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Rational Transfer Function Approximation

E. J. Hannan

Abstract. The problem considered is that of approximation to the structure
of the stationary process generating a vector time series by a rational
transfer function, i.e. ARMA, system. The structure of such systems and
their coordinatization are discussed together with some deterministic ap-
proximation theory. Criteria on the basis of which to choose an approximant
are considered. Theorems supporting such criteria and describing the prop-
erties of approximants are given. Finally some algorithms are described
including algorithms for real time calculation of the estimates.
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1. INTRODUCTION

The classical paradigm of statistics assumes that

the data is generated by a stochastic process that is
known save for a finite number of parameters. Around
this has been built a body of theory and practice of
august proportions. The paradigm has not, of course,
been held sacred as the development of nonparametric
methods shows. Also, in the theory of robust estima-
tion, only part of the specification may involve a finite
parametrization. In a large part of time series analysis,
the classical paradigm has been seen to be inadequate.
Here the amount of data increases as time passes and
it is apparent that as more data accrues a more com-
plex model will be fitted. Thus, here it is evident that
the model set does not contain the truth but serves
only to provide some approximation to that. Such an
attitude is very obvious in the theory of spectral
estimation (Brillinger, 1984, pages 1143-1153). In this
paper, however, rational transfer function approxi-
mation is considered. We go on to explain this.
, Statisticians will be familiar with the autoregres-
sive-moving average (ARMA) model for a vector time-
series y(t) of n components observed at t =1, 2, - - -,
T, namely

% AG(E - j) = 2 B(j)e(t — j),
A(0) = B(0) = I,
(1.2) Ele(0)e(t)’} = 6.3, T>0.

(1.1)
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If n = 1 we shall use lower case letters, a(j), 8(j), o>
When ¢ = 0, (1.1) is called an autoregression, and
when p = 0, a moving average. Each is a natural simple
model although the autoregressions have proved far
more important in practice both because they are
simpler to estimate, computationally, and are more
realistic. (For a moving average observations g + 1
time points apart are uncorrelated.) Computational
problems are no longer so important and since the
influential book, Box and Jenkins (1970), (1.1) has
been widely used in statistics, at least for n = 1. The
model (1.1) is the prototype rational transfer function.
Below we explain the use of the term rational transfer
function. Before doing that we emphasize that here
the stationary case alone is dealt with and the mean of
y(t) is taken as zero. It is not difficult to extend the
discussion to the ARMAX case where z(t), an exoge-
nous influence (hence the added X on ARMA), is

_included in a model, which is now of the form

)
1) °

OM\:

DG = ) + X B(ett = )

In other parlance, y(t) is said to be the output (endog-
enous corresponds to the exogenous usage) and z(t)
the (observed) input. Of course &(t) is an unobserved
input. If only a constant mean is to be modeled then
r =0, D(0) = », a column vector and 2(¢) = 1, so that
v =3 A(j)u with E{y(t)} = p.

Since y(t) is stationary if it is generated by (1.1), we
may always choose A(j), B(j) so that the generating
functions or “transfer functions” a(z) = ¥ A(j)2/,
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b(z) = ¥ B(j)z’ satisfy
det a(z) # 0,
det b(z) # 0,

Then also the &(t) in (1.1) are the innovations, i.e.,
e(t) = y(t) — y(t|t — 1) where y(¢t|t — 1) is the best
linear predictor of y(t) from y(s), s < ¢t — 1. Here and
below “best” is interpreted in the least squares sense.
Of course, ¢(t), y(t|t — 1) are theoretical quantities
and cannot be observed. These statements, surround-
ing (1.3), are not trivially established but cannot be
proved here. One reference for them, and later asser-
tions, is Hannan (1970).

Let us use z also as the backward shift, zy(t) =
y(t — 1), ze(t) = e(t — 1). Then (1.1) may be rewritten
as a(z)y(t) = b(z)e(t) or, equivalently, y(t) = k(2)«(t),
k(z) = a(z)"'b(z). The first part of (1.3), needless
to say, justifies the inversion of a(z) in this formula.
Thus

< .
=1,
lz] =1

(1.3)
|z] < 1.

) = 3 K(elt = ),
(1.4) 0

k() = 2 K(j)z, K(©) = I

Now k(z) is said to be the transfer function from &(t)
to y(t). If (1.1), (1.3) hold the K(j) decrease to zero at
a geometric rate but we shall use (1.4) as a more general
model, with ¢(t) still satisfying (1.2), subject to

(1.5) % I K()I1* < eo.

It will be convenient to use the norm || A || to be the
largest singular value of the matrix A. Then if £(t) is
the innovation sequencé for y(t) again

k(2) is analytic for | 2| < 1,
det k(Z) # 0,

The first part of (1.3), (1.6) arises of course from
the need to represent y(t) in terms of ¢(t), s < t. Since
e(t) = y(t) — y(t| t — 1) it must be linearly represent-
able in terms of y(s), s < t, hence the last part of (1.3),
(1.6). (That the condition holds only for |z| < 1
in (1,3), (1.6) is subtler but is forced on us in any
case by the simple model y(t) = e(t) — e(t — 1), b(z) =
(1 = 2)I,.) If (1.4), (1.5) and (1.6) hold and k = a™'b
with a, b matrices of polynomials then also (1.1) holds.

Models such as (1.1) may then be thought of as
approximations to (1.4), (1.5) and (1.6). The parame-
terization (i.e., coordinatisation) of (1.1) will be dis-
cussed in Section 2. Of course integer parameters, e.g.
D, q, arise that specify the number of continuously
varying parameters. Once such integer parameters
arise then maximum likelihood needs modification
since without that the method will uncritically choose

lz] < 1.

D, q, as large as is permitted. This question is discussed
in Section 4. In Section 3 deterministic (i.e., nonsta-
tistical) approximations to k(z) will be discussed.
These can be important when k(z) can be known (e.g.,
where ¢(t) can be experimentally formed). However,
the underlying ideas also relate to some statistical
technique discussed in Section 6, where algorithms
are considered. Section 5 attempts to give some as-
sessment of criteria introduced in Section 4. Statistical
problems now become difficult, and the work is unfin-
ished, because as T'— ® the number of fitted param-
eters will also increase.

2. LINEAR SYSTEMS

Consider a sequence, y(t), generated by a stationary
process. Phenomena that appear stationary abound in
natural science and even in the social sciences, where
there is still evolution, the stationary case is often a
basis to which the evolutionary case is reduced, for
example by trend removal. One natural description of
the structure of such a process is through the auto-
covariance sequence

T'(j) = E{yt)y(t +j)'}.

Leaving aside some technical details any finite var-
iance, stationary process, y(t), may be represented as
the sum of a purely deterministic component (per-
fectly predictable from its own past) and a component
of the form (1.2), (1.4), (1.5) and (1.6). The purely
deterministic component would be, essentially, com-
posed of sinusoids at different frequencies (i.e. would
be an almost periodic function). It could be modeled
and included in the ARMAX extension (1.1) so that
2(t) would include components cos. A;t, sin \;t and
again r = 0. We consider only the purely nondeter-
ministic case. Then from (1.4), (1.2)

NG) = 3 K@K+ ),

as is easily checked. Thus if f (w) is the matrix function
with Fourier coefficient matrices I'(j) then

1 & N —ijo _1_ iw iwyk
1) @ ~ 5= T T(e = o= kle™)Phe™)",

—00

T <w=T.

Here the * indicates transposition combined with con-
jugation. Again this is easily obtained. This spectral
density matrix, f (w), has a direct physical meaning in
terms of a decomposition of y(t) into sinusoidal com-
ponents of oscillatory frequency w/2w cycles per time
unit. It is much easier to interpret than the I'(j).
However, we cannot deal with that here save to say
that one reason for rational transfer function approx-
imation procedures may be to approximate to f(w) by
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means of the components in the last term in (2.1).
The representation (2.1) is unique subject to (1.6), and
I > 0 (see (1.2)). Also f(w), and hence k, ¥, can be
uniquely determined from a complete realization,
given that y(t) is ergodic (which is a costless assump-
tion in our circumstances) since f(w) is uniquely
determined by the I'(j) and
T—j

CG)=1" ? ¥yt +j) — IT(j), as.

However, we do not have a complete realization, hence
the statistical problem.

We need now to give a systematic description of
all rational k(z) satisfying (1.3). Because of (1.5) now
k(2) is analytic for | z| < 1 but to avoid technicalities
we shall, henceforth, also assume that det{k(z)} # 0,
|zl =1.

In case n = 1 one way to proceed is as follows. Put
d = max(p, q), where p, g are the true degrees, i.e.
a(p), B(qg) # 0 and a(z), b(z) are prime, i.e. have no
common zeros. Then list all k(z) that are rational,
first by the integer d and then, d being given, by the
2d parameters, o(j), 8(j),j =1, ---, d. Of course if
p # q then some of these 2d are constrained to be zero.
In any case, in this way, all possible rational transfer
function systems are listed exactly once, for n = 1.
For d given, and requiring a(z), b(z) # 0, |z]| = 1,
then the 2d parameters prescribe an open set in 2d-
dimensional Euclidean space and thus provide a
coordinatisation.

