Statistical Science
1987, Vol. 2, No. 3, 259-291

Uncertainty, Policy Analysis and Statistics

James S. Hodges

Abstract. Statistical activity can be divided for descriptive and analytical
purposes into (a) discovery/imposition of structure, (b) assessment of var-
iation conditional on structure and (c) execution of techniques. Each of
these three areas of activity has an associated type of uncertainty, respec-
tively, structural uncertainty, risk and technical uncertainty. In any statis-
tical analysis, an analyst has limited supplies of time, money, knowhow and
computational power and must use these resources to diminish and to
characterize better the three main types of uncertainty and the many
subtypes that comprise them. No existing school of statistical thinking
provides a comprehensive framework for considering the various types of
uncertainty and the tradeoffs among them that analysts must make. One
result of this is the absence of a system that properly accounts for all of the
types of uncertainty. This paper describes the types of uncertainty, cata-
logues and evaluates current methods as tools for characterizing and dimin-
ishing them, considers the types of tradeoffs that analysts must make in
applying statistical methods in problems and examines the bias introduced
into deliberations by the absence of a proper system of accounting for
uncertainty. This paper is an attempt to begin the construction of such a
proper system and thus to reduce or eliminate that bias.
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cations of statistics, model, prediction, uncertainty.

1. INTRODUCTION

“If quantitative precision is demanded, it is gained
in the current state of things, only by so reducing
the scope of what is analyzed that most of the
important problems remain external to the analy-

o P

sis
John Steinbruner (1974)

For decades, logisticians at the RAND Corporation
have helped the Air Force devise methods for predict-
ing the numbers of failures of parts used in its planes.
" The Air Force uses both short and long term predic-
tions; long term predictions are used in the purchase
of spares, and short term predictions are used in
algorithms that schedule the repair and subsequent
distribution of parts. Statisticians are involved in
many phases of the work that culminates in these
predictions. This statistical activity—and most if not
all other applied statistical work—can be divided for
descriptive and analytical purposes into three broad
areas of activity. The three areas of activity are
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(a) discovery/imposition of structure, (b) assessment
of variation conditional on structure and (c) execution
of the techniques selected.

Structure, at once discovered and imposed, has sev-
eral elements. Something of value is at stake: in policy
problems this is clear, but it is also true in scientific
activity, although the payoff is more diffuse. This
value is usually captured in a loss or utility function.
In the case of predicting parts failures, the payoff
function is often the number of planes capable of
executing missions on a given day. Several actions are

usually available for choice in the pursuit of this

payoff. Again, this is clear in policy problems, but even
the purest scientific activity requires a choice among
possible assertions and possible future observations.
The actions can be small or large: predictions can be
used to select the next part to fix or to pick a scheme
for scheduling the repair of broken parts. Such selec-
tions can be made better if they are made using facts
and beliefs about the nature of the relevant part of
the world. These facts and beliefs often take the form
of a model of some process central to the problem—
in my example, the process that generates broken
parts—and some more or less specific expression of
belief about features of that model. The model might
simply be a taxonomy of possible states of the world
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with an assumption that future observables in a cell
of the taxonomy are exchangeable with past observa-
bles, or it might be a tightly specified stochastic model,
perhaps including a subjective probability distribution
for the parameters of the model. In Air Force spare
parts work, failures are usually treated as arising from
a compound Poisson process (see Astrachan and
Cahn, 1963; Hillestad, 1982; and references in those
papers). Finally, this use of facts and beliefs is usually
informed in some way by data. Data themselves have
obvious structure—they can be discrete or continuous,
for example—but there is more. The process that
turns actual events into data can introduce systematic
effects that may (and frequently must) themselves be
accounted for or modeled. This can be considered a
part of the process that is central to the problem, but
it is useful and often crucial to consider it separately.
Data used for Air Force spare parts predictions come
from two main sources, namely systems used for track-
ing the actions of maintenance personnel and systems
used for ordering supplies. These data were once
treated as interchangeable and transparent descrip-
tions of the process that generates broken parts, but
we now know that the incentives facing the people in
these systems shape the data that the systems pro-
duce. In some cases, it might not be possible to use
data arising from the process of interest; the use of a
proxy or analogous data source might be necessary.
The error introduced into an analysis by a substitute
data source is similar to the effects introduced by data
collection systems and can be considered in an anal-
ogous fashion.

The second broad type of activity, assessment of
variation conditional on structure, is the most famil-
iar—at least, the most publicized—part of statistical
work. This assessment can be understood as providing
answers to two questions. The first question refers to
the past: which of the possible structures (usually
values of parameters of models) are more and less
plausible? This is often considered under the rubric
of estimation. The second question refers to the future:

_conditional on some structure (usually a model and
parameter values), what can be said about future
_observable features of the modeled process? The link
between facts about the past (data) and statements
about the future is provided by the structure condi-
tioned upon.

The execution of techniques, the third type of activ-
ity, occurs in concert with the other two types of
activity, but it is distinct and will be considered sep-
arately. First, data must be processed. This includes
extraction of items from data bases, conversion of
raw numbers or characters into usable quantities,
aggregation, counting and like activities, as well as
computation of estimates and descriptive or diagnostic

quantities. Second, in executing model fitting and
prediction techniques, analytical or numerical approx-
imations (or simulations, which are approximations)
usually must be considered and often must be em-
ployed. In Air Force predictive work with which I am
familiar, models and estimators have been chosen to
avoid approximations—a choice with implications be-
yond the computational accuracy it allows.

Each of these areas of activity has an associated
type of uncertainty. Along with the discovery and
imposition of structure comes structural uncertainty:
uncertainty about the accuracy of the model as a
surrogate for the actual process of interest, about the
transparency of the system that turns raw events into
data and so on. This type of uncertainty and current
approaches and techniques for characterizing and re-
ducing it are discussed in Section 2.1. Assessment of
variation conditional on structure is, in an obvious
sense, the consideration of uncertainty about the past
and the future conditional on a model. This type of
uncertainty, risk, is considered in Section 2.2. (The
terms “structural uncertainty” and “risk” come from
Steinbruner, 1974, Chapter 1.) Risk in turn has two
aspects corresponding to the forward and backward
looking elements of the assessment of variation con-
ditional on structure. Finally, execution of techniques
entails uncertainty about inaccuracies introduced by
repeated manipulation of raw data items, by numerical
instability and by analytical or numerical approxi-
mations. This form of uncertainty, technical uncer-
tainty, is discussed in Section 2.3. In any statistical
analysis, an analyst has limited supplies of time,
money, knowhow and computational power, and must
use these resources to diminish and to characterize
better the three main types of uncertainty and the
many subtypes that comprise them. If an analyst is
working as part of a team, it might be reasonable for
him to concentrate on only one type. But for any
sizable analysis to be complete, all three types of
uncertainty must be assessed and their effects on the

product of the analysis weighed.

