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Probabilistic Expert Systems in Medicine:
Practical Issues in Handling Uncertainty

David J. Spiegelhalter

Abstract. The development of expert systems in medicine has generally
been accompanied by a rejection of formal probabilistic methods for han-
dling uncertainty. We argue that a coherent probabilistic approach can, if
carefully applied, meet many of the practical demands being made, and
briefly illustrate our claim with three current projects.
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1. INTRODUCTION

The first problem in discussing “uncertainty in ex-
pert systems” comes in defining our terms. We shall
view “expert systems” as being programs intended to
provide judgments or advice to users in a reasonably
convincing manner, in which knowledge, whether rep-
resented as rules, networks, or frames, is generally
characterized by local relationships between proposi-
tions of varying generality; data is obtained on a new
case, upon which the “knowledge” is brought to bear
by means of a controlling mechanism. Characteristics

which are often said to distinguish such programs’

from standard statistical or mathematical models
include the frequent use of subjective judgments for
both the qualitative structure and any accompanying
quantification, the emphasis on explanation, and the
incorporation of both knowledge and data that is
fragmentary. Systems are also often intended to en-
able “learning,” in which knowledge is adjusted in the
light of data on past cases.

Within this context the term “uncertainty” is used
in a very wide sense and this has led to considerable
argument about the role appropriate to formal prob-
abilistic reasoning (Cheeseman, 1985; Spiegelhalter,
1986a, 1986b; and papers in Kanal and Lemmer, 1986).
Some misunderstanding may have arisen from the
common use of expressions of the form

IF conditions X hold, THEN Y with certainty P.

If Y is a random event which is currently unknown,
the statistical view is that P represents a kind of
“predictive” uncertainty expressed as a probability
(see Lindley, page 18). However, in many expert sys-
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tem applications, precisely the same representation is
used when Y signifies some action or choice, and P
essentially corresponds to “procedural” uncertainty,
in that doubt is being expressed about the reasonable-
ness of, or the support for, performing an act or
making an assumption. Thus, Cohen (1985, page 52)
states that “one’s certainty in a result should depend
on what the result is wanted for,” and Van Melle
et al. (1981, page 5) say that “certainty factors” in
EMYCIN combine subjective probabilities and utili-
ties to measure “importance.”

Thus, there is clearly great potential for confusion
between the fairly restricted, statistical sense of un-
certainty as applied to facts and the use of the term in
a broader, linguistic sense in describing uncertainty
about acts. To try to avoid this confusion in this short
paper, we shall explicitly restrict dttention to uncer-
tainty concerning potentially verifiable, but currently
unknown, events.

We shall concentrate on practical, rather than phil-
osophical, issues concerning the way uncertainty is
handled in existing programs. We shall not consider
in detail either the representation of knowledge or the
control of the program. Published examples motivate
the search for a methodology that satisfies a number
of demands, and three current projects will then be
used to illustrate some specific aspects of the attempt
to use probabilistic methods in as effective a way
as possible. Finally, an attempt is made to bring
the argument together into a prospect for future
developments.

2. DEMANDS MADE OF A CALCULUS

The particular complexity of many medical prob-
lems has challenged the notion of a rigorous unified
treatment of uncertainty and, in general, ad hoc
quantifications have been used to measure evidence
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for various possible underlying hypotheses (Szolovits
and Pauker, 1978). The complex interrelationships
between disease processes and manifestations have
led to various systems for propagating degrees of cer-
tainty arising from fragmentary data and combining
evidence from different sources. PIP (Pauker et al.,
1976) and INTERNIST/CADUCEUS (Miller, Pople,
and Myers, 1982) both essentially score hypotheses
using evidence from current symptoms that support
a hypothesis, which is discounted by a score express-
ing absent symptoms that would be expected, and a
score expressing present symptoms that would not
be expected. MYCIN/EMYCIN use a more modular
structure in which certainty factors are attached
to propositions, although CASNET/EXPERT
(Kulikowski and Weiss, 1982) propagates weights
through a causal network. A statistical system such
as that of de Dombal et al. (1972) begins with knowl-
edge derived from a data base, but the simplistic inde-
pendence assumptions made in combining evidence
(although effective in discrimination) ensure that
the certainty propagated is not expected to be inter-
pretable as a probability—the same holds for the
Bayesian updating technique in PROSPECTOR
(Duda, Hart, and Nilsson, 1976). Fuzzy reasoning
(Adlassnig, 1980; Fieschi et al., 1983) has also been
used as a means of capturing the ill-defined nature
of many clinical terms.