The problem becomes much less trivial when n > 1.
It appears at first that n integers, d;, will be needed
but that is not entirely true as we shall explain. Why,
it may be asked, cannot we merely follow the example
for n = 1? First, of course, it will be necessary to
exclude common factors in a(z), b(z) since to list a(z),
b(z) and u(z)a(z), u(z)b(z) will mean that the same
k(z) will be listed twice. We say that a(z), b(z) are left
coprime if a(z) = u(z)a,(2), b(z) = u(z)b,(z), all matrices
being composed of polynomials, means that u(z) is

unimodular, i.e. det u(z) = constant # 0. These uni- »

modular matrices are precisely the matrices of poly-
nomials for which u(z2)™! is also a matrix of polyno-
" mials. Such factors u(z) clearly cannot be “divided
out”. and a normalization has to be used to ensure
that the only possible u(z) is u(z) = I,,. If p, q are
specified we can ensure that u(z) = I, if we require
A(0) = B(0) = I,, and [A(p), B(g)] to be of full rank n
(see Hannan, 1969). Call M(p, q) the set of all such
k(z), i.e., that are rational matrix functions satisfying
k(2) analytic for z <1 and det k# 0, | 2| < 1, having
a left coprime representation k = a™'b with a, b of
degrees p, g with A(0) = B(0) = I, and [A(p), B(q)] of
full rank. Then M(p, q) may be mapped in a one to
one manner into an open set in Euclidean space of
dimension (p + g)n? by the elements of the A(j), B(J).

However, there are still two problems. The M(p, q)
overlap and there are k(z) belonging to no M(p, q).
An obvious example of the first is

=g =0 7

which therefore lies in M(0, 1) and M(1, 0). An ex-
ample of the second, for n = 2, is a(z) = I, + Y2Bz,
b(z) = I, + Bz, k(2) = a(z)"'b(z), where

11
=t 1
Now [%B, B] is clearly of rank unity so that k(z)
is not in M(1, 1), and it can be shown it lies in no
M(p, q) for any value of p, g. We could achieve a
unique representation for a given k(z) by taking (say)
M(p, q) with q as small as possible and then p as small
as possible. We shall discuss M(p, q) again later.

To understand the nature of the problem we con-
sider the, infinite, block “Hankel matrix,” %,

Z =[KGi+j— 1Dij1e,. ..,

where the n X n block in the ith row of blocks and
the jth column of blocks is shown. To see why # is
important consider the following, which will also be
used later. Put y® = (y(t)’, y(t + 1)’, y(t + 2), ---)’,
ye = (y(t)’, y(t — 1), y(t — 2)’, -..)’ with analogous
definitions for ¢, ¢,. Then y“*? represents the future
and ¢, or y,, equivalently, represent the present and
past. (Equivalently because of (1.4) and the definition
of &(t).) Of course ¢, is uncorrelated with ¢“* in the
sense that any pair of elements, one from each vector,
is uncorrelated. Let .Z = [K(i — j)] where i, j = 1,
2, ... and K(j) = 0, j < 0. Then from (1.4) it is
easily seen that

(2.2) y& = Ze, + FetY,

The relation (2.2) is a regression relation (with infinite
dimensional vectors) and exhibits # as the (infinite)
matrix that shows the dependence of the future on the
past.

# may also be used to give a general, basic repre-
sentation for the process. Because of (1.5) each row of
# is square summable, i.e., may be considered as an
element of the vector space, l,, of all square summable
sequences x;, j = 1,2, .-+, ¥ | x;|> < . Let Hy be a
subset of the rows of /# (as elements of l;) that span
all of the rows of #. It may be that H, is finite
dimensional but it would not have to be. If r(u, j)
is the jth row of the uth block of rows, j =1, .-+, n;
u=1,2, ..., then Hy might consist of r(u, j), j.=
1, .-, n—1L,u=1,2, -... (This would be a case
where y,(t|t — 1) is a linear combination of the
yit|t—1),j=1, ..., n — 1. It is not interesting.)
Partition H, as H, = [B, H,] where B is the first block
of n columns. The special form of H, means that H,
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is composed of rows of # so that H, = AH,. Indeed
each row of H; is the same row of the next block of
rows in #. Since H, is a basis for the rows of .# then
H; = AH, follows. Call H, the first n rows of /#. Then
certainly H, = CH,. Put x(t) = Hye,—;. Then x(¢t + 1)
= Be(t) + Hoe,—y, y(t) = Hie,—q + e(t) (see (2.2)). Thus

(2.3) x(t+1)=Ax(t) +Be(t), y(t)=Cx(t)+e(t).

This (prediction error form) state space representa-
tion, which derives directly from (1.4) is simple and
basic. It exhibits x(t) as Markovian (for ¢(¢t) Gaussian,
for example) and y(t) as a linear function of x(t) plus
the innovation. The vector x(t) is called the state
vector and the first equation in (2.3) is called the
state equation.

Now we can consider how to classify the rational
k(2) in terms of (2.3). Consider the case where d,
dimension of Hy and hence of A and x(t) and the rank
of 7, is finite. Then and only then the (matrix) func-
tion k(z) corresponding to # is rational. (For proofs of
such propositions, here and below, the reader may
consult Kailath, 1980.) Then also (I; — Az)x(t) =
Bze(t), so that y(t) = {C(I; — Az)'Bz + I,}e(t) and

(0.4) &) = In+ C2la— A2)7'B, K(j) = CA™'B,
. j=1.

Thus it can be seen that rational transfer function
approximation to stationary (purely nondeterminis-
tic) processes is a process of approximating # by a
matrix of finite rank. We shall always take d as mini-
mal to avoid redundancies.

To make this more concrete we exhibit (2.3) for the
case (1.1). Put

yE+jlt) = X Kelt +j— u).
u=j
This is the (unobservable) best linear predictor of
y(t + j) from y(s), s = t. For j = 1 this is obvious
since, using this definition of y(t + 1|t), we have
y(t+ 1) —y(t +1]|t) =e(t + 1) which agrees with the
definition of y(t + 1| t) previously given. The general
case is covered, for example, in Hannan (1970). Define

x(t+ 1) )
=(t+1]t),yt+2]t), -, yt+m]|t)),

m = max(p, q)

and
[~ o I 0 7]
0 I, 0
25) A= )
0 0 0 R A
| —A(m) —A(m ='1) —A(m = 2) --- —A(1)|

B'= [K(l)’y K(2)’y ] K(m)’]y C= [Iny 0’ 0’ Tty O]

Then y(t), x(t) satisfy (2.3) with these A, B, C. Thus
x(t + 1) is composed of predictions of y(t + j) from
¥(s), s < t. The special feature of the finite rank case
is that all y(t + j | t) are linearly expressible in terms
of only d of the low lag predictions. The proof that
(2.3) can be put in this form is not difficult but is
omitted. It should be emphasized that for (1.1) this
form of (2.3) is not the only possible form.

The representation (2.3) for d < « connects directly
with the Kalman filter, whose development in Kalman
(1960) and Kalman and Bucy (1961) began an era
when most of the work discussed herein was done.
Here we show only the simple case corresponding to
(2.3)! For further details see Anderson and Moore
(1979). The Kalman filter constructs a best estimate,
Z(t + 1| t) let us say, of x(t + 1) from y(s), 1l <s < t.
The recursive formula is as follows:

it + 1|t) = AZ(t|t — 1) + B(t)e(?),
y(t) = Ci(t|t — 1) + e(t),
t+jlt)=At+j—1]t), j>1
£(110) =0,
B(t) = {AP(t)C’ + BEIE(H) 7,
1(t) = {CP(t)C’ + BEB'},
P(t + 1) = AP(HA’ + £ — B(t)E(¢)B(t)’,
P(1) = AP(1)A’ + B}B’.

The first line of (2.6) mimics (2.3) but now every-
thing can be computed, given 4, B, C, ¥. As t — «
then B(t) — B, ¥(t) — X, e(t) — &(t), (in mean square)
and P(t) = E[{x(t|t — 1) — x@)}{at |t — 1) — x(t)}']
— 0.

Returning to (2.3) we observe that the only arbitrary
element was the choice of Hy. This arbitrariness can
be avoided by instituting a rule as to the choice of a
basis for the rows of /#. A simple rule is to choose the
first linearly independent set of rows found as you
examine the rows of # from top to bottom. Any such
basis is always of the form, for d < o,

(2.6)

r(uyj)y u=1""’dj
@.7) ‘ a

(This is because r(d; + 2, j) is a part of r(d; + 1, j)
and so on.) Thus the matrix H,, and a canonical form
for (2.3), is specified by the so-called Kronecker indi-
ces, d;. Their sum is the rank or “order” of #, which
is also called the “McMillan degree.” Let us list the
possible sets {d;, j =1, - - -, n} in dictionary order and
let « stand for a typical index number of that ordering.
Then call V, the set of all /#, i.e. of all k(z), for which
the corresponding {d;} are the Kronecker indices. The
V. are disjoint since the sets of d; are distinct. Also V,
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can be mapped in a one to one manner onto an open
set in Euclidean space, in a manner we shortly de-
scribe. Thus, a complete listing has been prescribed
for all rational k(z). This depends on n integers, d;,
and given these there are continuously varying coor-
dinates. The latter may be found as follows. (The
following is, of necessity, brief.) We may represent
r(d; + 1, j) in terms of earlier rows, by the definition
of d;. Thus there are a;:(u) so that

n  dy
Y ¥ anru + 1, k) =0,

(2.8) it
djj =d;, a;(d) =1
Because of the selection rule for H, we have
dip < dp, j#Ek,
(2.9) di = d;, k=],
dip, < d;, k>j.

