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Comment

R. J. Bhansali

I would like to congratulate Ted Hannan on a
masterly survey of the current state of the art for
fitting multivariate autoregressive moving average
models, ARMA(p, q). Hannan is quite correct in em-
phasizing that there may not be a true (p, q) and thus
a fitted ARMA model is at best thought of as an
approximation to the generating structure of the ob-
served time series. The question then arises: what are
the properties of the order selected by minimizing AIC
when viewed in this light rather than as an estimator
of an underlying “true” order? The work of Shibata
(1980) would suggest that the order selected by AIC is
such that the one-step mean square error of prediction
is minimized within the class of all order selection
procedures. However, the more-than-one-step mean
square error of prediction may not be minimized (see
also Whittle, 1963b, page 36). Indeed, for autoregres-
sive model fitting, Findley (1983) has advocated that
a different order should be selected for each forecast
lead, and he has suggested that a criterion introduced
by Shibata (1980, page 163) may be used for this
purpose. However, a justification for introducing this
criterion has not been given. A related but different
criterion is suggested by the work of Hannan and
Rissanen (1982).

As has already been noted by Franke (1985a) and
Chen (1985), at the second stage of the Hannan-

.Rissanen procedure for ARMA' model selection,
“autoregressive” estimates of the coefficients b(u),
say, in the moving average representation of a
univariate stationary nondeterministic process {x.}
are obtained as

bu(u) = éw)/én(0), u=0,1, ...,
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where

h
enw) = ¥ an())RM(u + j)

Jj=0
provides the corresponding estimator of the cross-
covariance c(u) say, between x.., and the linear inno-
vations & the d@,(j) are the hth order “Yule-Walker”
estimates of the autoregressive coefficients;

T-u
R(T)(u) = T_l 2 XeXtvu, U= 0, 1, ey,
t=1

is a “positive definite” estimator of the covariance
function of {x}; and x;, ---, xr denotes an observed
realization of length T of {x}.

Now, if the complete past {x;, ¢ < 0}, say of {x;} is
known, the s step mean square error of prediction is
given by

s—1
V(S)= 62 2 b2(])9 s = 1’ 29 M)
j=0
where ¢% = ¢(0) is the variance of ¢;.

Bhansali (1978) and Lewis and Reinsel (1985) con-
sider the effect on the mean square error of prediction
of estimating the prediction constants by fitting an
autoregressive model of order h, when h is a function
of T and tends to infinity simultaneously with it. It is
clear from their work that if o,(h'/?/T"/?) terms are
ignored and certain additional regularity conditiors
are satisfied, the resulting mean square error of
prediction may be approximated by

L(s) = V(s)(l + g—,)

On adopting an argument similar to that used by
Akaike (1970) for deriving his FPE criterion, which
as discussed by Bhansali (1986) is closely related to
the argument used for deriving AIC, one may consider
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selecting a different h for each s by minimizing L(s).
An estimator of V(s) is given by

s—1
Vi(s) = 20 ()b ).

P
However, as in the case s = 1, V,(s) for any s > 1
provides a biased estimator of V(s). Indeed, under
regularity conditions similar to, but slightly stronger
than, those specified in Theorem 4.2 of Bhansali
(1986), an asymptotically unbiased estimator of V(s),
to terms of order h/T, is given by

T
We may, therefore, estimate L(s) by

-1
Li(s) = Vh(s)<1 + %)(1 - %) :
and for each s, choose h so that L(s) is minimized.
Observe that for s = 1, Lx(s) reduces to the FPE
criterion of Akaike (1970).

We note that in the context of fitting ARMA models
nonparametrically, i.e. without requiring that there is
a “true” order (po, qo), the question of how to estimate
V(s) is closely connected with the discussion in Sec-
tion 3. My question to Hannan is: what, if any, are
the statistical properties of the procedure due to
Adamyan, Arov and Krein (1971), which has been
described after equation (3.4). Of course, as discussed
by Franke (1985b), in the Hannan-Rissanen proce-
dure, an approximation to the transfer function

Vils) = V,,(s)<1 - i)_.

Comment

David R. Brillinger

Throughout his whole career Ted Hannan has in-
variably put a finger on directions in which the field
of time series later moved. We can anticipate that
being the case with this present paper as well. State
space . representations and corresponding ARMA
models seem destined to be in the forefront of time
series research for many future years in much the
same way that linear regression is so pervasive in
traditional statistics research.

On a surprising number of occasions, techniques
developed to handle time series problems have gone

David R. Brillinger is Professor of Statistics, Depart-
ment of Statistics, University of California, Berkeley,
California 94720.

B(w), say of the b(u), is constructed by solving the
“Box-Jenkins” equations. This approximation is re-
alizable if, e.g., f(w) is known, and it is optimal from
the point of view of entropy maximization. When
should the approximation to B(w) proposed by
Adamyan, Arov and Krein be preferred to this ap-
proximation? Note that for n = 1, an “autoregressive”
estimator of the function g(w) = B(w)B~'(w) is given
by gn(w) = Ap(w){Ar(w)} !, where A,(w) is the transfer
function of the a,(j).
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on to become central to statistics generally, so all
statisticians may gain from paying some attention to
the problems studied here. As examples of techniques
going on to broader use, one may mention the work
by Parzen and Rosenblatt on spectral density esti-
mation that led to later work on probability density
estimation and the work by Akaike on dimension
estimation for autoregressive processes that led to
techniques for dimension estimation in general para-
metric problems.

One thing this paper does is to make apparent the
debt time series researchers owe to engineers. The
engineers recognized basic problems and often devel-
oped effective solutions. Engineering contributions
abound in the book by Kailath (1980). A particularly
important one is the work by Schweppe (1965) and