We can identify a number of considerations that
have led to the procedures that have been adopted and
that are currently being researched. The strongest has
been the claim that a single probability of a hypothe-
sis, even if it were based on extensive data, is not
sufficient to convince a clinician: the evidence on
which to base a con¢lusion must be retrievable, to
enable conflicts and doubtful contributions to be iden-
tified. A particular case of this demand for justification
is the situation where little relevant data is available
and there is essentially ignorance concerning the pos-
sibility of a hypothesis. This arises particularly in
medicine due to the hierarchical, taxonomic structure
of disease descriptions in which evidence may be avail-
able which supports a general disease category but

‘gives no indication of the relative plausibility of the
subcategories of disease. Thus, the hierarchical hy-
pothesis structure is viewed as a natural justification
for ranges of uncertainty, for which a number of
schemes exist (see, for example, Quinlan, 1983), al-
though as we shall emphasize later it is not generally
made clear whether such ranges are due to inadequate
knowledge or inadequate data. The demand that in-
dividual contributions of pieces of evidence should be
identified, and that evidence should be able to focus
on groups of diseases without distinguishing within
that group, has led naturally to the study of the
possible role of belief functions in medicine (Gordon

and Shortliffe, 1984). Much attention is now being
paid to solving the accompanying computational prob-
lems and making some allowance for dependencies
between sources of evidence. The concept of discount-
ing in belief functions could also be seen as a means
of allowing for doubt about the precise numbers to be
placed on evidential statements.

To summarize: current interest is focussed on
schemes that can propagate measures of uncertainty
through complex relationships often defined on a
hierarchical structure, that can identify conflicting
evidence and lack of evidence, and can cope with
incoming data that do not follow a predefined order.
The reasoning process should be justifiable and fairly
intuitive, and allowance for imprecise specification of
numerical relationships would be an advantage.

Although the above desiderata appear admirable, we
feel there is an important item that has been largely
ignored in practice. This concerns the operational
meaning of the quantities which express uncertainty
and which allows a reasonable basis for both assess-
ment of inputs and criticism of outputs of a system.
In the following examples we describe attempts to
retain meaning while responding to demands and con-
straints made by the real practical problems of inter-
est. Refer to Pearl (1986a, b) for further discussion on
how probabilistic reasoning can be adapted to meet
the demands of expert systems.

3. EXAMPLES OF PROBABILISTIC ANALYSIS

GLADYS—the GLAsgow DYSpepsia System

GLADYS is a program designed to interview
patients presenting to a clinic with dyspepsia, and
provide a reasoned probabilistic diagnosis based on
the symptoms alone. It was developed at the Diagnos-
tic Methodology Research Unit at Glasgow, and runs
on a microcomputer with a special keyboard to record
patient responses. The control of the interview is
strictly algorithmic, in that branches to more detailed
interrogation are taken depending on the results to
trigger questions. The interview has been found to be
accurate and acceptable (Lucas et al.,, 1976). The
responses are analyzed according to a scoring system
derived from a modified logistic regression technique,
described in detail in Spiegelhalter and Knill-Jones
(1984), of which certain aspects are relevant to the
issues raised in the previous section.

Firstly, there is a real need to deal with hierarchical
disease structures, in which for example, certain fea-
tures may discriminate the generic class peptic ulcer
(PU) from other diseases, although other items of
information are relevant to discriminating duodenal
from gastric ulcer (GU) within the peptic ulcer class.
This is accomplished by calculating probabilities
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conditional on the branch in the hierarchy and then
multiplying downward to obtain the overall probabil-
ity: for example, we calculate p(GU | PU) and p(PU)
from which p(GU) = p(GU | PU)p(PU).

