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Comment

Paul W. Holland

I am pleased to see that Rosenbaum’s work is in-
cluded in Statistical Science—for two reasons. First,
observational studies are very common in scientific
work and yet from a theoretical perspective they are
poorly understood, often maligned and rarely sub-
jected to serious formal analysis. Rosenbaum’s discus-
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sion here and elsewhere shows that a formal analysis
can lead to useful, practical tools that can help in the
design and analysis of nonrandomized studies. Such
work ought to be widely publicized and Statistical
Science is an attractive forum. Second, the particular
formal analysis used here by Rosenbaum elaborates
and extends the approach I call “Rubin’s model”
(Holland, 1986a, 1986b) and which I personally feel
needs to become wider known and used by mathemat-
ical statisticians. My experience over the last 10 years
has been that any problem involving causal inferences
(e.g., inferences about the effects of treatments) is

®
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clarified and illuminated by applying an appropriate
version of the analysis advocated in Rubin (1974). The
present paper does exactly this in two ways. First, by
clarifying what two different control groups can really
contribute to a nonrandomized study and how best to
choose them. Second, by illustrating how to test the
type of implicit assumptions one makes in the analysis
of data from such studies. I used to think that these
assumptions were untestable, but Paul has convinced
me that, in a limited way, they can be tested and our
conclusions from such studies improved accordingly.
Such results show the power of Rubin’s model and are
just the most recent in a long list of such results that
convince me that Rubin’s model ought to be a standard
member of every statistician’s tool kit—like the nor-
mal distribution or the general linear model! In short,
I have little but praise for this paper and hope that it
interests others in the work that Rosenbaum, Rubin
and others are doing in this important area.

My own experience with multiple control groups in
an observational study is limited to a single study of
computer-assisted instruction (CAI) carried out dur-
ing the late 1970s in Los Angeles (Ragosta, Holland
and Jamison, 1982). In this study there were four
“CAI” schools (where CAI equipment was made avail-
able) and two “comparison” schools. In the CAI
schools, for the first year of the study, students in
grades 2, 4 and 6 were assigned to 20 minutes a day of
CAl in one of three curricula—mathematics (M), read-
ing (R) or language arts (L). In the second year of the
study, only grades 1, 3 and 5 of the CAI schools were
assigned to the CAI conditions. All students in all six
schools were tested in the Fall and Spring in all three
subjects areas by using appropriate standardized tests.
The Spring testing (the posttest) was part of the
normal standardized testing in the schools, whereas
the Fall testing (the pretest) was introduced especially
for the study. This design yielded two nonrandomized
control groups for, say, the grade 4 CAI students in
the first year of the study. These were:

C1 = comparable (on pretest) grade 4 students in
the comparison schools;

C2 = comparable (on pretest) students in grade 4 in
the CAI schools in the second year of the
study.

The C1 controls were in different schools but were
tested in the same year as the CAI students. The C2
controls were in the same schools but were tested in a
different year than the CAI students. An application
of Rosenbaum’s proposal for testing the assumption
of X-adjustable treatment (i.e., CAI) assignment (here
X is the pretest score and the response in the posttest
score) is a comparison of the regressions of posttest
on pretest in the two control groups, C1 and C2. This
was not done, so I cannot show how Rosenbaum’s idea

would look in such a case, but it might have been a
useful analysis. I was always troubled by the results
obtained by these two nonrandomized comparisons
because they tended to be unrelated to the consistent
and clear-cut results we obtained upon examination
of the randomized comparisons in the study (Holland,
Jamison and Ragosta, 1979). Within classrooms in the
CALI grades we randomly assigned the students to one
of the possible CAI curricula. Hence, R students,
assigned to the reading curriculum, served as controls
for M students, assigned to the mathematics curricu-
lum. In such a comparison the response would be a
mathematics test. Then, the M students served as
controls for the R students for performance on a
reading test.

I came away from this study wondering how people
could place much confidence in nonrandomized con-
trols in studies of this sort—in such studies it is much
more common to use nonrandomized rather than ran-
domized controls. It was not that pretests are not good
covariates—the pretest-posttest correlations are often
over .7—rather it was the large teacher differences
within schools and the substantial differences in the
actual year to year testing times that we experienced.