No existing school of statistical thinking provides
a comprehensive framework for considering the
tradeoffs analysts must make in devoting resources to
reducing and characterizing the three types of uncer-
tainty, that is, for considering the strategy of statisti-
cal analysis. The tradeoffs analysts make, consciously
and unconsciously, are considered in Section 3.1. One
deficiency created by the lack of a comprehensive
framework is the absence of a system that properly
accounts for all of the types of uncertainty. I
argue in Section 3.2 that, among other things, this
creates an inherent tendency for analyses to under-
state uncertainty about predictions—about what is
known—which can lead to invisible biases in policy
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considerations based on those analyses and can ob-
scure the role of judgment and convention in the
conclusions they produce.

Current theoretical approaches provide partial con-
texts appropriate for subsets of statistical activity.
Steinbruner (1974) discussed structural uncertainty
and risk without differentiating between the two as-
pects of risk. DeGroot (1982) and Cyert and DeGroot
(1984) differentiated between the two aspects of risk.
Fisher (1957) described “a series of meaningful math-
ematical statements ... each differing from the one
before by its greater uncertainty,” including state-
ments regarding structural uncertainty and both as-
pects of risk, although not under those names. Alho
and Spencer (1985) decomposed sources of error in
population forecasts into specification error, error in
parameter estimation and variability conditional on
parameter estimates. Vasely and Rasmuson (1984)
made a similar decomposition, with their “physical
variability” and “parameter uncertainty” in rough cor-
respondence with the forward and backward looking
aspects of risk, respectively, and their “modeling un-
certainties” and “completeness uncertainties” roughly
corresponding to structural uncertainty.

The theory of probability presented in de Finetti
(1974, 1975) comes closest to the goal of a complete
context for statistical activity, in that de Finetti’s
approach is intended to be flexible enough to apply to
any situation involving uncertainty. But if de Finetti’s
work is influencing research in statistical methodology
and practice, he is not receiving much credit for it in
statistical journals. For example, of the 377 papers in
the 1985 volumes of Biometrika, Journal of the Royal
Statistical Society (Series B), Journal of the American
Statistical Association.and The Annals of Statistics
(excluding book reviews and corrigenda), the three
papers that cited de Finetti (Dawid, 1985; Lane and
Sudderth, 1985; Schervish, 1985) were on ab-
stract topics with no obvious implications for statis-
tical practitioners. The purpose of this paper is to
bring de Finetti to those practitioners and begin the
-construction of language and concepts necessary for a
more comprehensive framework for the use of data in
policy analysis and other applications of statistics.
(Leamer (1978) is an insightful pioneering effort in a
similar vein, although his approach is quite different
from the one taken here.) I take subjective uncertainty
as a primitive concept and understand and use prob-
ability as a particular mathematical representation of
subjective uncertainty, so the language and sensibility
in this paper are largely Bayesian. Non-Bayesians
need not be deterred, howevér, for the main thrust of
the paper does not depend on Bayesian notions.

One note of caution: I use the example of Air Force
spare parts predictions not because it contains bad

examples, but because it is a big, expensive problem
with which I am familiar. In fact, RAND’s nonstatist-
ical workers in this area are uncommonly sensitive to
the many kinds of uncertainty they face that current
statistical approaches cannot incorporate, and are
leaders in their field in advocating and developing
systems that do not depend much on stochastic model
assumptions. Contact with their problems provided
the initial motivation for the work in this paper.

2. THE THREE TYPES OF UNCERTAINTY

I will continue the example of Air Force spare parts
prediction in this section. In doing so I have conceded
part of the analyst’s problem, as I have specified the
context and the things to be predicted. These are not
always given, and sometimes are a part of the analysis;
for treatments of this by statisticians, see Mallows
and Walley (1980) or Freedman (1985).

2.1 Structural Uncertainty

The elements of structure, described in the last
section, are the payoff (loss or utility), choices, facts
and beliefs organized as a model and the process that
turns raw events into data. These correspond to the
elements of the classical decision theory problem: loss
function, actions, model and prior distribution and
data. A large although diminishing fraction of statis-
tical instruction and research treats these elements as
if they are known without error. This is seldom, if
ever, true.

In the spare parts example, the payoff function is
usually the number of planes capable of executing
missions on a selected day. In practice, this means the
number of planes without “holes” (missing parts) on
that day. Leaving aside discounting considerations, it
is not obvious how we should regard a plane without
holes. Avionics parts are diagnosed on automated test
equipment that systematically misses certain types of
failures. As a result, malfunctioning avionics parts are
regularly treated as serviceable and used, producing

- planes without apparent holes that cannot execute

their missions. It is not hard to imagine a probabilistic
scheme for discounting the number of usable planes
to account for this, explicitly incorporating the uncer-
tainty about the actual payoff from having a given
number of planes available, but no such scheme is
used.

