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Comment

Ronald A. Thisted

The statistics profession is fortunate indeed to have
such a friend as Professor Stewart. He has repeatedly
taken the time and energy to inform statisticians
about the relevance of numerical analysis to their day-
to-day work, and he has also taken the trouble to
understand and to explicate some of our problems
from our own point of view. This paper is an example
of what numerical analysis can have to say about
statistical problems, and it shows that there is a lot
that we statisticians can profit from. In particular,
Professor Stewart greatly improves our understanding
both of collinearity and of one indicator of collinear-
ity—the variance inflation factor.

As is true of most important papers, this one raises
as many questions as it answers. I would like to
comment on three issues that Professor Stewart only
touched on. First, although Stewart would relegate the
condition number x = || X || - | X" || to the dustbin for
statistical purposes, there is an important statistical
interpretation which rescues it. Second, Stewart’s pro-
cedures for using collinearity diagnostics depend upon
a measure :; of the importance of the jth regressor
variable. The notion of relative importance of a re-
gressor is an elusive one, however, particularly when
collinearity is present. Finally, I discuss the question
of whether statisticians should want collinearity di-
agnostics at all, and if so, what we should want from
them. Where possible, I adopt Stewart’s notation.
References to equations in his paper are preceded by
the letter “S.”
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1. THE CONDITION NUMBER

Stewart gives a clear description of the numerical
relevance of the condition number . In numerical
analysis, its primary significance is the inequality
(S-3.4), the righthand side of which gives a good
indication of the effect of numerical errors in the
regressors on the regression coefficients themselves.
Because the statistical errors represented by e in the
regression model (S-2.1) are generally much larger in
magnitude than the numerical errors resulting from
rounding and truncation, the bound from (S-3.4) is
often so pessimistic as to be useless. In addition, the
condition number is not invariant with respect to
rescaling columns of X, so that interpretation of « is
dependent on the way in which X has been scaled.
Although Stewart discusses three alternatives for scal-
ing X—equal column scaling of X, scaling X to pro-
duce equal column scaling of E, and implicitly, scaling
X so that the components of 3 are roughly equal in
size—he finds no single choice compelling.

" The condition number of X has an important sta-
tistical interpretation in the regression problem which
is generally overlooked. Consider an arbitrary linear
combination of the estimated regression coefficients,
say & = v’f. The variance of & is given by

Var(a) = ¢’ (X’X)

= o0’ X"|2

From this computation it is apparent that the linear
combination with smallest variance (subject to the
constraint, say, that |v| = 1) has variance
o?[inf(X")]2 The coefficients v; which achieve this

minimum value explicitly give the linear combination
a; = vi{f about which the regression data are most

(1.1)
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informative. Similarly, it can be shown using the
singular value decomposition of X that the variance
of the linear combination with maximum variance is
¢*[inf(X)]%. The maximum variance coefficients v,
give the linear combination a, = v, about which the
data at hand are least informative. Thus, «* is the
variance ratio between the most precisely estimated
linear combination of 8 and the least precisely esti-
mated. As a result, the condition number can indicate
the range of relative precision with which linear com-
binations of the parameters can be estimated given
the particular design matrix X.

The interpretation of the condition number in terms
of the precision of estimating linear combinations of
the regression coefficients also bears upon the matter
of scaling X. When the columns of X all represent
similar kinds of measurements—prices in local cur-
rency from Sweden, France, and Germany, for exam-
ple—it is likely that linear combinations of regression
coefficients will be most interpretable, and thus most
interesting to the analyst, if expressed in terms of
common units—dollars, for instance. Indeed, unless
this is done, the variance of v ’8 is a number expressed
in peculiar units indeed. This suggests, then, that the
appropriate scaling for X is one in which the columns
represent variables expressed in common units, or one
from which the units have been removed.

2. IMPORTANCE OF VARIABLES

Collinearity is a problem because it produces regres-
sion coefficients with large standard errors which,
as Stewart notes, may lead us to discount an impor-
tant variable. But the notion of relative importance
of variables in a regression is an elusive one, as
a close inspection of Stewart’s definition reveals.
Small values of the “importance coefficient” ¢; =
I8l Il %I/l y |l are said to mean that x;’s contribution
to y is unimportant, because “the term B;x; represents
100¢;% of the total observed response.”

This definition is misleading, particularly in the

presence of severe collinearity, since the ¢;’s don’t add -

to 100%. Indeed, their sum can and often does exceed
100%—by a considerable amount. The importance
coefficients come closest to adding up when the x;’s
are orthogonal, and the problem gets worse as colli-
nearity increases. What is more, large importance
coefficients can actually mask the role of the corre-
sponding variable. Consider the following example.
The response variable y is the logarithm of the
United States consumer price index (CPI), and x, and
x, are, respectively, log Gross National Product (GNP)
in nominal dollars and log of GNP expressed in con-
stant (1972) dollars (CGNP). Let 2z, represent the
difference GNP—CGNP. Now z, is simply the loga-
rithm of the GNP deflator, which, like the CPI, is a

measure of inflation. Neither GNP nor CGNP has
much to do directly with the level of inflation as
reflected in the CPI. The important variable, the GNP
deflator, is not explicitly present in the regression
model.