These problems identify two assumptions that
Rosenbaum makes but does not comment on. The
first has to do with the responses, Ry and R¢, and the
second has to do with the treatment to which the
various control groups are exposed. I discuss these
briefly and perhaps Rosenbaum will add comments in
his rejoinder.

The Response Variable. In the control group C2,
described above, there was a real possibility that the
meaning of the response (i.e., the Spring testing re-
sults) was not the same as it was for the treatment
group. This was due to year to year variation in what
“Spring testing” means. First of all, the testing dates
can vary from year to year for a variety of reasons.
Secondly, something like a “flu” outbreak in the mid-
dle of one year can significantly change the amount
of time students are in school between “Fall” and

* “Spring” testing. In Rosenbaum’s medical examples,

the values of the response, Ry and Rc, may be more
clear-cut, but I am sure this depends on how deeply
one delves into the definition of the response measure.

The Control Groups’ Treatments. Rosenbaum
assumes that in the control groups the value of R is
observed on each subject, as opposed to the value of
R7. In my CAI example, this could be seriously ques-
tioned because the teachers and schools are different
in C1 and C2 and one might expect these to make a
difference in the schooling the students experience. In
fact, the assumption which Rubin (1980, 1986) calls
the SUTVA (stable unit-treatment value assumption)
is probably false in the CAI example if teachers and
schools can affect students’ test scores differentially.
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Again, the SUTVA is implicit in Rosenbaum’s analy-
sis and its violation might make the application of his
results ineffective. For his medical examples, the
SUTVA is not satisfied if the model only specifies a
single control response, R¢ rather than an R, for the
ith control group and, in fact, subjects in the first
control group are exposed to a different kind of treat-
ment than are those in the second control group. On
the other hand, Rosenbaum shows that when such an
assumption holds there is a clear benefit for the design
and analysis of observational studies.

Because Rosenbaum focuses on the problem of as-
sessing biases due to pretreatment differences, it is a
little unfair to ask him to solve these other problems

as well, but from the excellence of the present paper I
am sure he is up to the task.
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Comment: The Use of Multiple Control
Groups in Designed Experiments

Barry H. Margolin

I want to commend Dr. Rosenbaum on a most lucid
presentation regarding the role of a second control
group in an observational study. My contribution to
this discussion is motivated by a remark of Cochran
(1965), that in discussions of topics in observational
studies, “it is relevant to indicate how the problem is
tackled in controlled experimentation . . . . ” With this
in mind, I will discuss briefly and illustrate the roles
that multiple control groups have played in designed
experiments; these illustrations draw heavily upon my
own research simply because they are readily accessi-
ble to me. Three distinct roles are discernible: (i) to
detect the presence of unsuspected systematic effects;
(ii) to determine whether there are hidden sources of
extraneous random variability; and (iii) to assemble
sufficient control data to permit a meaningful assess-
ment of sampling model assumptions.

The earliest experiments whose design included fea-
tures resembling multiple control groups appear to be
uniformity trials in agricultural research (Cochran,
1937). These are agricultural experiments in which
the land is divided into a number of plots of the same
size. A single variety of the crop of interest is planted,
although other factors such as fertilizer are kept con-
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stant from plot to plot, and the yield of each plot is
observed. As Cochran (1937) noted, the primary pur-
pose of a uniformity trial is to study the effects of
amalgamation of the original plots into “larger plots
of various sizes and shapes” and “to provide informa-
tion on the optimum size and shape of plot” with
regard to experimental error. As such, a uniformity
trial is viewable as an experiment with a control group
but no treatment group.

The analogy with multiple control groups becomes
clearer, however, when one observes that uniformity
trials are also conducted to validate the applicability
of tests of significance that are based on analysis of
variance (ANOVA). As Cochran (1937) writes,

“A preliminary requirement for the application of
the analysis of variance to be possible is that the
experimental design used should be chosen at
random from a set of designs such that, in the
absence of any treatment effect, the average
treatment mean square over the set should equal
the average error mean square. ... The further
question arises: how good an approximation to
the tabulated z distribution is generated by the
process of randomization used? There again the
question may be tested from uniformity trial
data.”

When any particular design is imposed on the uni-
formity trial data, which involve no true treatments,
the results hopefully appear as if they derived from a