Then applying (2.8) to (2.2) we obtain, after some
manipulation,

n d; n d;
2100 ¥ ¥ apwyt—w =3 ¥ Bulwelt—uw),

k=1 u=0 k=1 u=0
app(u) = ap(d; — u), ai(0) = Bi(0),
j’k=1’ ...’n.

Of course (2.9) imposes additional constraints on
(2.10), so that the set of all constraints is

() =0, u<d;— dy,

ar(w) =0, u>d,

@;(0) =1, |

ai(0) = Bix(0), j, k=1, .-, n

The coordinates may be taken as the a;.(u), Bix(u)
subject to these constraints and counting shows the
dimension of the space into which V, is mapped is

(n+1)Yd
+ 2 {min(dj, dk) + min(dj, dk + 1)}

j<k

(2.11)

(2.12)

‘Let M(d) be the union of all V, for Y, d; = d. Thus,
M(d) is just the set of all #, i.e. of all k(z), for # of
rank d, i.e. of McMillan degree d. It may be shown
that M(d) is a smooth surface in high dimensional
space, of the nature of an algebraic variety. However,
for n > 1, M(d) cannot be globally mapped into
Euclidean space, homeomorphically. Call U(d) that
V. C M(d) for which, if d = nr + s, 0 < s < n, then
di=r+1,j=1,.-..,85dj=r,j=s+1,--.,n.Thus
H, is then composed of the first d rows of #. Then,
also, U(d) is open and dense in M(d). All other V, C
M(d) have lower dimension, as can be seen from
(2.12). It is in this sense that only one integer is needed

to list all k(z). The catch is that U(d) is not all of
M(d), for n> 1, and other “neighborhoods” than U(d)
have to be introduced to cover M(d). We describe
U(d) in detail by describing the A(u), B(u) constituted
by the aj(u), Bi(v) in (2.10), i.e. by describing the
canonical ARMA form. We use an asterisk to indicate
a submatrix of freely varying elements. All partitions
are after row s or column s. The following description
follows immediately from (2.11):

A<0)=B<0>=[{j ,0_], A(1)=[: "]
(2.13)

A(r+1) = [o} B(r+1) = [(*)]

All other A(j), B(j),j=0,1, ---, r + 1, are uncon-
strained. Note that though A(0) = B(0) so that
K(0) = I, yet, unless s = 0, A(0) # I,. Of course we
can replace A(j), B(j) by A(0)7'A(j), A(0)"'B(j) so
that A(0) = B(0) = I, in conformity with (1.1), but
that complicates the description, i.e., coordinatization.

One might compare the set of U(d) with the set of
all M(p, q). Each set excludes some k(z) but the set
excluded is slender and is constituted by limit points
of the set considered. There is no double listing with
the U(d) (they are disjoint). As p or g increases by
unity the dimension of M(p, q) increases by n% As d
increases the dimension of U(d) increases by 2n.
There is only one integer d. The advantage is with
U(d) except when n = 1. It may be observed
that U(d) = M(p, p), d = np. Thus for n = 1 then
U(d) =M, d).

Of course one can choose to determine all d; but this
is not computationally easy. The problem will be
discussed in Section 6.

3. APPROXIMATION TO A KNOWN
TRANSFER FUNCTION

If the transfer function is known then there is no
statistical problem so that one might ask why the
problem of approximation is being considered. The
answer is that, in the first place, the resulting theory
may be important in relation to the statistical problem
even if it does not solve that problem. There has also
been some statistical use of this theory, (Jewell,
Bloomfield and Bartmann, 1983) commencing from
an estimate of k(z). Of course the philosophy of the
inference then seems rather doubtful since the prob-
lem of choosing an initial estimate, suitable for the
later approximation procedure, does not seem to have
been faced. There are nonstatistical contexts where
k(2z) might. be known, for example experimental situ-
ations where the K(j) can be observed because &(t)
can be controlled.

To determine a best rational approximation re-
quires that a measure of the closeness of approxima-
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tion be instituted. Since k(z) and /# are in one to one
correspondence a natural measure might be based on
the norm of # as an operator in ;. To avoid complex-
ity let us assume that

(3.1) SiNKG) I <.

Then tr(##’) < © and # has all of the essential
properties of a (finite) matrix and in particular it has
a singular value decomposition

=Y wnik, nfme=E &= b,
0

K20, TP <o, e

Here, of course £, n; are infinite columns of real
numbers. Thus Z¢; = w;n;, #'n; = w;t;. The norm of
# is uo, the greatest singular value. If n = 1, since
then # = #’ also §; = £9;.

Let us take n = 1 and state one result relating to
the use of || # ||, which is spoken of as the “Hankel
norm,” also, for k(z). Adamyan, Arov and Krein (1971)
show how to construct a function ¢(z), assuming

Md < Md-1,
(32) 4@ = 3 ¢2

so that the Hankel matrix #; = [¢;+r-1], which uses
only ¢; for j > 0, satisfies || Z — Z, || = na, #5 is of
rank d and there is no other Hankel matrix of rank d,
or less, attaining this accuracy. The function ¢ is said
to be the symbol of /#,. We shall, for completeness, in
a moment show how to obtain ¢(z). However first one
might ask what has been achieved. It is true that, also,

(3.3) sup | (e®) — k(e®) | = ug

so that if d is large, when py will be small, then ¢ is
-uniformly close to k on the unit circle. However, it is
only the ¢; for positive j that occur in /#;. Of course
the approximation we need to k(z) has to involve only
positive powers of j and this is not true of ¢(z). The
function

Y ;2!
0

is a candidate as an approximation to k and is certainly
~ rational of McMillan degree d, because of our assertion
below (3.2) concerning #;, but a relation (3.3) does
not hold for it.

The function ¢(2) is constructed as follows. Let
£;(R), nj(k) be the kth components of the (infinite)
vectors £j, n;. Put

(u)£w=§&®fﬂhw=§mw&

Then ¢(2) = k(2) — uan(2)/£(z). The result is remark-
able but that alone does not make it useful to us.
Since, for n = 1, ¢; = +9; then n(z) = 2£(z7).

The case n > 1, d < « has been treated by Glover
(1984). Of course if d < «, one might ask, why is one
seeking a rational approximation, since k(z) is already
rational. The answer is that d might be very large (as
with a system composed of a large number of, subsid-
iary, rational transfer function systems in series) and
one may wish to find a low order approximation, for
example for control purposes. Glover bases his treat-
ment on a “balanced realization,” i.e., a special form
of (2.3), for d finite. This is obtained as follows. Put

&= [B,AB,A2B, ..., #=[C"A'C, Aan, .. T

Then it is easily seen, from (2.4), that 7 = #%. Put
P =%%’ Q@ = @'@. Factor Q as @ = R'R (e.g.,
by Choleski factorization) and put RPR’ = VS2V’,
VV' =1, where S is diagonal with positive diagonal
elements. Thus this last is the singular value decom-
position of RPR’. Put T = S™Y2V'R. 1t is easily
checked that if we make the change, in (2.3), x(¢) —
Txt(t), A - TAT, B— TB, C — CT ' then #, k
remain unchanged and P — TPT’, Q@ — (T’)'QT !
and also TPT’ = (T’')7'QT™! = S. Now assume we
have made this change and that we call the new x(t),
A, C, B by their old names, to avoid introducing a new
notation. Then put & = ¢7V/2c;, where ¢/ is the ith row
of # and o; is the ith element of S. (We may assume
o1 = 03 = ---.) Put 5; = ¢7%%u; where u; is the ith
column of @. Then because # = ¢ &,

d
Z =Y omtl, ninj=ElE = b,
1

the last part following from P = @ = S. This is the
singular value decomposition of /#. However, if we
merely omit all terms o;, n;, £/ for i > r, let us say, the
resulting matrix will not be a Hankel matrix, in gen-
eral. One thing to do is to omit all elements, x;(¢), of
x(t) for j > r in the form of (2.3) corresponding to our
A, B, C. This is the same as omitting all corresponding
rows of A, B and all corresponding columns of A, C.
Let %, be the Hankel matrix of the system with this
truncated state vector. It is not that Hankel matrix,
#,, such that | # — #,| = 0,41, but Glover shows
that | #Z — % || < 2(6/41+ 042+ - - - + o) and if k.(2) -
is the transfer function for the truncated C, A, B then

sup || k(e™)-— k(e“) || < 2(041 + Or4a + -+ + da).