As for actions, it is possible to be uncertain about
which actions are or will be available. Lateral resupply
between airbases—a system of planes that move parts
from bases that have them to other bases at which
planes are inoperable for lack of those parts—is a way
to hedge against inaccurate base-level predictions of
part failures, and the United States Air Force has such
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a system in Europe. Many analyses have among their
policy choices different levels of lateral resupply ca-
pability, measured by the number of days needed to
move a part between bases. But the fleet of resupply
planes will be subject to attack during a war; so the
actual resupply capability will be subject to uncer-
tainty. '

Uncertainty about the accuracy of one’s model as a
substitute for the process of interest is too familiar to
require elaboration. But a model that is satisfactory
now might be deficient later, for the period for which
predictions are to be made. For example, many spare
parts predictions are for wartime; although we are
unsure about the accuracy of current model as substi-
tutes for the peacetime part failure process, we are
even less sure about how much wartime failure behav-
ior will resemble peacetime behavior. A common ap-
proach in Air Force logistical work is to estimate a
failure rate for a part from peacetime data and use
that rate and projected wartime flying programs to
predict mean failures for projected war scenarios. Few
workers in the field find this satisfactory, but none of
the suggested improvements have garnered wide ac-
ceptance. Some of this uncertainty could possibly be
captured, for short term predictions, with methods
like those in Harrison and Stevens (1971, 1976), which
are related to Kalman filters, but these methods do
not address the difficulties in making long term pre-
dictions for setting stockage policy.

Finally, we are quite unsure of what to make of our
Air Force data sources. The incentives facing the
people in these data collection systems are coming to
be understood, but we do not know how to reconcile
the sometimes gross discrepancies between the de-
scriptions of events provided by the two data systems.
We must act, and these being the available data, we
want to use them somehow, but it is not clear how to
do it—in particular, how to allow for biases that the
data contain-

The discussion so far has been typical of statistical
discussions of models in that it has been oblique about
how they are actually built or chosen. In practice,
statistical model building is a compromise between
plausibility and tractability so thoroughly influenced
by personal style that even leaders in research into
model building methods have difficulty describing it.
For example, in the next to last paragraph of a book
full of techniques for checking and elaborating models,
Atkinson (1985) admits that “it is hard to see how to
answer the question” of how “the overall strategy of
model building [is to] be guided,” i.e., how to use the
techniques in his book. ’

Certainly the range of possible model selections is
strongly conditioned by the set of models the analyst’s
software can handle and by the analyst’s desire or

ability to spend time and money developing custom
software. Models favored by readily available pro-
grams tend to allow only linear causal relationships,
and random variables are usually members of expo-
nential families. The dominant position of these
models notwithstanding, they are little more than
conventions: they have become conventional through
constant exposition in service courses and textbooks,
through availability in popular software packages and
because their mathematical tractability makes them
inviting examples for scholars seeking to propagate
new theory and methods.

That modeling is an inherently subjective activity
has achieved some recognition; that it is constrained
by the catalogue of conventional models provided by
past researchers is a fact of life. This constraint has
implications of particular relevance to policy analysis,
which will be discussed in Section 3.2.

The purpose of elaborating on the Air Force exam-
ple here was to illustrate the pervasiveness of uncer-
tainty about structure; and yet no comprehensive or
systematic method exists for characterizing or reduc-
ing structural uncertainty. This type of uncertainty is
perceived as uncertainty, but in statistical research it
tends to be handled separately from the other kinds
of uncertainty, as if inherently different. (For one
prominent but as yet only partially developed excep-
tion, see Berger (1984), who includes both likelihoods
and priors in his approach to robustness.) Thus, the
methods that exist for thinking about structural un-
certainty tend to be understood in terms different
from those used for the other two kinds of uncertainty.
Statistical methods related to structural uncertainty
are concerned mostly with models and data structure
and those methods fall into two groups: (i) methods
for reducing structural uncertainty by discovering
structure in data, and (ii) methods for characterizing
structural uncertainty to allow it to be propagated
through the analysis of risk to the substantive conclu-
sions. After a brief discussion about uncertainty in
loss functions, these methods will be discussed in that-

" order.

Uncertainty in the Loss Function. Uncertainty about
the loss or utility function has received little attention
from statistical researchers. DeGroot (1983) points
out that in a Bayesian approach in which one proceeds
by maximizing expected utility, the expectation of
utility includes expectation with respect to the uncer-
tainty in the utility function itself. If the uncertain
aspects of the utility can be given a probabilistic
representation, those probability distributions can be
integrated out in the computation of the expected
utility. DeGroot’s emphasis is on sequential experi-
ments for diminishing uncertainty about the utility
function as well as about the process of interest, but



UNCERTAINTY, POLICY ANALYSIS AND STATISTICS 263

the general approach is equally applicable to situations
in which the actual utility is a stochastic outcome
produced by a known mechanism.

Discovering Structure. The gold standard among
scientists is carefully controlled experimentation rep-
licated by independent researchers. Tukey and others
have emphasized the value of extracting information
about structure from data at hand. In many cases,
action is needed before this kind of structural infor-
mation can be superseded by something closer to the
gold standard, and in these cases the issues are how
best to extract the information and how much to
discount it. In any event, methods for describing data
and sifting it for structure are indispensable, particu-
larly for understanding the effects of the data collec-
tion process. Uncertainty about bias induced by data
collection methods can often be reduced or eliminated
by consistency checks such as comparison with similar
data from other sources (see, for example, Lagakos,
Wessen and Zelen, 1986). The rest of this section will
concentrate on methods of discovering structure using
a given data set. Such methods can be divided for
descriptive purposes into two types of approach,
namely the data-analytic approach and the diagnostic
approach.

The data-analytic approach is often associated with
Tukey (Tukey, 1977; Mallows and Tukey, 1982). The
object of this approach is to display or describe data
and to sift it for patterns in the hope of uncovering
relevant, strong, persistent structure or unexpected
features that will prompt discovery of structure
through means external to the data at hand. This is
useful for learning both about the process central to
the prediction problem and about the data collection
process. In the latter role, these techniques are usually
the first applied to a new set of data; they allow the
analyst to make judgments about, for example,
whether the data have been grouped or rounded, or
indeed whether the data are so mangled as to remove
any information they might have conveyed. (For an
exposition of data descriptive methods emphasizing
these judgments, see Chatfield, 1985). When the ana-
lyst gets to the stage of learning about the process
central to the prediction problem, descriptive tech-
niques can inform judgments about, for example,
whether a single simple model will suffice for the data
at hand, or whether some particular formulation of
the unexplained variability (e.g., a symmetric distri-
bution) is tenable.