Secondly, the scoring system allows explanation of

the final probability in terms of the contributing
pieces of evidence. For example, a patient described
in Spiegelhalter and Knill-Jones (1984) provided
the following evidence relevant to a diagnosis of
gallstones:

vaidence FOR gallstones

Evidence AGAINST gallstones

History less than 6 months 77
Pain comes in “attacks” 177
Can enumerate attacks 63
Attacks produce restlessness 31
Pain in right hypochondrium 77
Total 425

Balance of evidence

Initial score

Final score

Pain not severe enough to warrant —43

emergency call to doctor
Pain does not radiate -38
-81

+344 (Total evidence = 425 + 81 = 506;
conflict ratio = 506/344 = 1.5)

—300 (Corresponding to prevalence of 4.7%)
44 = 61% chance of gallstones )

Some explanation of the above “explanation” is
necessary. The scores given to findings are
100 log.(likelihood ratios) adjusted, roughly speaking,
for correlations between items of information. Thus,
the initial score of S = —300 is transformed to a prior
probability p = 1/{1 + exp(—S/100)} = .047, which is
simply the inverse of S = 100 log.{p/(1 — p)}. The
“conflict ratio” (= total evidence/|balance of evi-
dence | ) is a rough measure of how much the total
evidence obtained contradicts itself: a high ratio, say
above around 2.5, suggests the clinician should check
some of the important questions. The initial score is
based on a prevalence in an urban clinic and could be
altered depending on circumstances. The scores come
from analysis of a data base of 1200 cases and the
statistical modelling means the final probabilities are
reasonably well calibrated, in that of patients present-
ing as above, around 60% should turn out to have
gallstones as a major cause of their symptoms. This is
a very popular characteristic of the system. There is,
however, no reason why the scores should not be
subjectively assessed provided one monitors whether
the predictions have similar properties of calibration.
Thirdly, imprecision of the quantification could be
_incorporated by placing standard errors on the predic-
tions. The above example has a standard error of 42
on the final score corresponding to a rough 95% inter-
val of (.40, .78) on the predictive probability. Finally,
ignorance may be viewed retrospectively in terms of
the total evidence received either for or against a
proposition. However, as suggested in Spiegelhalter
and Knill-Jones (1984), we may also quantify pro-
spective ignorance in terms of the results that may
occur when the data of which we are currently igno-
rant becomes available. This concept translates into
calculating the predictive distribution of the possible
final probabilities that may be ascribed to a disease.

Tukey (1984) recommended that such distributions
should be included as part of the explanation facilities.
Thus before an interview, a patient has a fairly precise
probability of gallstones (95% interval .03, .07), but
one based on an ignorance reflected in the wide dis-
tribution of feasible probabilities that could be taken
on when data become available; whereas at the end of
the interview, there is a relatively imprecise probabil-
ity with a 95% interval of (.40, .78), but no remaining
ignorance within the bounded context of the system.

We would not normally consider GLADYS as an
expert system since it does not use knowledge repre-
sentation techniques derived from Al, it is not based
on expert opinion and it does not operate interactively.
However, many of our aims match those of classic
expert systems, except that we are determined to
remain, as far as possible, within a probabilistic
framework.

A Diagnostic System for Chest Diseases

A group at the Chest Clinic at Westminster Hos-
pital are developing a system for probabilistic diag-
nosis of patients presenting with a normal chest
x-ray. The system uses simple independent Bayes
updating assuming mutually exclusive disease cate-
gories, and our only concern here is with the subjective
probability assessments on which the system is ini-
tially based. The consultant physician has been re-
quired to assess prior probabilities for each of the
diseases conditional on the age group of the patient
and the main presenting symptoms, as well as the
probabilities of the secondary symptoms conditional
on each of the diseases. Around each probability he
was required to place an interval reflecting his confi-
dence in the point probability. By viewing this range
as an approximate 90% interval around a binomial
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probability one can derive a rough implicit sample size
on which his judgment of each probability has been
based. These measures of imprecision are currently
not propagated through the consultation, although
Rauch (1984) suggests ad hoc methods of doing this
while allowing for correlated judgments. However, the
implicit sample sizes allow the probabilities to be
stored as a fraction r/n, and where a confirmed case
with the relevant symptom is found the probability
may be updated to (r + 1)/(n + 1). This emphasises
that probabilistic systems may be based on subjective
opinion, and yet a rational means of allowing that
opinion to learn from experience is easily available.