Thus now a reasonable kind of approximation has
been found. This approximation is called the trun-
cated, balanced approximation. Glover also shows, in
this case of finite d, how to obtain the optimal Hankel
norm approximation.
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In any case it is not clear that this norm for /# is a
suitable measure of closeness with which to work. Let
us return to (2.2). We assume that the reader is
familiar with the theory of canonical correlation. (See
Anderson, 1958, Chapter 12.) This theory comes nat-
urally to mind since (2.2) is a regression relation
satisfying the classical requirement that the vector of
independent (regressor) variables is orthogonal to the
vector of residuals. The only peculiarity is the fact
that all vectors and matrices are infinite. However
under (3.1), for example, that is of no concern at all
and the definitions can be fully carried over. In can-
onical correlation one finds a linear function, u,, of

y®1 and a corresponding linear function, vo, of & -

(called discriminant functions) so that their correla-
tion is as high as possible. Then another pair is found,
orthogonal to the first pair, so that their correlation
is as high as possible, and so on. In our case this can
be described as follows. We need first to replace y “*?,
e by vectors whose components are uncorrelated.
To do this for e is easy, we just form (I ® $7/%)e,
where $'2 is the unique positive square root of ¥
and I, ® 7% is a matrix that is block diagonal
with 72 constituting all diagonal blocks. For y “*V
we need to be cleverer. However, using the definition
of I'(j) in Section 2,

E(y(t+1)y(t+1)’) = [1‘(] — i)]i_j=1,2,...

where the (i, j)th block is shown. This matrix corre-
sponds to a stationary process with spectrum (see

2.1)
3 r()e = fl-a).
M —

(The change from w to —w is due to the time reversal

coming from the increase in the argument s in y(s) as
you go down the blocks of y “*".) Now, unless n = 1,
f(—w) # f(w) but has all of the essential properties so
that as in (2.1) there is a unique factorization

f—0) = = le®)Ql(e*), 20,
2

1) = 2 AG)Z, AO) = I,

Let # have A(k — j) as the (j, k)th block, A(j) = 0,
Jj < 0. Then

E{ff—l (t+1) (t+1)’ (3—1) } =1.®Q.

Indeed this is equivalent to saying that y(¢)
> A(j)ét + J), E{é(s)é(t)’} = 649, so that y©P =

Z&D Thus (I, ® Q7 2).2 "y ¢+ is the replacement
for y““’ This means that we have a regression rela-
tion in these two new vectors with matrix of regression
coefficients

(35) £=I.0® Q"7 7 (.0 I.

It is well known that one finds the discriminant func-
tion by finding the singular value decompOS1t10n for
Z, namely,

g = % Pjg-ij,, g.l', (k = XJ',Xk = 5]7?’

The discriminant functions are
= x/ (I ® 9 1/2)3-1 (t+1)
and satisfy
E (u,-uk) =

v = ¢/ (L. ® T72e,

E(vjvr) = 8k, E(ujvr) = djrp,
j= 0’ 19 ‘

This canonical correlation reduction must relate
closely to the structure of the process since it so
completely describes the relation between the future
of the process and its present and past. Because of the
special nature of £ (see (3.5)) it is again a Hankel
matrix. If G(j + k — 1) is its typical block then the
G(j) are generated by

g(2) = Q7AUET)R(2)TV?
= fj G(j)z’.

However, note that now we do not have G(j) = 0,
j < 0.In case n = 1 then l(2) = k(2) (since then
f(w) = f(—w)) and @ = ¥ so that g(2) = k(2)/k(z7Y),
which is of modulus 1 on z = e”. In general g(e®) is
unitary.

It is possible for n =1 to use the theory in Adamyan,
Arov and Krein (1971) to construct an approximation
to k(z)/k(z'). (The construction that will now be
described is not used in the rest of this article and
may be omitted.) Of course this function, unlike k(z),
is not analytic for | z| < 1 but that does not affect the
construction since only the Hankel matrix is used.
However, further steps have to be taken. Say #(2) was
constructed as was ¢(z), below (3.4), but commencing
from zk(z)/k(z™}) = = §, let us say. Then g is the symbol
of a Hankel matrix & = &%,

=[KG@+j— 2)ij=12--

which enters into the relation y® = e, + #¢, where
% has K(i — j — 1) as the (i, j)th block, K(j) =0,j <
0 (so that the first row of blocks is null). The canonical
correlations are now those between present and future
and present and past and thus, certainly, one of them
is unity. The introduction of the factor z in g(2) is
connected with the fact that n(z) = z£(z™") (see below
(3.4)). Jonckheere and Helton (1985) now proceed as
follows, making some further assumptions that we do
not detail but which include assuming that all singular
values of £ are of unit multiplicity.
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Commencing from ¢(z) construct a further approx-
imation, ¢o(2) to it taking d = 0. Now ¢¢(2) can have
no coefficients of 2/ for j > 0 since d = 0, i.e. /% is
null. Thus ¢o(2) = $(2) — foie(2)/40(2), where 7o, &
are constructed as in (3.4) but commencing from ¢(z)
and where [, is the largest singular value of the
Hankel matrix with symbol ¢(2). Since | € || = 1, it is
not unreasonable to assume /i is 1 or is very near to
it. But then

p4 = Sup {%‘;—)} — d(e)
HoTlo(€™)

_ e“k(e)| v dioil
i {k(e-"w)} (€)= (™)
Hofio(e™)

- {eiwk(eiw)} B
PITRE™) |~ &
since ¢, does not contribute to the Hankel matrix and,
because of (3.3), that is all that determines the accu-

racy of the first approx1mat10n Examining (3.4) we
see that 7o(2)/£0(2) = zk(2)/k(z™") where

E(z) = c. 2 o(R)z*1.

The constant ¢ may be chosen at will. The function
E(z) is rational. Thus, an approximation has been
constructed of the requisite form. The constant ¢
might be chosen, for example, to provide a good
approximation, via k(z), to the spectrum of y(t). How-
ever, the whole procedure has an ad hoc atmosphere
about it. The initial approximation by ¢(z) is unsat-
isfactory so an expedient is used to convert it into
#io/£0. The factorization of this again involves arbitrary
elements, although no doubt ¢ could be chosen on
some objective basis. A number of assumptions are
involved, e.g. o = 1. If k(z) was, in the first place, an
estimate what real justification is there for the final
result?

The whole procedure is susceptible to generalization
to the case n > 1, at least when # has finite, albeit
high, rank, d. We could, for example, use balanced
truncation to find a first approximation to 2g(z), where
g(2) was defined above, and then obtain a further

" unitary approximation to that, which finally will have
to be factored to give approximations to k(z), I(z). The
procedure then is more complex and the ad hoc nature
appears to be even more pronounced.

The ideas are clearly deep and important. As indi-
cated earlier they relate to basic characteristics of the
systems. For example it can be shown that when k(z)
is rational then the number of unit singular values,
i.e. the number of unit canonical correlations between
the future and the present and past, is the number of
zeros of det k(z) on | z| = 1 counting these with their
multiplicities (Hannan and Poskitt, 1986). Of course

such zeros have been excluded, by fiat, by us and this
result partly validates that decision because it is not
to be expected that any (linear) function of the future
will be exactly predictable from the present and past.

The statistical significance of the results of this
section are, however, not yet apparent and we turn
therefore to a direct statistical consideration of the
approximation problem. This requires also a criterion
on the basis of which to choose an approximant.

4. APPROXIMATION CRITERIA

Akaike (1969) seems to have been the first to rec-
ognize the problem to be faced when the dimension of
the parameter space is allowed to increase indefinitely.
In the reference cited he had in mind an autoregres-
sion but the general principle is the same. Thus an
integer d or a set d = (dy, ds, - - -, d,,), for example, of
integers prescribes the parameter space and the di-
mension »() of the parameter vector depends on d. In
counting parameters we shall exclude the n(n + 1)/2
elements (on and above the main diagonal) that spec-
ify ¥, since they do not involve d. Thus for M(d) we
have v(§) = 2nd, for M(p, q), where d = (p, q),
we have »(0) = (p + ¢)n? and for V, we have »(9)
given by (2.12). Akaike’s procedure is to choose d to
minimize
(4.1) AIC(d) = log det 4 + 2»(9)/T.

Here £, is the maximum likelihood estimate of X, on
the basis of a Gaussian likelihood. It is necessary to
restrict (4.1) so that very large values of d will not be
examined since that can lead to bad results but these
restrictions do not seem to be prescribed in practice
and the chosen d seems always to be reasonably small.
The criterion (4.1) can be thought of as arising as
follows (Findley, 1985). Let Er(6) = E(Lr(8)) where
L7(6) is the log likelihood and expectation is with
respect to the true probability law. Then E;(6) is
maximized at 6,, the true probability structure. Thus,
given maximum likelihood estimators, 4, ¢3, based
on d1fferent model sets one might prefer ¢ to 6 if
Er(¢) > E (). These last are not known but, as
Findley shows, Lr(¢) — Ly(f) — »(0) + u(¢) is an
asymptotically unbiased estimate of Er(¢) — Er(6)
so that, under Gaussian ARMA assumptions, (4.1)
gives a valid basis for comparison. The results in
Findley (1985) are derived under. conditions that we
shall not detail here. They do not involve a Gaussian
law for y(t) but do involve that lim;_. Er(8) be
maximized at a point . that is an interior point of
the space over which 6 varies.

Though this basis for the use of AIC has some
appeal it is not entirely convincing. Nevertheless some
results will be quoted in the next section showing
that AIC is optimal for some situations. A different
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approach has been introduced by Rissanen (1978,
1983, 1986). His approach is, initially at least, marked
by a resolute refusal to commit “the fallacy of mis-
placed concreteness,” that is the fallacy of attributing
reality to the model. He considers encoding the data,
using a model to determine the optimal encoding. That
model is then chosen which gives the smallest code
length. The code must be one that can be read by any
decoder armed only with the knowledge of the general
coding principles and of the family of models used but
not with any knowledge of the data. This is Rissanen’s
“minimum description length” principle. It corre-
sponds closely to one of the three definitions of statis-
tics given in Fisher (1944), namely as the science of
“reducing” data.

