830 and
1832-1833. He felt this was a basis for developing a
model that in some parsimonious way could reproduce
the data, and if so, lead to the computation of the
probabilities of the two kinds of errors important in
judging the effects of size and decision-making rules
of a jury, namely, the probability of acquitting a guilty
defendant, and the probability of convicting an inno-
cent defendant.