Description of data takes the form of words, plots,
other graphical summaries and numerical summaries
(see Mallows (1983) for a theoretical exposition of
data description). The apparently simple task of de-
scription is remarkably difficult for higher dimen-
sional data, and it has become the subject of research

only recently (see, e.g., Chambers, Cleveland, Kleiner
and Tukey, 1982, Chapter 5). The sifting methods
include straightforward techniques like smoothing and
its generalizations (e.g., Hastie and Tibshirani, 1986),
and less immediate techniques like projection pursuit
(Huber, 1985) and the ACE algorithm (Breiman and
Friedman, 1985). These methods in effect search very
large spaces of structural models for one or a small
number that capture the strongest relationship in the
data between a dependent variable and a preselected
collection of explanatory variables.

Clearly, techniques serving these purposes are in-
dispensable, and good software (e.g., the S system,
Becker and Chambers, 1984) includes many of them.
In recent years, researchers have devised many new
descriptive techniques, and in the absence of any
widely accepted criteria for judging them, it is dif-
ficult to guess how useful these new techniques
will be. Mallows (1983) suggests an approach to
evaluating data description techniques that avoids
probabilistic interpretations. Mallows (1983) and
Chatfield (1985) argue that in many cases descriptive
techniques are all that is needed or possible for an
analysis, with Chatfield extending this argument even
to judgment of the statistical significance of an ob-
served effect.

The other of the two approaches to discovering
structure can be called the diagnostic approach. This
approach is sequential: one begins with an off the shelf
model (e.g., a linear model with homoscedastic normal
errors), then uses the data to test the assumptions of
that model and to alter the model and the data until
the model’s form and assumptions are no longer seri-
ously in conflict with the admitted data evidence.
These tests include tests for the appropriate scale of
the dependent variable (e.g., logarithmic or square
root), and tests of the predictive usefulness of addi-
tional explanatory variables (see Weisberg (1985) or
Atkinson (1985) for descriptions of these and many
other tests). Methods of this type have been most
highly developed for linear models with normal errors

(e.g., Cook and Weisberg, 1982), although recently

some progress has been made in extending them to
generalized linear models (Atkinson, 1985, Chapter 11
gives a survey) and to parametric models generally
(Cook, 1986).

These methods often take the form of hypothesis
tests. In practice, however, they cannot be taken at
face value as hypothesis tests with known operating
characteristics (as their creators are quick to point
out). In any given case they are applied in some unique
sequence with other tests and procedures, so their
actual frequency properties in that case are unknown.
These methods are cast as hypothesis tests for lack
of a better way to calibrate them, i.e., to think



264 J. S. HODGES

about what is big and what is small. Thus, although
diagnostic methods look more theoretically sound
than descriptive techniques, this appearance is not
compelling. This is not to say that diagnostic tech-
niques are not useful, only that they, too, lack a
theoretical basis that would permit them to be judged.
Weisberg (1983) offers the beginning of such a basis,
in a collection of principles for the construction of
diagnostic methods.

Box (1980), Berger (1984) and others (see Box, 1980,
page 386 for citations) suggest using the Bayesian
predictive distribution (described in Section 2.2 of this
paper) as a general model diagnosis tool: if the
observed data fall in the tail of the predictive distri-
bution, then the model and the prior should be recon-
sidered or replaced. In Box (1980), this suggestion is
carried through in one example (pages 386 and 387),
in which the prior distribution is a characteristic of a
physical process, not a representation of belief. Box
appears to suggest its use for priors representing belief
as well, and Berger (1984) does so explicitly. For the
first of these two kinds of prior distribution, Box’s
suggested tail area differs little from a P-value in
logical content. For priors representing belief, Box’s
suggestion has very different implications. Taken at
face value, it could indicate that a perfectly accurate
model should be discarded because the prior beliefs
about its parameters happened to be off the mark for
the period captured in the data. Implicit in this use of
Box’s idea, then, is some kind of sensitivity check on
the prior. Secondly, if used as a means for evaluating
prior distributions, it changes the nature of learning
via Bayes’ theorem, for it has the user first update his
beliefs (prior) by checking the predictive distribution,
then update them again using Bayes’ theorem. The
result is empirical Bayesianism through the backdoor,
a convergence that appears not to have been either
Box’s or Berger’s intent.

Diagnostic methods appear in introductory and in-
termediate statistics courses, and in some statistical

packages, and they are used. They address a concern

that troubles many people from their first encounter
with statistics—what if my assumptions are wrong?—
. in a straightforward way, although they have not been
integrated into either the Bayesian or the frequentist
approach to analyzing uncertainty. In addition, Ham-
pel, Ronchetti, Rousseeuw and Stahel (1986), repre-
senting the frequentist robustness school, argue that
by frequentist standards, the diagnostic approach is
inherently flawed because the analyst using it treats
the last model he settles on as if it is correct, thus
subjecting himself to avoidable risks of losses in- ac-
curacy and efficiency that robust methods are in-
tended to minimize.

Characterizing Structural Uncertainty. The second
of the two groups of statistical methods includes those
used to characterize structural uncertainty to allow it

to be propagated through the analysis of risk to the
measure of uncertainty attached to the substantive
conclusion. To introduce this idea, consider the recent
issue of the New England Journal of Medicine (Octo-
ber 24, 1985) that contained two apparently sound
papers on the effects of the use of postmenopausal
hormones, which contradicted each other. In his edi-
torial, Bailar (1985) discussed the two studies and
suggested that the contradiction could have arisen
because of the differences in the types of women
eligible for inclusion in the two studies, or because
“... the results of these studies (and by implication
the results of countless other observational studies)
are subject to a great deal more variability than is
captured in the usual kinds of statistical tests and
confidence limits” (page 1081). After listing what are,
in effect, a number of possible deficiencies of the
models underlying the two statistical analyses, Bailar
concluded that “[s]Juch problems would lead to the
improper calculation of error probabilities and confi-
dence limits” (page 1081).

This and Bailar’s suggested explanations are ex-
amples, described from a frequentist viewpoint, of
structural uncertainty that was not propagated
through the usual analysis of risk. The results of the
analyses of risk (hypothesis tests, confidence inter-
vals) in the two studies were treated as if the models
on which they were based were known to be exactly
true, with no account taken of the likely deficiencies
of those models.