In Rissanen (1978, 1983) a “nonpredictive” principle
is used. Assume the data to be suitably quantized so
that a chosen number of digits is used in a binary
representation. The model prescribes probabilities
P, o(yr). If the model is true then it is known that an
optimal encoding will have length approximately—
logaP44(yr) bits. To decode, however, also the param-
eter vector, 6, must be available so that this also must
be transmitted. A decision must be made as to how
many digits should be retained for the elements of 6
and a reasonable rule, if 6 were scalar, would be to
determine that by the standard deviation of an optimal
estimate of @ (i.e. the maximum likelihood estimator)
on the basis of P,4(yr). Since only finitely many
values of 0 will be involved for any d, T then these can
be arranged in order according to some preassigned
rule (known to the decoder) and only an integer has to
be transmitted giving the index of 6 in that ordering
(and d). Rissanen chooses to encode the integers on
the basis of a choice.made on a minimax principle
(see Rissanen, 1983). This choice allocates, to the
integer k&, log*k + c¢* binary digits where

log*k = log.k + logalogzk + logzlogalogek + - - -,

the summation being up to the last positive term. Of
course log*k/log:k — 1. The integer ¢* = 2.865 and is
chosen so that

§ 2—(log"k+loggc") - 1
. 1
Let L(d, 0) be the length of the code for 6. Fairly
evidently L(d, §) = Yer(f)log, T because the accuracy
of the best estimate of 8 will be O(T ~/?) so there will
be log2{O(T'*/?)} bits retained for each element of §
and thus about Y2v()log, T in all. In any case

(4.2) —logsPay(yr) + L(d, 6)

is the total code length to be used. In a Gaussian
ARMA context then 27! by (4.2) becomes, to a first
approximation, after optimization with respect to 6

for given d, and after the introduction of a constant
factor due to the change of base of the logarithms,

(4.3) BIC(d) = log det £, + v(0)log T/T,

which is to be compared to (4.1). '

To avoid the complex argument involved in the
encoding of # Rissanen (1986) proceeds as follows,
using what he calls a “predictive minimum description
length principle.” Let f;4(y(t + 1) | t) be the probabil-
ity density for the (finitely many) values of y(¢ + 1)
conditional on y(s), 1 <s < t. Then

t-1

(4.4) —go log2fae(y(j + 1) | J)

gives the code length for the data at time ¢ in an
optimal encoding. Indeed this is just —P,4(y;) rewrit-
ten. Let 6(t) minimize (4.4) for given d and choose d(t)
to minimize

t-1

—.go logafaenf(y(j + 1) | )).

(This is not the same as choosing 6(t), d(t) to minimize
(4.4).) Then there is no need to encode d(t), 6(¢) also
since at time ¢ + 1 the y(s), 1 < s < ¢, will have been
decoded and thus d(t), 6(¢) will be known and y(¢ + 1)
decoded. Thus

T-1

(4.5) "EO logafawy,e(y(t + 1) | t)

is a measure of a total code length for y(1), - - -, ¥(T")
that is a valid encoding, i.e., that can be decoded. We
now use d(T — 1), 6(T — 1) as the final estimates. In
some cases (4.4) could feasibly be calculated. For
example consider the autoregressions (i.e. (1.1) for
q = 0) which we write as

h

2 ®n(f)y(t —Jj) = e(t), ®u(0) =1,
(4.6) .
det{z <I>h(j)z’} #0, |z| <1

Here 6 is composed of the elements of the ®,(j),
j=1, ---, h and v(8) = hn? There is an extensive
literature concerning the calculation of (approxima-
tions to) the maximum likelihood estimators, on Gaus-
sian assumptions. In particular algorithms have been
developed (Friedlander, 1982) that are recursive on T
and h. This is what is needed for (4.5). We shall
further discuss such procedures in Section 6. However
in general (4.5) would be difficult to compute and
Rissanen (1986) considers the “semipredictive” prin-
ciple based on

T-1
4.7) —% logafaew(y(t + 1) | t) + log*d
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where now d is held fixed and 6(t) is optimal for that
fixed d. Now d ha§ also to be transmitted, hence the
term log*d. Then d is chosen to optimize (4.7).

Rissanen (1986) shows that (4.2), (4.5) and (4.7) do
give a minimum description length, at least asymptot-
ically and under certain conditions. The conditions
include the true structure being in the model set and
Gaussian requirements. No doubt both of these can
be relaxed so that, for example, the true structure was
only a, suitably defined, limit point of the model set.

Any theory, leading to criteria such as (4.1), (4.2)
and (4.7) is of an abstract kind and should be treated
with caution. It is doubtful if any principle can encom-
pass all problems of statistical inference. What is
needed is the proof of theorems relating to such cri-
teria that show that they have good properties, plus
experience with their practical use. It should be men-
tioned in this connection that no theorems, of the
nature of those given below (5.6) in the next section,
are so far available for (4.7). We go on to such ques-
tions in the next section.

5. SOME PROPERTIES OF ORDER ESTIMATES

It is necessary to restrict (¢) further if worthwhile
results are to be obtained. The discussion in Section
2 shows that a very wide range of phenomena can be
represented as in (1.4) with (1.5), (1.6) holding and
this would include data generated by highly nonlinear
mechanisms. A natural restriction, considering the
linear aspects of the models, is to require the processes
to be linear in the sense that the best linear predic-
tor is the best predictor. Calling #, the o algebra of
events determined by y(s), s < t, then the best
predictor is E{y(t) | #:-1} so that we require

e(t) = y(t) — y(t1t — 1) = y(t) — E{y(¢) | Fea}
and thus
(5.1) Efe(t) | F1-1} = 0.
Conversely this implies that
y(t|t — 1) = E{y(t) | T}

The &(¢) are then vectors of stationary, ergodic mar-
tingale differences, with finite variances, to which a
wide range of the asymptotic theory for independent
identically distributed random variables carries over.
For some purposes more is needed. Consider n = 1
and E{e(s)e(s — 1)e(t)e(t — 1)}. If s > t this is zero
using (5.1) but for s = ¢ it will involve fourth moments
unless (in general, i.e. for n > 1)

(5.2) Ele(t)e(t)’ | For) = 3-

Then Efe(s)?(s — 1)%} = o*, using (5.2) for n = 1.
Thus when (5.2) holds, all quantities of the

T2 Y e(t)e(t — j), j > 0, will have the same variance
and covariances as if y(t) were Gaussian. As & result
many estimation procedures based on Gaussian like-
lihoods will have the same properties as if y(t) were
Gaussian if (5.1), (5.2) hold. We also need

(5.3) E{ej(t)4} < o, j= 1, ---, n,

although fourth moments do not enter into most
final formulae. The condition (5.2) is to be avoided if
possible. For example consider the model y(t) =
{p + n(t)}y(t — 1) + (¢) where the 5(t) are stationary,
serially independent and generated independently of
the &(t) sequences. This is a time varying param-
eter model. Then y(t) = py(t — 1) + £(¢) where £(¢) =
2(t)y(t — 1) + e(t). Then &(t) satisfies a condition of
the form of (5.1) but not (5.2), as is easily checked.
Thus theorems using only the former will hold for the
classic estimate of p. A condition much weaker than
(5.2) that is then needed is

(5.4) Efe(t)e(t)' | F—w} =

and this does hold for £(¢), above, in the sense that
E{£(t)?| F -} = E{£(t)%}. We shall present some re-
sults for the scalar case for simplicity but completely
analogous results hold in general. We consider a gen-
eralization of AIC, BIC of the form

(5.5) log det £4 + v(6)Cr/T, Cr/T —0, d =D,
which for n = 1 and M(p, q) becomes
log 6,0+ (p+q)C1/T, C1/T—0, p<P, q=Q.

For BIC, C; = log T and for AIC it is 2. Of course
62, 1s the maximum likelihood estimator. It is assumed
that 6, the true structure is in M(po, qo) for pp < P,
go < Q. It is also necessary to assume that it is known
that

(5.6) bo(2) # 0,

i.e., that the zeros of the moving average part are
bounded away from the unit circle. Call p, ¢ the
estimators minimizing (5.5) subject to (5.6). Let (5.1),
(5.3), (5.4), (5.6) hold. Then there are cy, ¢1, 0 < co =
¢, < », so that the following hold.

(a) If lim infr_,.Cr/[2 log log T'} > ¢, then (p, §) —
(po, o) a.s. If (5.2) holds we may take ¢, = 1.

(b) If lim sups_..Cr/{2 log log T'} < co then the almost
sure convergence in (a) does not hold and if (5.2) holds
we may take ¢y = 1.

(¢) If Cr— oo then plim7_.«(P, §) = (Po, o)-

(d) If lim sup Cr < o« then (c) fails and if also (5.2)
holds then

lz| <1+, 6>0,

lim lim P(p > po, § > qo) = 1.

86—0 T—o
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In (d) it must be recalled that p, ¢ are estimated
subject to (5.6) so that the probability in the assertion
depends on 6. This theorem (due to Hannan (1980)
with generalizations in Hannan (1981) and relaxations
of conditions due to An, Chen and Hannan (1982),
Hannan and Kavalieris (1983)) fairly completely cov-
ers the case where the true order is finite. The last
part of (d) depends on the fact that ¢, is the maxi-
mum likelihood estimator and may not hold true if
some approximative procedure is used (e.g., one or two
steps of a Gauss-Newton iteration). This last result is
of little practical value, although of some interest,
since T' may have to be large before it is relevant.