IMMEDIATE—A System for General Practice

In contrast to GLADYS, IMMEDIATE is a rule-
based Al system written in PROLOG which is being
developed by a group centered at the Medical Com-
putation Unit at the University of Manchester. It
is designed to support certain activities of general
practitioners and its control philosophy is described
elsewhere (Dodson and Rector, 1985).

Two aspects of its development are of interest here.
Firstly, although the knowledge structure and uncer-
tainty propagation bears some resemblance to that of
PROSPECTOR, a deliberate aim is that the probabil-
ities should be made to cohere: thus initial probability
judgments should form a valid joint distribution, and,
as data arrives, uncertainty be propagated in a way
that retains its interpretation as subjective probabil-
ity. Secondly, part of the control mechanism is based
on a range of ignorance or evidence availability that
is an explicit calculation of the maximum and mini-
mum probabilities -of a proposition that could be
achieved when further information becomes available.

This may be seen as a summary measure of the pre- -

dictive distributions of final probabilities described
under GLADYS. Explicitly calculating the range of
potential probabilities of a proposition helps toward

an assessment of the importance of establishing rele-

vant patient characteristics, which in turn ensures
that the clinician is informed as to the most telling
» questions to ask. ’

4. DISCUSSION

The preceding section is an inadequate glimpse of
some work currently being carried out in probabilistic
systems, and we have only been able to mention
aspects according to their capacity to illustrate the
practical implementation of important issues in the
handling of uncertainty. In this section, we attempt
to summarize these issues with the aid of examples
drawn from the systems introduced above.

Status of Propositions

It is clearly preferable that all propositions in a
system are crisply defined and, at least theoretically,
verifiable at some point in the future, as required by
Smith (1961) or de Finetti (1974). Nevertheless, the
inevitable imprecision of statements (e.g., “the pain is
relieved by food”) makes it tempting to allow degrees
of truth of propositions and adapt a fuzzy calculus. It
should, however, be emphasized that it is not the true
state of the world to which the system has access, but
the assertion of the state of the world (The patient
has replied YES to the question “Is the pain relieved
by food?”), and this is necessarily made crisp by the
restricted means one has to put information into the
system (e.g., just a YES/NO button). An expert
system can therefore force the user to be categorical
in his assertions, although we acknowledge that user
demand for qualifications of degree may create the
need for an alternate calculus to deal with partly true
propositions.

A statistician may tend to view a knowledge base as
a set of related nodes, each corresponding to a random
variable which may take on a number of mutually
exclusive and exhaustive values. The rules attempt to
define a distribution on the variables. For control
purposes, however, it may be necessary to have action
nodes which correspond to conclusions on which fur-
ther analysis is conditioned. These may well not be
strictly verifiable propositions; for example, in a sys-
tem designed for statistical analysis, there may be
assertions of normal errors or linear relationship.
Strictly speaking a decision-theoretic argument
should be used for any interim decision made in the
control of a consultation, but this is not usually prac-
ticable. As suggested in the “Introduction,” the justi-
fication for probability is not so clear in these cases,
instead it could be reasonable to adopt a calculus of
compatibility or degree of support for a hypothesis or
conclusion for which a probability is not well defined.

Knowledge Representation and Explahation

We feel that probabilistic methods can handle hi-
erarchical taxonomic structures without extending
into belief function methodology (Pearl, 1986b). There
is, however, a great need for further work in coherent
assessment and propagation of probabilities through
the network structures arising from rule-based sys-
tems. The graphical representations of certain log
linear models described by, for example, Wermuth
and Lauritzen (1983) are crucial, with propagation
schemes extended from those of Kim and Pearl (1983);
Spiegelhalter (1986b) describes efficient propaga-
tion schemes allowing for imprecise probabilities
and automatic tuning of the subjective assessments.
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Subjective judgments may be deliberately overspecified
to allow for identification of incoherence due to poor

assessments or weak modelling, or underspecified and

padded out using, for example, the maximum entropy
methods of Cheeseman (1983). By using such a struc-
ture and explanation facilities similar to GLADYS,
one should be able to fulfill the aim, described by
Dempster (1985), of justifying quantified judgment
explicitly in terms of the sources of evidence.