Statisticians have taken several approaches to char-
acterizing and propagating structural uncertainty.
Frequentist statisticians have difficulty fitting the
idea into their scheme, because their approach is
highly dependent on deducing repeated sampling
properties from known distributional assumptions.
This difficulty is illustrated by the controversy over
the appropriate standard error to use for regression
coefficients estimated after applying the Box-Cox
method for selecting a power transformation (Bickel
and Doksum, 1981; Box and Cox, 1982; Hinkley and
Runger, 1984). Exponents of this school seem to be
more comfortable with sample re-use approaches to
characterizing structural uncertainty; for example, see
Freedman and Navidi (1986), in which a sample re-
use method is used to attack the model that Ericksen
and Kadane (1985) propose as a method for adjusting
the United States Census, or Efron and Gong (1983),
which gives a bootstrap demonstration of the insta-
bility of a common variable selection method used in
a medical prediction problem. But these methods have
only been developed as tools for criticism. As Efron
and Gong put it (page 48), “[n]o theory exists for
interpreting [this bootstrap demonstration of insta-
bility], but the results certainly discourage confidence
in the causal nature of the predictors” naively selected
by the common method.
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In recent years, Freedman has attacked several
studies on the grounds that they take insufficient
account of structural uncertainty, arguing that those
studies are misleading or worse because of that flaw
(cf. Freedman, 1981; Freedman, Rothenberg and
Sutch, 1983; Freedman and Navidi, 1986). I can hardly
agree more with his general position; it is one of the
main points of this paper. But Freedman’s tactics have
provoked substantial resistance, captured in a carica-
ture of his approach to structural uncertainty in
Dempster’s and Madansky’s discussion of Freedman
and Navidi (1986). According to this caricature, if a
model for the process of interest is acceptable, then
(frequentist) statistical methods can be used to make
forecasts and to attach a measure of uncertainty to
the forecasts. If no model is acceptable (an unspecifi-
able standard), then statistical methods should not be
used to aid thinking about making predictions and
choices based on those predictions, and statisticians
are obliged to defend their discipline’s virtue by de-
nouncing attempts to do so. But Freedman is too
subtle for this position. He shows acute awareness of
the various types of uncertainty described in this
paper—the first two references above are good cata-
logues of these types of uncertainty in energy policy
modeling. And as the conclusion to Freedman (1981)
shows, he is well aware of the need to form judgments
as a basis for action:

“When the basic theory is incomplete, or the data
sparse, ad hoc analysis by experts may be better
than a large scale econometric model. [footnote
omitted] In some cases, it may be still better to
tell the policymaker that his question is unan-
swerable. This might prompt a search for
policies which do not depend on knowing the
unknowable.”

But this raises more issues than it resolves. How are
the results of these ad hoc expert analyses to be
formulated? Surely they must not omit assessments
of the uncertainty that the experts attach to their
predictions. (In what sense are the energy policy
models Freedman attacks not ad hoc expert analyses,
albeit elaborate ones?) How should the judgments of
differing experts be combined? Because no policy can
be robust against all possible occurrences, and because
robustness costs, how should information or beliefs
about the relative plausibility of possible future
outcomes be used to evaluate robust policies?
Of particular relevance here, how should data and
data reduction techniques be used to inform all of
these judgments? It is difficult to see how these
questions can even be posed within the frequentist
framework.

The best known theorists of robust statistical meth-
ods have tried to formulate some types of structural

uncertainty and incorporate them into an approach to
selecting estimation procedures within the frequentist
interpretation. Huber’s pioneering approach (1964),
done within a frequentist decision-theoretic frame-
work, evaluated the properties of decision procedures
for all distributions within a neighborhood of a para-
metric model. Using asymptotic variance as his loss
function, Huber took a minimax approach, minimizing
the maximum risk over all distributions within the
neighborhood, instead of just for the parametric model
at the center of the neighborhood. Hampel (Hampel,
Ronchetti, Rousseeuw and Stahel, 1986, Chapter 1)
began with the idea of neighborhoods around models,
but took a different approach, concentrating on first-
order characterizations of the effects of model changes
on the results produced by decision rules. The key to
this characterization is the influence function, from
which Hampel and his colleagues derived measures of
gross error sensitivity (maximum estimation bias
caused by an infinitesimal change in distribution), the
asymptotic variance of estimation and similar quan-
tities. In this approach, optimal estimators are found
by choosing the measures for which one’s estimator
must do well, and finding the class of estimators
within which any improvement with respect to one
measure requires worse performance with respect to
another.

The novelty in these two approaches was the intro-
duction into the estimation problem of some uncer-
tainty about the accuracy of the model, particularly
about gross errors in recording or processing obser-
vations but also about other features of distributional
shape. Both approaches require judgment in the selec-
tion of the parametric model whose neighborhood is
to be considered. Huber’s approach requires another
judgment of the appropriate size of the neighborhood.
Hampel’s approach requires two other judgments,
namely which measures are to be used in the optimi-
zation, and which member of the resulting optimal
class is to be used. As with any frequentist procedure,

‘there is no way within these approaches to account

for the uncertainty one attaches to these judgments—
and after all, the neighborhoods permitted by these
methods are not capacious in general, so that the
model could be so far off that the minimax procedure
would give essentially no protection. Also, these meth-
ods do not obviate the need for diagnostic model
checking, so the theoretical problems mentioned for
diagnostic methods are present here as well. An
equally important difficulty is that these methods are
thoroughly oriented toward parameter estimation. I
know of nothing in this literature about applying
these methods to predictions, in particular, about
introducing the effects of model uncertainty into
the measure of uncertainty attached to a prediction.
Given the awkwardness with which frequentist
theory accommodates predictions (see Section 2.2),
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extending this approach to predictions will be difficult
if it is possible.

Berger (1984) arrives at a conclusion similar to
Huber’s, beginning from a Bayesian decision-theoretic
viewpoint. His main concern is that prior information
cannot be specified with perfect precision, and that
the preferred decision rule can depend on features of
the prior distribution chosen by convention or for
convenience. (Berger mentions that the choice of a
model is an expression of prior belief, so that uncer-
tainty about models would be included in his approach,
but he does not develop this and concentrates on the
more traditional kind of prior distribution.) Like
Huber, Berger proposes defining a neighborhood of
distributions around a prior that captures as much
information as the user can specify, and finding the
minimax Bayes rule within that class of priors. This
approach is similar to Huber’s, differing in the em-
phasis on prior distributions (as opposed to likeli-
hoods) and on introducing substantive information
into the selection of the neighborhood around the
nominal prior. In contrast to the frequentist robust-
ness approach, however, this Bayesian approach can
be extended to predictions trivially, in theory, via the
Bayesian predictive distribution (see Section 2.2). In-
stead of concentrating on parameter estimation, the
method would concentrate on the predictive deci-
sion problem, but otherwise the approach would be
identical.