This theorem grossly favors BIC over AIC but cau-
tion must be used in its interpretation. Some price
must be paid for taking Cr larger, namely an increase,
for fixed T, in the chance of underestimation of the
order. In any case the system will not be of finite
order. To discuss this further consider the case where
in (1.4)

SIVEINKG) | < e
Then putting ¢(2) = k(z) ™' = X ®(j)z/, (0) = I,,, we
have

(5.7) ;me—n=mL§PMMmu<w

A standard procedure for estimating (4.6), which pro-
vides a procedure for estimating (5.7), is the solution
of the equations

$,(j)C — k) = dx T,

oM >

(5.8)
k=01, .- h; &,00)=1I,.

These equations can lead to bad biases if T is not
large (Tjgstheim and Paulsen, 1983) and there is an
extensive literature concerning that. A simple way
of eliminating much of that bias is to taper the data,
that is to replace y(t) by a(t/T)y(t),t=1,2, ---, T.
Here a(x) might be chosen to be Y2{1 + cos(27x/p)},

,x € [0, p/2]; a(x) = 1, x € [p/2, Y2]; a(x) = a(l — x),
x > Y. Thus a(x) is unity over all but a proportion p
of its  support and fades to zero at the ends of its
interval of support. Dahlhaus (1984) shows that this
procedure materially reduces the bias. An alternative
is to use a normalized, lattice algorithm. For details
and references concerning these see Friedlander
(1982). We shall briefly discuss these in Section 6. It
is probable that one of these methods of eliminating the
bias in the Toeplitz procedure (5.8) should always be
used. The ®,(j) are good estimates of the ®(j) if h is
large as is shown by the following result. If (5.1), (5.3)

and (5.4) hold then
max || &,(j) — &() |
1<j<h

=mmgWTWﬂ+u+omg§uﬂnu

where ¢ depends only on the true structure. This result
is uniform in h < Hy = O{(T/log T')"/?} and the order
relations hold a.s. If (5.2) holds the o(1) term is also
O{(log T/T)*?} but it will be of that order also under
much weaker conditions. Thus the accuracy is ulti-
mately determined by the size of h and the speed of
decrease of the | (j) |-

Perhaps more importantly under (5.1), (5.2), (5.4)
and a slight strengthening of (5.2) we have

log det £, + hCr/T
1 T

= log det{— > e(t)e(t)'}
TT

+ {1 + 0p(1)}hn*(Cr — 1)/T

+tr{E YT - D).

This kind of relation was first stated in Shibata (1980)
and is stressed further in Hannan and Kavalieris
(1984). Here Ii = Efen(t)en(t)’}, en(t) = X8 ®u(())
- y(t — j) and the &,(j) have been chosen, subject to
®,,(0) = I,,, to make Efen(t) en(t)} as small as possible.
Clearly ¥, is an estimate of ¥,. The relation (5.9) is
crucial as we now explain. It is clear that the as.
accuracy of ¥, as an estimator of ¥, cannot exceed
that given by the law of the iterated logarithm. But
that is O{(log log T/T)"?} which is much bigger than
log T/T. The position is saved by the fact that in (5.9)
the error of order Of(log log T/T)"?} is in the first
term which is independent of h. The result (5.9) shows
that h is essentially determined by h*, where that
minimizes

(5.10)  Zu(Cr, h) = hn*(Cr— 1)/ T+ tr{E7(Zn — 1)}

As a result it can be shown that when (5.8) is used for
n =1 and k(z) is rational then h = {log T/(2 log po)}
- {1 + o(1)}, po being the modulus of a zero of k(2)
nearest to | z| = 1. Moreover Shibata (1981) obtains
the following interesting result. Let us put, for n = 1,

(5.9)

-2

A h A ..
2rfu(w) = o3 % on(f)e”|

again using lower case letters for n = 1. (See (2.1) for
the motivation of f,(w).) We may consider as a meas-
ure of the merit of this estimate the quantity

_ 1 7] fnw) = fw)
m(T) = o L f(w)

2

do.
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Shibata shows that m,(T')/%1(2, h) converges in prob-
ability to 2, uniformly in 1 < h < Hy, provided
h — . This choice of Cr is of course that for AIC and
as a consequence it follows that m,(T') is optimized,
asymptotically, when h is chosen by AIC. Since m,,(T')
is a reasonable measure this is an argument in favor
of AIC. However even-this result must be viewed with
care. Franke, Gasser and Steinberg (1985) considered
the classification of individuals on the basis of an
examination of estimates of spectra of EEG records,
the classification being compared with that effected
by experts. They found that AIC did badly on this
problem compared to BIC. The reason may perhaps
be seen from m;(T'). The classification is mainly on
the basis of predominant features of the spectrum but
my(T) treats all features equally in the sense that it
is relative error that matters. Thus since AIC opti-
mizes in relation to m;(T') it may choose too high an
order (as found in the cited reference) and thus intro-
duce too much random variation from individual to
individual in the predominant features, thus making
classification difficult.

There is no means by which it can be established
that AIC is always to be preferred to BIC, or the
reverse. Rissanen’s general principle has great appeal
but in practice must be used via ad hoc choices (such
as Gaussian likelihoods). These can, no doubt, be
shown to be somewhat immaterial, asymptotically, as
the results of this section indicate. In practice the
purpose of the statistical analysis may be very special
so that, if the criterion is to relate to the purpose, the
nature of the data to be summarized will need also to
be related to that purpose. Thus in the situation
discussed in Franke, Gasser and Steinberg (1985) the
data might be, for each individual, a “filtered” form of
the original record in which frequencies, other than
those in the band of frequencies of interest, are elim-
inated. (The “filtering” might be done via fast Fourier
transformation.) The problem is not easy to phrase in
a general form.

6. ALGORITHMS

Apart from the fast Fourier transform algorithms
and the Kalman filter apparatus the most important
algorithms in time series analysis are those that com-
pute, in an effective manner, (5.8). It is evident that
this must be important since an iterative optimization
will consist of a series of linear calculations, i.e.,
autoregressions. The basic form of such an algorithm
was originally discovered by Levinson but in the vector
form needed here is due to Whittle (1963), where
references to earlier developments (see Durbin, 1960)
may also be found. Let us put this in a general setting
so that it can be used via special identifications later.
Thus let the data be v(¢),t =1, - --, T, where v(¢) has

s components. Then C,(j) is computed from the v(¢)
as was C(j) from the y(t) in Section 2. The algorithm
computes F(j),j =0, 1, ---, h, which correspond to
the ®,(j) computed in (5.8), by a recursion on h as
follows: :

Fu(j) = Faa(j) + Fa(R)EFpa(h — ),
Fu(j) = Funa(j) + Fu(R)Fuaa(h — j),
Fn(h) = —An1S7L4,
Fu(h) = =8485k,

h
(6.1) An % Fr()C(j —h = 1),

Sh = (Is = Fun(R)Fy(h))Sp-1,

Sh = (I - Fh(h)Fh(h))Sh—l
Fu(0) = F,(0) = I,

Sy = S, = C,(0).

Here the F( j) relate to a time reversed form of
(5.8). As indicated below (5.8) the equations (5.8) have
disadvantages and have been modified and corre-
spondingly modifications of (6.1) are needed and have
been provided. We emphasize again that in practice
such modifications should, probably, always be used.
We shall use (6.1) later but first discuss a statistical
use of the canonical correlation analysis discussed
below (3.5), due to Akaike (1976).

Akaike’s technique is not related directly to the
Hankel norm approximations discussed in Section 3.
Instead he attempts to find estimates of the Kronecker
indices d; and the corresponding «;x(u) defined in
(2.10). Indeed these are known if the a;.(u) in (2.8)
are known and these provide “null functions” for (2.2),
i.e., these define linear combinations of the elements
of y“*1 that annihilate .#. If # were of finite rank,
as would be the case if k(z) € V,, o indexing (d,,
ds, - --, d,), then we can seek to find the d; and the
a;r(u) by effecting the canonical correlation analysis
(if that were possible) between y“*V and y,, y/ =
(y(@)', y¢ — 1)’, --.), which is the same as the
canonical correlation analysis of the relation between
y“" and ¢. Akaike’s procedure is to replace y{ by
yi=(y@k),yt-1), - ~,y(f — h)’) where h is chosen
by AIC to minimize log det £, + 2hn?/T, £, being the
estimate computed from (5.8). Of course (6.1) with
¥(t) = v(t) could be used for this purpose. The vector
y 1 ig replaced, in a series of canonical correlation
analyses, by y.([, m),0 =m<n,1=1,2, ---,

yt(ly m)/ = (y(t + 1)’, y(t + 2)ly MY y(t + l)’y
Yt +1+1), -, yu(t + 1+ 1)).
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Examlmng (2.8) we see that if d,, is the smallest d,,
j=1, ---,n,and d, = [ then the row r(l + 1, m) is
hnearly dependent on earlier rows of # and is the
first row for which this is so. Thus, assuming h> d;,
j=1, , n (as will eventually be the case since we
have seen that h = O(log T), in Section 5), then in
the “true” canonical correlation analysis of y, with
y:(l, m) there will be In + m — 1 nonzero canonical
correlations, and there will be one true zero canonical
correlation, this corresponding to the discriminant
function given by the left side of (2.10) for j = m. All
that is needed is a criterion on the basis of which to
judge whether the smallest observed canonical corre-
lation can be reasonably regarded as null. (We do not
give details of the calculation of the canonical corre-
lations p since this is classical; see Anderson, 1958,
page 298.) Akaike uses

(T - Vl,m)l()g(]- - ﬁlZn+m) + vim,

(6.2) -
m=nh—1)—m+1,

where pZ..+m is the smallest canonical correlation be-
tween y,(l, m) and 5/, t=h+1, ..., T—1—1. If this
is positive for the first time at l(1), m(l) then d,,,(l) =
I(1). Then yma)(t + (1) + ), j > 0, is eliminated from
all future y, ([, m) and the procedure is repeated to find
the second smallest d;. The number v, is always
nh — dim(y,(l, m)) + 1. At each step the coefficients
in the “null function” for which the last canonical
correlation is judged to be zero estimate the aj:(uw)
(using the normalization «;;(0) = 1).

