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Comment

David C. Hoaglin and Peter J. Kempthorne

We thank Chatterjee and Hadi for their review of
diagnostics for influence of individual cases in regres-
sion. By describing connections and distinctions
among a large number of techniques, they have pro-
vided a springboard for a timely discussion of specific
methods, general approaches, and the contribution of
diagnostics to the practice of regression analysis. We
offer some criticism of notation, consider cutoffs, rules
of thumb, and their role in identifying influential
cases, propose simple residual plots which display high
leverage, outlying, and influential cases simultane-
ously, comment on the selection of carrier subsets,
discuss approaches to uncovering influential groups of
observations, urge more comprehensive presentation
of examples, and sketch a step by step diagnostic
strategy that should be useful in practice.

NOTATION

It is extremely unfortunate that Chatterjee and
Hadi have chosen to introduce new notation for fa-
. miliar diagnostic quantities such as P for H in equa-
tion (5), WK, for DFITS; in equations (34) and (35),
and D} for DBETAS;; in equations (42) and (44). By
the time one gets to the summary in Section 9 and the
example in Section 10, only the new names remain;
the customary ones have faded from memory, and one
must retrieve them (e.g., via the equation numbers in
Table 2) to retain contact with other discussions in
the literature. Such confusion could easily have been
avoided. A consensus on notation for the basic quan-
tities in regression diagnostics would be most welcome.

IDENTIFYING INFLUENTIAL CASES

For labeling cases as having “high leverage,” the
cutoff 2p/N for large h; is neither the only rule of
thumb proposed nor even the most useful rule. Hoag-
lin and Welsch (1978) proposed 2p/N on the basis of
limited initial experience, and Velleman and Welsch
(1981) suggested that, when p > 6 and N — p > 12,
3p/N is more appropriate. Huber (1981, pages 160-
162) prefers to place cutoffs at 0.2 and 0.5, without
regard to p and N: “Values h; < 0.2 appear to be safe,
values between 0.2 and 0.5 are risky, and if we can
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control the design at all, we had better avoid values
above 0.5.” In practice we usually examine the A; in a
stem-and-leaf display and identify points of high(er)
leverage by considering its appearance in light of the
various rules of thumb.

For the example in Section 10, the stem-and-leaf
display (for the 6-carrier model) appears in our Table
1. Observation 17 (which Chatterjee and Hadi flag)
stands out at .92, exceeding even 3p/N = .9. The
2p/N rule does not flag any additional observations,
but the higher of Huber’s cutoffs catches observation
2 at .50, and we should probably give further attention
to observation 3 at .49. In all this, however, we must
recognize that fitting 6 carriers to 20 observations
gives only 3Y3 observations per parameter. With the
average h; at p/N = .3, it is hardly surprising that 14
of the 20 h; exceed Huber’s lower cutoff. As Weisberg
(1981) explained, Moore began with the six carriers in
seeking to build a model.

After identifying such cases, it is important to ex-
plain the source of their high leverage. By definition,
they are outliers in the carrier space and may repre-
sent large measurement errors (e.g., miscoded values)
or valid observations in the extremes of the ranges of
the carriers. Case 17 is an apparent outlier in the
empirical distribution of total volatile solids (X).
Also, we note that the high leverage cases tend to fall
near either the start or the end of the 220-day data
collection period. A possible explanation is that the
carriers vary systematically with the “DAY” variable
presented in Weisberg’s (1981) description of the ex-
periment.

The discussion in Section 10.2 leads us to question

TABLE 1
Stem-and-leaf display of h;, the diagonal elements of the hat matrix,
for Moore’s data with the model whose carriers are 1, X,, X, X3,
X, and X;.
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Note: The numbers at the right identify the observations by their
rows in Tables 3 and 5.
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how one should determine which observations appear
most influential on the precision of B. For example,
on the basis of CVR, Table 6 lists observations 1, 17,
20, 15, and 7, whose CVR values are 0.04, 12.51, 0.45,
0.51, and 0.73. Only the first two of these, however,
lie outside the suggested cutoffs at | CVR;, — 1| >
3p/N = 0.9 (i.e.,, Q.1 and 1.9). Table 5 shows that
observations 2, 3, 4, 9, 14, 16, and 18 all have CVR; >
1.9. By contrast, in Figure 5, which plots CW; against
I, observations 1, 17, 20, 15, and 7 clearly stand out. A
stem-and-leaf display or an index plot of CVR,; would
call attention to these same five observations. The
message from the batch of CVR; is that values in the
range 1.3 to 2.8 are common (15 of 20), whereas values
below 1.0 or above 3.0 are not.