Intervals and Probabilities

As we emphasised in discussing GLADYS, two types
of range of probability must be distinguished. The
first, due to inadequacies in the knowledge base, con-
cerns the imprecision in the quantifications. This may
be represented by a standard error or even a fuzzy
qualifier, but in either case the range represents a type
of automatic sensitivity analysis conditional on the
data already obtained. This interval will generally
tend to widen as more data come in.

This should be contrasted with an interval based on
ignorance concering the current case, and one way in
which this can be defined is in terms of the probabil-
ities that could be taken on when the unknown data,
denoted X, becomes available. If D represents a dis-
ease with current probability p(D), then the predictive
distribution of the eventual probability p(D | X) may
either be fully calculated as in GLADYS or summa-
rized by its range as in IMMEDIATE. We note that
by conditional expectation, E{p(D|X)} = p(D).
Hence our current probability may simply be thought
of as the mean of the distribution of possible final
probabilities. This distribution narrows as the consul-
tation proceeds.

In this way ignorance is explicitly defined in terms
of the X that we do not yet know. In real life, X is
unbounded and so such a calculation is unreasonable,
but it is important to note that an expert system is
bounded and so can always explicitly state what infor-
mation is missing, provided a suitably efficient search
routine is available.

Operational Meaning

Our practical experience has strongly influenced us
toward establishing operational meaning to our
expression of uncertainty. This has three stages:
firstly, the inputs, based on either real or imaginary
past data, must have sufficient interpretation to allow
informed argument. Clinicians often disagree strongly
about subjective probabilities, but we have found the
resulting discussions illuminating and constructive.
The problems of agreeing on numbers with no verifi-
able interpretation is vividly illustrated in the fasci-
nating transcript of an argument concerning certainty

factors contained in the book on the MYCIN projects
(Buchanan and Shortliffe, 1984). Secondly, preserving
operational meaning in the propagation of uncertainty
requires attention to the coherence of the assessments
when placed in a large, complex knowledge base. Fi-
nally, the outputs need to have an externally verifiable
interpretation in terms of their calibration against
experience. Such calibration is not part of the axioms
of subjective probability, but we have found an enthu-
siastic response from clinical colleagues when they
find the predictions provide reasonable betting odds.
Of course, a system may process information solely
with the aim of providing a, possibly ranked, set of
alternatives with some attached measure of evidential
support. However, if a system is to be used to guide
the choice of an option, or its outputs are to be used
as inputs to another system, this seems to be inade-
quate. In fact, a subjectivist statistician may view a
diagnostic expert system as a coherence machine,
which takes in relevant information, and throws out
acceptable betting odds on future events.

Finally, perhaps the most important reason for in-
terpretable quantification is the need for learning. As
we have illustrated with the chest disease system,
updating of subjective probabilities is feasible and
should provide a convergence of opinion that may
overcome local biases which may otherwise render a
system unacceptable.
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Comment

Stephen R. Watson

1. COMMENTS ON SHAFER’S PAPER

One of the things that makes Shafer’s theory inter-
esting is that it can be seen as an alternative to the
traditional probability theory. Is this really so, how-
ever? Firstly, note that one of the strengths of subjec-
tive probability theory is the clear cut nature of the
axiomatic support for the theory. Indeed, as Lindley’s
contribution shows, it is possible to claim that prob-
ability theory is the only theory one could possibly use

,to represent uncertainty. Shafer’s.theory does not as
yet have such a clear cut support. For example, al-
though Shafer recognizes the importance of canonical
examples, as yet belief function theory is not provided
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with as strong an axiomatic support as that which is
available for probability theory.

It can be claimed, however, that belief functions are
indeed rooted in probability theory. It is just that the
probability is associated with a power set rather than
a simple set. If this interpretation of belief function
theory is accepted, then indeed there is no problem,
since the philosophical support for probability theory
clearly also will support belief function theory. How-
ever, Shafer seems in some of his writings not to be
very happy with this interpretation of his theory. And
if he rejects this interpretation then the problem of a
philosophical foundation for belief function theory
remains.

The second point I make here concerns concepts of
independence. Shafer touches on this point in his
paper, but it is worth saying again that concepts of
independence in belief function theory are not yet
clear. In the application of Dempster’s rule to deter-
mine the support for a hypothesis on the basis of two
pieces of evidence, there is a rather vague notion that
the two pieces of evidence should be independent in