Both of these minimax approaches are special cases
of a much broader technique, namely sensitivity
analysis. Of all the techniques related to model uncer-
tainty, this is the only one applicable to elements of
structure other than the model and data structure. In
a sensitivity analysis; the analyst varies the details of
his specification of structure to see if the conclusions
depend on those details. Many statisticians prefer to
cast their treatment of structural uncertainty explic-
itly as sensitivity analysis. For example, in Cook’s
(1986), scheme, the effects of a broad range of model
expansions (including differential case weighting and
case deletion) can be examined by considering how
they change the maximum likelihood estimate of the

' parameter of interest. Changes in the maximum like-
lihood estimate are calibrated by inserting the esti-
mate under the expanded model into the log likelihood
under the original model and subtracting the new log
likelihood from the original maximum. Johnson and
Geisser (1982, 1983) and McCulloch (1985) use Baye-
sian predictive distributions for a similar calibration.
These researchers concentrate on abstract, nonsub-
stantive measures of change, like curvature and
change in log likelihood (Cook) or Kullback-Liebler
divergence (Johnson-Geisser and McCulloch).
Dempster (1975) emphasizes the substantive context
of the sensitivity analysis: “judgments [of sensitivity]

can only be made relative to assessments of ranges of
failures in the accuracy of the data and in the validity
of the models (i.e., failures deemed plausible enough
to rate concern) and relative to assessments of the
effect of such failures on the import of the analysis”
(page 1).

Dempster’s approach to sensitivity analysis differs
from the other approaches in emphasizing the sub-
stantive judgment. But like the others, he offers little
advice about what to do if the analysis is sensitive to
changes in the specification. Berger (1984) says that
if the outcome of your analysis is sensitive to which
of the priors in your neighborhood you use, you should
seriously consider not drawing any conclusion. Vasely
and Rasmuson (1984) take this position for other
uncertain features of the specification as well, arguing
that the sensitivity analysis is the appropriate form
for the product of the quantitative analysis. This
brings us back to the question raised in the discussion
of Freedman’s approach: how is this information to be
used, that is, how is this manifest uncertainty to be
used in the eventual decision?

One straightforward approach motivated by Baye-
sian thinking is to place a probability distribution on
the area of remaining uncertainty (e.g., over Huber’s
neighborhood of distributions) and integrate it out. In
Box and Tiao (1962), this is accomplished by expand-
ing the model (in their example, by adding a kurtosis
parameter in a two-sample location parameter) to
capture the range of plausible model uncertainty.
Regression diagnostic techniques often produce a
range of distinct models having different scales and
collections of regressors; Box and Tiao’s model expan-
sion approach can accommodate such a range of
models, but does so awkwardly. An alternative sug-
gested by Leamer (1978), Zellner (1984) and others is
to assess prior probabilities for the distinct models,
update those probabilities via Bayes’ theorem if ap-
propriate and use these probabilities to mix the pre-
dictive distributions from the distinct models. Special
cases of this approach are suggested by Box (1980),
Harrison and Stevens (1976) and Smith (1983). Berger
(1984) mentions it, but dismisses it as generally in-
tractable.

This solution repels many people because, in the
words of an anonymous referee, the apparent result is
that we will “build layer on layer of ever more remote
concepts of uncertainty.” (Shafer (1986) discusses this
as a manifestation of “the conditional probability fal-
lacy,” which he considers a telling flaw in the Bayesian
scheme.) It is an unavoidable feature of the Bayesian
method that at some point the user must express a
Jjudgment as a probability distribution without further
qualifications about its uncertainty. The issue is then
the level at which to do so. This decision cannot be
made without considering the context of the particular



UNCERTAINTY, POLICY ANALYSIS AND STATISTICS 267

substantive problem, specifically the importance of
the remaining structural uncertainty relative to the
other types of uncertainty, conditioned by the con-
straints of budget and time that are present in any
analytic exercise (but especially policy analytic exer-
cises). It is clear that failing to propagate structural
uncertainty biases a policy choice in favor of policies
that rely on more certain information. At this point
in the development of statistical method, the practical
issue is whether this bias ever matters, and if so, when.

This is an empirical question, and it can be ap-
proached empirically. This empirical approach, remi-
niscent of Tukey (1962), can be begun with tools that
are available now, by re-doing analyses, allowing a
range of models and mixing the corresponding range
of predictive distributions according to judgments (up-
dated by the data) about the likely accuracy of the
various models. Researchers in several fields—in Air
Force and Army logistics at RAND, in nuclear missile
accuracy (Bennett, 1980), in broader matters related
to nuclear war (Blackett, 1962), in quantitative risk
assessment (Hattis and Kennedy, 1986; Hattis and
Smith, 1985; Vasely and Rasmuson, 1984)—express
the belief that structural uncertainty matters. These
beliefs have been reached without tools that permit
the effect of ignoring structural uncertainty to be
expressed explicitly. Draper and Hodges (1987) pursue
the approach of mixing predictive distributions for oil
price predictions.

2.2 Risk

Having tentatively conditioned on some structure
for making predictions, which usually includes a class
of stochastic models with some unspecified parame-
ters, the analyst can then use his data to differentiate
among members of the class of models as more and
less plausible by estimating the parameters or com-
puting confidence regions or posterior distributions
for them. Armed with this information about the
plausibility of different parameter values, he must
then account for the future stochastic behavior of the
model conditioned upon.