Table 1 contains data on these variables for seven
nonconsecutive years. For the model

(2.1) y = B1x1 + Box2 + e,

the value of R? is 99.2%, so that CPI is essentially
determined by GNP and CGNP together. For conven-
ience and interpretability, let us suppose that y, x,,
and x, have all been centered. Then we have ; = 1.086
and «, = 2.061. Note that these importance coefficients
add to more than 3000%. The reason for such large
importance coefficients is the high correlation be-
tween x; and x,, with the consequent high negative
correlation between Bl and éz. A naive interpretation
of ; and «, would be that each variable is enormously
important. This is true in only a very narrow sense.

Variable x, is “important” in this problem only if
variable x, is also present in the model, and similarly
for x,. The model

(2.2) y = Bix1 + 222 + e,

where z; = x, — x;, is equivalent to (2.1), but in this
model the importance of x; is only «; = 0.214. The
latter figure is a more realistic assessment of the
substantive importance of 'x;; its partial correlation
with y after adjusting for z, is only —0.487. (It is easy
to construct realistic examples in which both this
partial correlation and the raw correlation are nearly
zero.) These computations emphasize that “relative
importance of variables” as measured by ¢; is highly
conditional on the particular form of the model, and
that greater collinearity leads to greater dependence
on the particular way in which variables enter the
model.

In short, the importance indices become less inter-
pretable as collinearity increases. So it seems to be
problematic to define a collinearity-diagnostic proce-
dure such as (S-5.2) in terms of them.

TABLE 1
Economics data in logarithmic units

CPI CGNP GNP DEFL
Year
y X1 X2 22

1950 4.36691 6.28040 5.65599 —0.624404
1960 4.51632 6.60259 6.22654 —0.376051
1970 4.73181 6.98008 6.88959 —0.090485
1980 5.53576 7.30047 7.87322 0.572744
1982 5.57519 7.30317 8.03041 0.727240
1983 5.60396 7.33563 8.10289 0.767255
1984 5.63729 7.42833 8.23589 0.807558
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3. WHY DO WE NEED COLLINEARITY
DIAGNOSTICS?

In trivial problems such as the CPI regression, it is
easy to understand the provenance of large variance
inflation factors. (Actually, «; is only a modest 7.5 for
the centered data.) It is hard to imagine actually
conducting a regression analysis with as little regard
for the nature of the variables as I showed in the
previous section, ignoring the clear a priori relation-
ships between CPI, GNP, CGNP, and the GNP defla-
tor. But in more complicated problems with many
variables, relationships such as the one between GNP
and CGNP can sneak into our regression models with
the data analyst unaware.

The real value of collinearity diagnostics is to alert
the statistician to the presence of a potential difficulty.
Both the condition number and the collinearity indi-
ces can help to assess the magnitude of the potential
problem. The «;’s can also help to identify particular
variables that are involved, so that they can indicate
a starting point for further investigation. It is this
latter property that makes diagnostics useful—they
can be used to focus and to direct further efforts in
refining the model. If they don’t point a finger some-
where, they are not terribly useful.

In the economics data, the moderate value of «;
might lead us to question the role of x; in the model,
as might the values IMP; = 0.63. Yet, the model can-
not be improved by removing either of the two vari-
ables. The problem is the GNP deflator, of course.
How might the diagnostics lead us to discover the
culprit?

There are two similar routes that can be followed
to construct supplementary diagnostics. When «,, (say)
is large, by definition x, is very nearly a linear com-
bination of the other variables, and that linear com-
bination is given by the coefficients (a1, -+, fp-1)
from (S-3.7). These are simply the regression coeffi-
cients from the regression of x, on the other variables.
It is often the case when &, is large that the particular
linear combination implied by (&, - - -, fip—1) is inter-
pretable, and sometimes the linear combination x, —
Y, i x; can be recognized as a more sensible “regressor”
to have included in the first place than one or more
of the x;’s.

A second route is to examine the p X 1 vector v,
corresponding to the smallest singular value of X.
This vector can be used to obtain the vector u = Xv
which realizes inf(X); it is also the coefficient vector
for a, = vy B, the linear combination of the regression
coefficients about which the data are least informa-
tive. If one or more of the «;’s is large, then inf(X)
must be small, that is, the linear combination u
is close to zero. The coefficients v, point to the
“worst collinearity.” In practice, this linear combina-
tion is also often interpretable, and may suggest
ways in which the original variables can be removed,
rearranged, or reconstructed so as to avoid the near
singularity.
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Comment: Diagnosing Near Collinearities
in Least Squares Regression
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We congratulate Professor Stewart on a lucid pres-
entation and a practical article. We will discuss several
aspects of the proposed collinearity and relative error
measures.
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1. COLLINEARITY AND ERRORS IN VARIABLES

Stewart gives simplified expressions for probing the
effects of errors in regression variables by comparing
his equations (6.3) and (6.5). Specifically, he defines

ﬁp - Bp
E ias =
RE, ———Bp

and

6p_6p

RE in =
1 ﬁp