Thus a first estimate of the d; and of the a;,(u) has
been obtained. It is possible to replace the parameters
in ¥ and Bjx(u),u=1,2, ---,d;,j, k=1, ---, n (see
(2 10)), by those in I'(0) and 'y,k(u), u=1, 2 -, dj,

j, k=1, ---, n, where v;:(u) is the typical element of
I‘(u) (see Solo, 1984). Since the C(j) proxilde estimates
of the T'(j) then having determined the d;, &x(w), u =

-, d; by Akaike’s procedure a first estimate of k,
¥ has been obtained from which a better estimate
could be got by an iterative solution of the equations
of (Gaussian) maximum likelihood. This calculation
could be based on (2.6). Indeed — 2T by the Gaussian
log likelihood, ignoring a constant, is

log det ¥(t) + %, §, e(t)’ T(t)e(t)

where X(t), e(t) depend on ¥, A, B, C or equivalently
on the ajr(w), vjr(w), u =1, ---, d;, and I'(0). Initial
values of these and of the d; are provided by Akaike’s
method.

There are some problems with the procedure and it
does not so far seem to have been widely used, even
for n = 1. The procedure does not lend itself easily to a
generalization to the case where there are observed

. k=q+1’...’n,i=2’..

inputs (see (1.1)’). The d; are not reestimated at a
stage where more efficient estimates may be obtained.
There is no asymptotic theory justifying the method
at present.

A more direct approach is to seek to find 6, d to
minimize log det ¥, + dCr/T by a Gauss-Newton
iteration. Two things are needed for this to be effec-
tive. The first is an initial value from which to com-
mence and the second is a recursion on d which will
enable the calculations at each iteration to be done
reasonably cheaply. Since ¥, depends on 6 only
through k(z), ¥ then an initial estimate of these is
needed. These can be obtained through (5.8) using
(6.1) to make the calculation recursive. The first
Gauss-Newton iteration is then as follows, taking for
example the case where only the U(d) are examined.
(We use “iterate” to mean “repeat” so that the first
iteration is the first calculation after the initial one.)
Having computed

A
) =3

0

(DYt — )

form the autoregression (5.8), choosing h by mini-
mizing the left side of (5.9), say for C;r = 2 or log T
and using (6.1) for v(t) y(t), then y(t) is regressed
upon —y(t —j),j=1,---,p, et —j),j=1,---,p,
and p is chosen to minimize log det $,, + 2p 2Cy/T,
again with Cr = 2 or Cr = log 7. Here the coefficient
matrices in the regression and $p may be found recur-
sively from (6.1) with v(t)’ = (—y(t)’, &(t)’), the first
n rows of F(j) providing the coefficient matrices
[A,(J), Bo(j)] of (=y(t — j)’, &(t — j)’)" and the top
left n X n block of S, providing ¥,. A more economical
modification of this procedure is described in Franke
(1985). Again it will be wise to taper v(t). Having
determined p then §ind =np + ¢, 0 < § < n, is
determined by a further set of n — 1 regressions, the
nature of which can be determined from (2.13). Thus
for the gth of these multiple systems of regressions,
l=g=<n-—1, weregress, forj=1, ---, g, y;j(t) on
_yk(t_l),k_ "yqyi=17""ﬁ+1;_yk(t_i)y
"Is; é\k(t_ l)y k= 17 cee, N,
i=1---,p+ 1L Forj=q+ 1, ---, n we regress
yj(t) on _yk(t - l), k= ]-y sty N, l = 1, Tty ﬁ’
_{yk(t) - ék(t)}, k =4q + 17 ey, I é‘k(t - i)y
k=1,.---,n,i=1,---, p. The residuals, &(t) from
the jth of these regressions, for fixed g, are used
to calculate

$50 = [T7' 2 50&0)]

where the (j, k)th element is shown. For

= 0, n the calculation has already been done
smce }Jpo = }Jp, defined above. The criterion is
log det }Jpq+2ndCT/T d=np+q, 0=<gq<n.

The next Gauss-Newton step is more complicated to
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describe but again it can be done substantially recur-
sively using (6.1). Details and theorems concerning
the method appear in Hannan and Kavalieris (1984)
for example. There is a lot more to be said about the
method, for which theorems of justification can be
found in the reference just cited. It was first proposed,
for n =1 and p, g known, by Durbin (1960) and in the
wider present context by Hannan and Rissanen
(1982). We emphasize again what is being done. A
criterion of the form introduced in Section 4 is chosen,
e.g. (4.3). We seek to optimize this over the model set
of rational transfer function systems (or some subset
such as U(d), d = 0, 1, 2, --.). This is done by a
Gauss-Newton iteration. At each Gauss-Newton step
the values of d have to be scanned and to reduce this
labour a recursion on d is used. To initiate the proce-
dure values of k, X are estimated by a linear procedure,
namely (5.8), choosing h by (4.3) once more. The
procedure has an evident appeal because of its simple,
logical justification.

To conclude this section and this paper we will
discuss briefly on-line calculation of an ARMA ap-
proximation. By this we mean a calculation which is
effected as T increases, with a new estimate being
obtained as each time point passes. Such procedures,
in a wide context, are of paramount importance in
many connections. For example they could be used to
conserve channel capacity in, say, telephone traffic by
using an ARMA model to encode data minimally. The
data being encoded would be a fraction of a second of
speech so that the procedure would forget the past as
rapidly as it took account of the present. In this
situation the calculation would have to be effected in
real time, but on-line calculation can be important
even without a real time context since such on-line
procedures are adaptive, i.e. will change with an evolv-
ing situation. For a recent survey of such procedures
see Ljung and Soderstrom (1983). One way to proceed
would be to effect each of the Gauss-Newton steps
discussed in the previous paragraph recursively also
in time. If different values of the order parameters
have also to be determined then some fixed upper
bound will have to be imposed on them if the calcu-
lation is to be in real time. This will not be a problem
in practice because the forgetting of the past ensures
that the amount of data being used at each time point
will not increase indefinitely and with a fixed amount
of data the orders to be used will be uniformly
bounded. Here we outline some details only for the
case n = 1 and we consider only p = q. We emphasize
again that a procedure with a simple logical justifica-
tion is being used. Thus a criterion, (4.3) or (4.7), let
us say, is being instituted and a real time Gauss-
Newton procedure introduced. The criterion (4.7) is
particularly well adapted to this problem as will be
emphasized below. At each Gauss-Newton step a

regression is being effected. At each step after the first
the regressors in the regression have to be constructed
and these can be obtained from a parallel calculation
of the previous step. We briefly illustrate by the first
two Gauss-Newton steps. The basic formula is that
for the calculation of a set of regression parameters,
6(t), from data to time ¢t on a dependent variable
¥(s) and a vector of independent variables uv(s),
s=1, ---, t. Such formulae are for n =1,

0(t) = 0t — 1) + P(t)v(t)e(t),
e(t) = y(t) — 0(t — 1)"v(¢),

P(t) = {? v(s)v(s)’} .

It is possible to calculate P(t) recursively by
. P(t) = P(t — 1) — {1 + v(t)’P(t — 1)v(t)}™
(64) - P(t — Lv(t)v(t)’P(t — 1).

To make this forget the past at an exponential
rate one multiplies y(s), v(s) by l,(s)%, s=1, ---, ¢,
so that the least squares problem is to minimize

Y L) {y(s) — 0'v(s)}?,
L) =TT Mw), L =1, Aw) >0,

s+1
For example we might choose AM(u) =\, 0 <A< 1. It
is not necessary to effect the multiplications of y(s),
v(s) by 1:(s)”? (which could not be done in real time)
but it is enough merely to adjust (6.4) so that it is
replaced by

(6.3)

P(®) = ﬁ [P(t — 1) — {\(®) + 0()P(t — Dot}
- P(t — Dot)v(t)' Pt — 1)].

In the case of the autoregressive step then v(t)’ =
(=y@t-1), -, =yt —h)").