, These are the two elements of risk, the second broad
type of uncertainty. (This distinction was made, using
different terms, in DeGroot (1982) and Cyert and
DeGroot (1984).) One element refers to the past: if we
assume, in my running example of predicting airplane
parts failures, that the monthly counts of F16 radar
failures are realizations of independent Poisson ran-
dom variables with mean Af;, where f; is the number
of hours F16s flew in month j and A is an unknown
positive constant, then our data contain information
about which values of \ are more and less plausible.
This element of risk will be called “estimation risk.”
The second element of risk refers to the future: even

if next month’s count of radar failures is a Poisson
random variable with a known mean, the number of
failures next month is still uncertain.because it is a
random variable. 'This element of risk will be called
“prediction risk.”

Estimation risk is the most famlhar of the kinds of
uncertainty discussed so far. It is the central concern
of most statistics and econometrics instruction and
research. Huge bodies of theory and method have been
developed for using data to make statements about
parameters. Most of what analysts report—parameter
estimates, hypothesis tests, confidence regions—ad-
dresses this element of risk.

But very little effort is devoted to prediction risk.
Many students see it in an elementary class, in an
example like the following. Suppose that the observ-
ables xj,j=1,2, ..., n, n + 1, are postulated to be
independent normal random variables with mean 6
and variance 1, where 6 is an unknown and unobserv-
able parameter. Then the average of the first n obser-
vations, X, is a normal random variable with mean 6
and variance 1/n, so that x,,, — % is normal with mean
0 and variance 1 + 1/n, independently of 6. This
variance reflects the two elements of risk: 1/n and 1
allow for estimating and predicting, respectively. From
this modest sleight of hand, it follows that the absolute
value of x,,; — % will be less than 1.96 (1 + 1/n) with
probability 0.95, using the frequentist interpretation
of probability.

This example is useful because it conveys the dif-
ference between the measures of uncertainty to be
attached to an estimate of § and to a prediction of a
new value of y, the latter being larger. In spite of the
importance of this distinction, even some of the best
statistics departments do not teach it. For example, a
colleague of mine got his Ph.D. from the Berkeley
statistics department—the flagship of the so-called
American school of statistics—in 1981 without ever
hearing of it. This is a reflection of the discipline’s
orientation toward inference about parameters, a topic
to be discussed further in Section 3.2.

This orientation notwithstanding, policy analysts
(in particular, but many other users of statistics as
well) don’t need to know if § is greater than 3, they
need some information about the likely value of some
future observable. Statistical researchers have pro-
vided few practical tools for assembling this informa-
tion—for combining information about estimation
and prediction risk into a single statement of infor-
mation about the future, given the past—so users must
improvise. In the software used at RAND to study the
Air Force spare parts system, estimates of parameters
of assumed failure models are used as if known without
error, thus ignoring the substantial estimation uncer-
tainty and systematically overstating the certainty of
predictions of failures. This introduces a systematic
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bias into the policy deliberations, as I will argue fur-
ther in Section 3.2.

Although they are rarely implemented in software,
many techniques have been devised for producing
statements that combine information about the two
kinds of risk. Analytical frequentist tools, like the
example above, have been developed for situations
where the same trick or an analogue to it can be used
(Geisser, 1980a). This is not a large collection of
situations. Sample re-use methods, such as cross-
validation- (described in Stone (1974) and Geisser
(1980a), Section IV, and implemented in the Classifi-
cation and Regression Tree [CART'] program of Brei-
man, Friedman, Olshen and Stone, 1984) and the
bootstrap (see Efron and Gong, 1983, or Efron and
Tibshirani, 1986) are much more widely applicable,
although I do not know of many predictive applica-
tions of them.

The Bayesian approach, in theory, permits predic-
tive statements to be made regardless of the model.
The vehicle is the predictive probability distribution
(Geisser, 1971, 1980a) for the future observation. If
f(x | model, 8) is the probability function or probability
density of the observable x given the model and its
parameter 0, and p(f | model, data) is the posterior
distribution of 6, then the predictive distribution of x,
conditional on the data, model, and prior distribution,
is

f(x | data, model, prior)
= | f(x|model, 8)p(f | model, data) df

if 6 has a continuous probability distribution or the
obvious analogue if § has a discrete probability distri-
bution.

Predictive distributions are not novel, but they are
rarely used in applications; the paper by Duncan and
Lambert (1986) is the only example I can find. This
has happened at least partly because, although in
theory they can be computed for any model, in practice
the necessary integral or sum is usually intractable. A
first order approximation for mixed or unmixed pre-
dictive distributions, akin to the usual large sample
likelihood approximation and as easily computed, can
be derived without difficulty (Draper and Hodges,
1987). Some better but more elaborate approximations
(e.g., Lee and Geisser, 1972; Tierney and Kadane,
1986) and numerical methods (Smith, Skene, Shaw,

Naylor and Dransfield, 1985) have been developed,

but they are not readily available yet and their per-
formance in practice has not been widely tested.

2.3 Technical Uncertainty

The third of the broad areas of statistical activity is
the execution of technique. As noted in the introduc-

tion, execution has two subsidiary areas of activity,
namely the processing of data and the application of
approximations. '

Data processing can, in turn, be broken into two
activities: manipulating data for input to substantive
algorithms, and application of those algorithms. Care-
ful file manipulation requires familiarity with the data
collection systems, to understand the nature and
meaning of the data items, and sound practices of data
handling. The object of expending resources on these
practices is to gain some confidence that the product
of the processing is not garbage—a real concern when
working with massive data files collected for an ad-
ministrative purpose. The selection of substantive al-
gorithms is important both for the cost of using them
(including the time and effort they require of the user)
and for their numerical stability when applied to data
(i.e., the certainty one has that they produce meaning-
ful results). I consider the latter under the application
of approximations.

Each of these aspects of data processing leads to a
substantial field of inquiry, but for the purposes of
this paper a few things are immediate. First, if data
aren’t processed properly, subsequent work with the
processed data is pointless or excessively difficult.
Second, people who work with real data on real prob-
lems devote tremendous resources to turning raw data
into usable files. Within RAND, statisticians who
specialize in this area are in constant demand. Finally,
although statisticians and subject matter researchers
must and do make tradeoffs between devoting
resources to careful data handling and devoting re-
sources to the other, better publicized kinds of uncer-
tainty, we have little theory to guide these tradeoffs.
Relles (1986) covers some of these issues; Spencer
(1985), although not directly related, addresses prob-
lems similar to those discussed here.