The conflict arises from the difference between
applying an absolute cutoff (1 £ 3p/N for CVR,) and
seizing upon apparent structure within the batch of
values of the diagnostic measure. In this example the
cutoff values for CVR; treat increasing det[cov ( B)] by
a factor of 1.9 as roughly equal in importance to
decreasing it by a factor of 10 (in part because p/N is
not small). We prefer to regard change by a factor of
2 as comparable to change by a factor of Y. This
attitude leads us to prefer log(CVR,) as a measure of
influence on the precision of 3. Thus, we focus on
observations 3, 9, and 2 (with CVR,; = 2.75, 2.45, and
2.39) before turning to observations 20, 15, and 7. Use
of log(CVR);) is equivalent to use of the statistic of
Cook and Weisberg (CW,) in equation (25), but it does
not rely on distributional assumptions for its interpre-
tation. In practice we also make some allowance for
the fact that simply deleting a noninfluential obser-
vation will tend to produce a modest increase in CVR;
(or its logarithm).

Most uses of regression diagnostics are likely to give
more weight to WK; or D%, so we turn briefly to the
role of cutoffs for these measures in identifying influ-
ential observations. The values of WK; flagged by
asterisks in Table 5 turn out to be precisely those with
| WK; | > 2vp/vN = 1.095. In Table 8, however, four
unflagged entries exceed the proposed cutoff | D} | >
2/VN = 0.447, suggesting that observations 15 and 19
may be influential on 3. and observations 1 and 2 may
be influential on ;. Three of these four have larger
maghitudes than D¥,, which is flagged. Although we
do not believe that good diagnosis can be as cut and
dried as simply checking diagnostic measures against
cutoffs, it requires clearly stated criteria and guide-
lines.

We are also puzzled that Chatterjee and Hadi ignore
the influence of cases on the intercept estimate. When
the goal of the analysis is prediction, all the parameter
estimates play key roles. A large value of WK; might
be due to a large D} value.

RESIDUAL VERSUS LEVERAGE PLOTS WITH
INFLUENCE CONTOURS

In addition to studying tables or simple index plots
of various influence measures, as Chatterjee and Hadi
suggest, our influence analysis includes plots of (ex-
ternally) studentized residuals (¢¥) against leverage
values (h;). We supplement these plots with contours
corresponding to constant values of particular influ-
ence measures and labels of “interesting” points.
Outlying and high leverage observations are easily
identified as those at the extremes of the vertical and
horizontal directions, respectively. The contours give
the relative influence of observations and indicate how
particular measures depend on the leverage and resid-
ual values. Our Figures 1 and 2 present these plots for
the least squares fit of the full model to Moore’s
data with contours corresponding to DFITS and
COVRATIO, respectively. Welsch (1983), Krasker
and Welsch (1983), and Gray (1983, 1985) propose
similar plots using different scales for the axes.

GROUP INFLUENCE

In Section 8, Chatterjee and Hadi allude to the
natural generalizations of the singleton measures to
groups. Belsley, Kuh, and Welsch (1980) and Cook
and Weisberg (1982) discuss these quite extensively,
lamenting the large number of groups to consider and
the greater difficulty in computing a measure’s value
for groups of more than one observation. In addition
to the greater computational complexity, analyzing
group influence raises new conceptual questions. For

FIG. 1. Residual versus leverage plot with contour for DFITS, =

2+vp/N.
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FIG. 2. Residual versus leverage plot with contours for COVRATIO;
=1+ 3p/N.

a group to be deemed “influential,” should its members
reinforce each other’s impact? If the influence of a
group can be explained by a proper subgroup, then
should our focus be on that subgroup? Is mutual
“masking” of observations a serious problem in prac-
tice? If so, how can it be measured, and how can such
groups of observations be identified?

In our experience, important influential groups can
be overlooked when the group versions of the measures
that Chatterjee and Hadi review are applied exhaus-
tively to all groups of a given size. The 10 or 15 “most
influential” groups of a given size might all contain
the same proper subgroup. In such circumstances, all
the observations in any influential group may not
reinforce each other’s influence, and a subgroup of
observations may be responsible for many groups’
having significant values of the influence measure.
For example, using the influence measure of Cook, C;,
to identify influential pairs and triplets of observa-
tions in the simple linear regression fit to Mickey,
Dunn, and Clark’s (1967) adaptive score data (see
Figure 1 of Chatterjee and Hadi), the 19 most influ-
ential pairs each contain child 18 (denoted by “I”
in Figure 1), and the 18 most influential triplets each
contain the pair consisting of children 2 and 18
(the pair lying closest to the lower right corner of
Figure 1).