However it is necessary also cheaply to compute
this-for h =1, - - -, H if the order is to be determined
at each t. We now describe briefly a procedure for
doing this. A maximum value, H, of h is prescribed so
that now v(t)’ = (—y(t — 1)’, ---, —=y(t — H)’). Thus
at time ¢ the data matrix is

v(1)" ¥(1)
v(2)” ¥(2)
X(t) = .

v(t)”  y(t)

The procedure is to reduce X(t) to upper triangular
form by a sequence of plane reflections (fast Givens
transformations). As another row is added (when ¢t
increases to ¢t + 1) the next calculation is easily deter-
mined. During the process the quantities needed to
update the residual variances, &ﬁ(t)‘, for all h to the
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maximum value, H, to be considered are obtained,
o7(t) being the nonrecursive mean square to time ¢,
but also the recursive residuals e, (t) (see (6.3)). We
discuss these further below. The incorporation of for-
getting, of the kind described by I.(s), above, is effected
by one additional multiplication at each time point.
For details we refer the reader to Hannan, Kavalieris
and Mackisack (1986) and references contained
therein. To choose h, we consider, taking n = 1 for
illustration,

log{si(t)/7(6)} + h log{r(t)}/7(0),

(6.5) o
si(t) = X &(s)?,
1
where &,(s) = y(s) — 0(t)’v(s)7(t) is a measure of how
much data is used at time ¢ and might be defined by

66) 7(t—1)=At—-17r(@) +1, 7(0)=0.

This is because the effective sample size at time ¢
might reasonably be considered to be

t t t
Y l(s) = X 1 Mw),
s=1 s=1 s+1
which satisfies (6.6). For the second Gauss-Newton
Step U(t), = (_y(t - 1), Tt _y(t - P)3 E(t - 1)7 M
é(t — P)) where P is the maximum p to be considered
and &(¢) is e(t) from the first Gauss-Newton step
(see (6.3)). There may be some modifications to
this (see the cited reference). The procedure may be
continued to any fixed number of Gauss-Newton it-
erations. The procedure at each Gauss-Newton step is
essentially the same, being a regression. It should be
mentioned that at later steps not only will v(t) involve
the output from previous steps, but also y(t) will be
replaced by a vector involving the output of previous
steps. In practice one might not wish to change h or p
too frequently and simple rules can be used to effect
that. Again the method has considerable appeal, hav-
ing a simple, logical basis. Some theorems relating to
the method are given in Hannan, Kavalieris and
Mackisack (1986), but these relate to the case where
p, q are true values and are known. However the
.methods are more generally described. These calcula-
tions based on Givens reflections required, for the first
Gauss-Newton step, about 4H? operations of multi-
plication followed by addition (and the storage of
about H?%/2 quantities). An alternative procedure
would be to use one of the lattice algorithms men-
tioned in Section 5, below (5.8). Let e,(t) be the
“forwards residuals,” i.e., the residuals from the (Toe-
plitz) regression of y(t) on y(t —j),j =1, ---, h. (The
equations (5.8) are Toeplitz in form because the ma-
trix on the left is “block Toeplitz,” having all blocks
the same down a diagonal.) Let r(t) be the “back-
wards” residuals, from the Toeplitz regression of

y(t — h) on y(t — 1), ---, y(t — h + 1). These are
Toeplitz orthogonal, of course, to y(t — 1), ---,
y(t — h + 1) and occur because (6.1) ‘proceeds by the
standard method for adding a variable into a regres-
sion of making the new variable orthogonal to those
already in the regression. Using the first line of (6.1),
for v(t) = y(t), we obtain

en(t + 1) = epa(t + 1) + Fre(h)ra(t),
67 ) rn(0) = ex(0) = 0,
ra(t + 1) = rag(t + 1) + Fpe(h)ena(t + 1),
ro(t) = eo(t) = y(2).

Note that e, (s) is not the same as é,(s) in (6.5), which
is computed using data to time ¢, while e, (s) uses only
data to time s. The latter are the “recursive residuals.”
Thus if the r,(t) are stored, h=0, 1, ..., H— 1, then
en(t + 1), r(t + 1) may be formed h =0, 1, ---, H,
once y(t + 1) is available, using 2h calculations in the
case n = 1. However F,.11(h), Fy1+1(h) have also to
be calculated for the next stage. These are essentially
got from the matrices of variances and covariances of
en(t) with r,(¢t — 1), which provides A,—, (see (6.1)).
Indeed F,+1(h) is the coefficient of (Toeplitz) regres-
sion of y(s) on ry—1(s — 1) = ¥ Fr-1,41(j)y(s — h + j).
This is the same as the regression of e,—;(s) on
rn—1(s — 1). The normalized lattice algorithms spoken
of below (5.8) replace e, (t), r»(t) by normalized forms
by transformation so that their variance, covariance
matrices are unity. They attempt also to mitigate the
effect of the Toeplitz calculation by appropriate defi-
nitions of the estimate of Fj.(h), for example by
confining the autocovariances to the use of 1 < s <
t — h. We cannot give full details here but refer the
reader to Friedlander (1982). The use of (6.7) would
not enable ¢7 () to be formed but only the analogous
quantity, for n =1,

6.8) Fi(t) = %

%‘, en(s)2

If we consider (4.5) we see that, for the scalar
autoregressive case, for T = t and multiplying by
—2/t we obtain

t—1

(6.9) 3 {log Gi(s) +

s=0

en(s + 1)2}

ah(s)

This seems well adapted to an algorithm of the present
type, but while it can be calculated by the methods of
Hannan, Kavalieris and Mackisack (1986) it cannot
be calculated easily by the lattice methods which
provide only (6.8). This latter could be inserted in
(6.9) in place of 6%(s). If forgetting is used (see below
(6.3)), as will almost always be the case, the divisor, ¢,
in (6.8) should be replaced by 7(¢) from (6.6). In fact
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consideration of (6.9) suggests that, whether or not
there is forgetting (6.9) may as well be replaced by
63(t). A key further step is the further analysis of this,
at least for the stationary case. This is proceeding and
there seems no doubt that theorems analogous to those
below (5.6) can be established for it.

It is dangerous indeed to make strong assertions
about any of the on-line methods introduced here in
the case of an evolving system, where forgetting is
used and h is to be determined, since they are so
“difficult to analyze so that intuition may be mislead-
ing. Simulations and experience are needed. Some
experience shows the methods based on (6.5) working
well.

7. CONCLUSION

The problem of rational transfer function approxi-
mation is attractive, for there is a considerable, and
relevant, mathematical theory underlying it and the
problem is physically important. There is much still
to be done. Such subjects tend to develop an impetus
of their own. The main problems of time series anal-
ysis may relate to the development of nonlinear
models. As the work of Priestley (1980) and Tjgstheim
(1986) shows, one way of proceeding is via a develop-
ment commencing from (2.3), and Tjgstheim’s models
in particular seem to be of the nature of the simple
model discussed below (5.3). Thus the full understand-
ing of the problem of (linear) rational transfer func-
tion approximation may be essential for the later
nonlinear theories.
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Comment

R. J. Bhansali

I would like to congratulate Ted Hannan on a
masterly survey of the current state of the art for
fitting multivariate autoregressive moving average
models, ARMA(p, q). Hannan is quite correct in em-
phasizing that there may not be a true (p, g) and thus
a fitted ARMA model is at best thought of as an
approximation to the generating structure of the ob-
served time series. The question then arises: what are
the properties of the order selected by minimizing AIC
when viewed in this light rather than as an estimator
of an underlying “true” order? The work of Shibata
(1980) would suggest that the order selected by AIC is
such that the one-step mean square error of prediction
is minimized within the class of all order selection
procedures. However, the more-than-one-step mean
square error of prediction may not be minimized (see
also Whittle, 1963b, page 36). Indeed, for autoregres-
sive model fitting, Findley (1983) has advocated that
a different order should be selected for each forecast
lead, and he has suggested that a criterion introduced
by Shibata (1980, page 163) may be used for this
purpose. However, a justification for introducing this
criterion has not been given. A related but different
criterion is suggested by the work of Hannan and
Rissanen (1982).

As has already been noted by Franke (1985a) and
Chen (1985), at the second stage of the Hannan-

.Rissanen procedure for ARMA' model selection,
“autoregressive” estimates of the coefficients b(u),
say, in the moving average representation of a
univariate stationary nondeterministic process {x.}
are obtained as

bu(u) = é(w)/én(0), u=0,1,----,
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where

h
enw) = ¥ an())RM(u + j)
Jj=0
provides the corresponding estimator of the cross-
covariance c(u) say, between x.., and the linear inno-
vations &, the d@,(j) are the hth order “Yule-Walker”
estimates of the autoregressive coefficients;

T-u
R(T)(u) = T_l 2 XeXtvuy, U= O, 1, sy,
t=1

is a “positive definite” estimator of the covariance
function of {x.}; and x,, ---, xr denotes an observed
realization of length T of {x}.

Now, if the complete past {x;, t < 0}, say of {x,} is
known, the s step mean square error of prediction is
given by

s—1

V(8)= 62 2 b2(])9 s = 1’ 29 tt
j=0
where ¢% = ¢(0) is the variance of ¢;.

Bhansali (1978) and Lewis and Reinsel (1985) con-
sider the effect on the mean square error of prediction
of estimating the prediction constants by fitting an
autoregressive model of order h, when h is a function
of T and tends to infinity simultaneously with it. It is
clear from their work that if o,(h'/?/T"/?) terms are
ignored and certain additional regularity conditiors
are satisfied, the resulting mean square error of
prediction may be approximated by

L(s) = V(s)(l + %)

On adopting an argument similar to that used by
Akaike (1970) for deriving his FPE criterion, which
as discussed by Bhansali (1986) is closely related to
the argument used for deriving AIC, one may consider