We believe that a promising approach is to study
group influence in terms of the derivatives of weighted
least squares estimates of the linear regression param-
eter. Extending the measures presented in Belsley,
Kuh, and Welsch (1980), Kempthorne (1986) proposes
the “derivative influence” measure, for which single-

ton effects are additive in characterizing the influence
of groups. The computational complexity of the group
analysis is reduced substantially from that required
by group measures based on group deletion. In fact,
derivative-influential groups can be identified with the
aid of a cluster analysis. However, unlike Gray and
Ling’s (1984) clustering, the positions of observations
in the underlying multidimensional configuration
have a theoretical foundation. They characterize the
magnitudes and the directions of observations’ influ-
ence on the estimate of the linear regression param-
eter. In addition, this approach includes a simple
measure of the “cohesion” of a group of observations
that indicates the degree to which the observations
influence the regression parameter estimate in the
same direction.

Analysis of the derivative influence of groups of
cases in the least squares linear regression fit to
Moore’s manure data reveals that there are no cohe-
sive derivative-influential groups of multiple cases.
The four cases with highest derivative influence
among the singletons are, in decreasing order, 1, 17,
20, and 2. For any group of these observations, the
cohesion is negative, indicating that the singletons
have distinct impacts on the regression parameter
estimate (the angle between any pair of direction
vectors characterizing observations’ influence is ob-
tuse, with negative cosine). Grouping any of the sin-
gletons together would seem inappropriate. As an
aside, we note that, although Chatterjee and Hadi do
not highlight observation 2 (see Table 6), a careful
examination of Table 8 indicates that its impact on
B, is the largest among those with negative D} values.
In fact, it exceeds the size-adjusted cutoff 2/ VN =
.4472 suggested by Belsley, Kuh, and Welsch.

The discussion in Section 8 of observations “mask-
ing” each other’s influence is misleading. Contrary to
what Chatterjee and Hadi state, in the hypothetical
example of points “1” and “2” in Figure 3, the points
are individually influential, and their impact as a
group is well approximated by the sum of their indi-
vidual impacts. The characterization and assessment
of masking effects among observations is an important
problem in influence analysis which deserves further
study. Such efforts would be better focused if research-
ers had more real data sets exhibiting this behavior to
study.

MODEL (SUBSET) SELECTION

Chatterjee and Hadi comment on the impact of
deleting some groups of observations on the choice of
“best” subset of explanatory variables based on the
minimum RMS criterion. Use of one selection criter-
ion without comment might suggest to readers that
experts in regression commonly prefer it for model
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selection. To the contrary, no theoretical foundation
justifies this criterion. It is a generalization of stepwise
regression for all subsets which corresponds to using
tests of approximate level .50 (not .05) to compare all
pairs of nested subsets. Because the implicit signifi-
cance levels of the tests do not converge to zero as the
sample size N grows large, the procedure is not con-
sistent for identifying a true subset.

Variable selection and outlier exclusion can be con-
sidered simultaneously in the context of subset selec-
tion by including indicator variables for the ob-
servations corresponding to potential outliers. If the
purpose of the analysis is to identify the “true” subset
and “real” outliers, then a consistent subset selection
criterion would seem desirable. A logical choice is the
Bayesian Information Criterion, originally proposed
by Schwarz (1978), which is asymptotically equivalent
to the log of the posterior probability for the model
corresponding to a subset, assuming any prior distri-
bution for unknown parameters that gives positive
probability to different subsets (models) and positive
support to the all regression parameters corresponding
to any subset; see also Atkinson (1978, 1981a).

When model selection or hypothesis testing is the
purpose of the regression analysis, it is important to
assess the influence of observations on the selection
or test. None of the measures that Chatterjee and
Hadi review are appropriate in this situation. Using a
Bayesian decision-theoretic framework for general
regression-fitting problems, Kempthorne (1985) de-
velops several influence measures and applies them to
the model-selection problem. For special cases of the
prior distribution for unknown regression parameters,
the measures for a particular observation are simple
functions of its residuals and leverage values in the
least squares fits to the models under consideration.
Because Moore’s data has little interesting structure,
we do not illustrate these measures here.

We are puzzled by Chatterjee and Hadi’s mention
of a set of “most influential variables.” A discussion
of influential observations is complicated enough, and
consideration of influential variables is particularly
difficult when no formal definition is given.

DESCRIPTION OF DATA

The description of the example in Section 10.1 gives
far too little information for readers who are not
already familiar with the subject to gain even a basic
idea of the scientific issues involved and the substan-
tive goals of the analysis. Although Weisberg (1981)
does not say a great deal more, he does explain at the
start that these data are observations on the same
sample of dairy waste over time, and his Table 1
includes the day of each observation (counting from 0
to 220). This alerts the analyst to the possible role of

day as a lurking variable (Joiner, 1981). In contrast,
the statement by Chatterjee and Hadi that “the data
were collected on samples kept in suspension in water
for 220 days” seems likely to mislead. We offer these
comments on adequacy of description not so much to
criticize the present authors (who, after all, did not
introduce this data set into the literature) as to urge
that examples be made accessible to a much wider
audience. Even though journal space is often scarce,
almost everyone (including the present discussants)
should be able to do better in this area.

A DIAGNOSTIC STRATEGY

Although the two alternative sets of diagnostic mea-
sures, {WK;, CW,, D;}} and {C¥, CVR;, D}, tell much
about influential observations, we do not feel that
they provide an adequately comprehensive picture of
the key aspects of a multiple regression data set. In
practice we follow a diagnostic strategy much like the
following. At almost any step, we may decide that we
must modify the model (e.g., by dropping or adding a
carrier) or the data (e.g., by setting aside an observa-
tion) or both (e.g., by applying a transformation) and
then resume diagnosis at some earlier step.

0. Examine the Variables One at a Time. We often
use stem-and-leaf displays to get a look at skewness,
possible outliers, and other features.

1. Plot the Data. We try to look at scatterplots of
Y against each X;, as well as a scatterplot for each
pair of carriers. The scatterplot matrix (Cleveland,
1985) offers a very effective way of organizing this
information. (It is surprising that neither Weisberg
(1981) nor the present paper includes any of these
plots. They aided our understanding of the data when
we made a set and studied them.)

2. Check on Leverage. It is often helpful to know
whether any design points have high leverage, as
measured by the diagonal elements of the hat matrix.
We usually study these in a stem-and-leaf display.

3. Examine Residuals. As a main ingredient of the
influence measures, the residuals deserve some scru-
tiny for their own sake. We often use the (externally)
studentized residuals (¢ in the present paper) in such
displays as a stem-and-leaf display and a normal prob-
ability plot, and we may plot the ordinary residuals
against a variety of carriers. In a related step we also
consider the values of sf), for example, by plotting
st against i.

4. Make Partial Regression Leverage Plots (or added
variable plots), one for each carrier.

The order of Steps 5, 6, and 7 depends on the aims
of the regression analysis. Others may prefer to sub-
stitute some alternative measure of the same type of
influence at any of these steps.
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5. Study Influence of Individual Observations on Fit.
We customarily plot DFITS; (WK,) against .

6. Study Influence of Individual Observations on
Estimates of Coefficients. For each j we plot
DBETAS;;(D}) against i, and we look at these plots
in parallel.

7. Study Influence of Individual Olgservations on the
Estimated Covariance Matrix of 3. Here we plot
COVRATIO; (CVR,) against i. In Steps 5 and 7 we
also examine the residual versus leverage plots with
iso-influence contours.

8. Probe for Subsets of Observations That Are
Jointly Influential. Although more research is needed
in this area, we feel it forms an important part of the
diagnostic strategy. The k-clustering approach of
Gray and Ling (1984) and the derivative influence
techniques of Kempthorne (1986) seem promising.
Another, more ad hoc, approach is to drop the obser-
vations (say, three or four) that have the most indi-
vidual influence and then see how much the results
change.

For a diagnostic analysis, this strategy constitutes
a bare minimum. Often, other areas of diagnosis are
critical to the analysis: need for transformation, influ-
ence on model choice, or detecting departures from
. the standard Gauss-Markoff assumptions such as het-
eroscedastic or correlated errors. Research in these
areas among others has been especially active in recent
years, including applications of a Bayesian perspec-
tive. See, e.g., Atkinson (1982), Cook and Weisberg
(1983), Dawson (1985), Johnson and Geisser (1983),
and Pettit and Smith (1985).
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Comment

Paul F. Velleman

I congratulate Chatterjee and Hadi on an excellent
survey of an area that has developed rapidly in the
past decade. One of the disappointments of this area
is that these very valuable techniques have been slow
to infiltrate the literature of disciplines using regres-
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sion techniques. We need to turn some of our attention
to promoting the use of diagnostic statistics in ordi-
nary practical analyses.

One problem with regression diagnostics has been
that terminology has not yet standardized. Unfortu-
nately, Chatterjee and Hadi exacerbate rather than
alleviate this problem. I do not believe that we need
yet another name and notation for the Hat matrix,
nor that we benefit from new and somewhat cryptic