The second subsidiary activity within execution is
the application of approximations. Approximations
and numerical methods are unavoidable. But these
technical aids introduce their own uncertainty. Ana-

"lytical approximations are inexact, usually by an

unknown amount; many numerical optimization rou-
tines find local optima and may not find global optima;
optimization routines can, particularly for higher di-
mensions, “get lost” in subspaces or in flat spots of
the function being optimized. From the analyst’s point
of view, uncertainty about models or about the values
of the parameters of those models, and uncertainty
about the accuracy of an approximation produce the
same effect: they diminish the confidence with which
he can predict.

But although it is standard practice to impress on
statistical consumers the measure of uncertainty at-
tached to a parameter estimate, it is not standard to
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do the same for the uncertainty attached to an ap-
proximation. Consider the popular software packages.
Except for the normal linear model, maximum likeli-
hood estimates are actually local maxima of the like-
lihood, and the “t statistics” for those estimates are
computed from the usual large sample normal approx-
imation. It is not cornmon practice for documentation
to inform users of either the local optimization or the
normal approximation. But statistical consumers do
consider technical uncertainty when selecting tech-
niques. A few years ago, RAND’s computation center
changed its billing algorithm to make off-hours com-
puting free, and users responded with much greater
willingness to replace analytical approximations with
Monte Carlo approximations, for which operational
assessment of accuracy is usually simple. Given that
these users could have used Monte Carlo approxima-
tions when night computing was not free, this change
of behavior does reveal a belief that approximation
error is a lesser concern than other things on which a
computing budget can be spent. Now that a nominal
charge has been introduced at RAND for night com-
puting, however, the persistent interest in Monte
Carlo approximations suggests that knowledge about
approximation error is worth something.

The technical barriers that force the use of approx-
imations have been besieged by a vigorous and fruitful
research effort in recent years. Saddlepoint approxi-
mations and higher-order Edgeworth expansions have
been used to improve on workhorses like the usual
large-sample normal approximation (e.g., Durbin,
1980). Differential geometry is being used for many
purposes related to curved exponential families in
general and nonlinear regression in particular (e.g.,
Bates and Watts, 1980; Cook and Goldberg, 1986).
New numerical integration techniques should make
possible the routine use of Bayesian methods for non-
conjugate priors (Smith, Skene, Shaw, Naylor and
Dransfield, 1985, Section 3; Tierney and Kadane,
1986), and others are emerging (e.g., Tanner and
Wong, 1987). But except for the Bates-Watts and
Cook-Goldberg work on nonlinear regression models,
papers by Minkin (1983), Jennings (1986) and Hodges
(1987) on normal approximations, and the dissertation
by Jones (1986) on computation errors, this work has
produced better and more costly approximations, not
better ways to think about the tradeoffs involved in
the use of approximations.

Bates and Watts (1980) give two measures for as-
sessing the accuracy of inferences made using the
usual normal approximation to the distribution of the
maximum likelihood estimate in nonlinear regression.
Minkin’s methods give bounds on the nominal confi-
dence coefficient of elliptical approximations to
likelihood regions, and Hodges’ approach gives two

measures of the accuracy of a wider range of normal
approximations (one of these is a refinement of Jen-
ning’s method). Although the methods of Hodges and
Minkin use nominal confidence coefficients and prob-
abilities, invoking probabilistic intuitions about un-
certainty, neither they nor the Bates-Watts methods
provide an explicit way to evaluate the importance of
technical uncertainty, either relative to the other
kinds of uncertainty or in the ultimate policy choice.
Jones’ method (1986) would allow this incorporation,
but as yet it has only been applied to the computation
of sums.

I frequently hear the opinion that these kinds of
inaccuracy are not important, that they are an order
of magnitude smaller than the other kinds of uncer-
tainty. This is an empirical proposition—one without
the support we would demand for a scientific assertion.
This proposition could be assessed by an exercise
similar to the one proposed in Section 2.1, by gathering
a collection of real problems, on which standard
models and common approximations were used, and
evaluating how far off the approximations really were.
With such a collection of problems, we could begin to
classify situations (a situation being a combination of
a model, sufficient statistics and an approximation)
in some manner useful for routine operational assess-
ment of the accuracy of approximations. This would
be nothing but a more formal version of what practic-
ing statisticians now do informally, but it would be
available to all and it would put a more dependable
basis under rules of thumb.

2.4 Persistence of Structure and the Value of
Effort

So far, my discussion has been typical in that it
relies on the idea of an unchanging true mechanism
out there in the world, that generated the data and
will generate future observables and whose nature is
at least partially discernable with available data. On
this foundation, we can build assessments of the un-

" certainty of predictions, assembling uncertainty about

models (within a class capturing important doubt
about the true mechanism), about parameter values
given a model, about future observables given a model
and parameter values, about inaccuracies of approxi-
mation and about noise introduced by data processing.
But as a framework for assessment of prediction un-
certainty, this construction is incomplete and poten-
tially misleading. The true mechanism can change or
the mechanism can remain unchanged, but some con-
dition that was fixed when the data were generated
could change before or during the period being pre-
dicted. In our Air Force work, we have data from
peacetime, and must make predictions for wartime.
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We know that the failure processes can differ substan-
tially under these two conditions. Data collected dur-
ing intensive exercises are sometimes useful, but they
do not solve our problem: the circumstances of an
exercise, e.g., whether the accuracy of dropped bombs
is measured, have a strong effect on whether part
failures are reported during the exercise, and thus on
the data produced by the exercise.

Implicit in the above framework is an assumption
of persistence of structure, i.e., that the elements of
structure, particularly the element captured in the
model, persist through time. To illustrate the idea
further, if a breakthrough is made in the understand-
ing of a chemical process, that breakthrough will
decrease uncertainty in the prediction of outcomes
involving that process wherever and whenever the
appropriate conditions can be created. The structure
captured by this new understanding persists. But a
breakthrough in the understanding of the U.S. econ-
omy in 1825 does not necessarily reduce the uncer-
tainty of any predictions anywhere; in particular it
does not necessarily improve our ability to predict how
any part of the U.S. economy will perform in 1990,
say. The output from a given set of inputs to the U.S.
economy would be different in 1990 than in 1825
because the relevant structure does not persist, it
changes. This is more than a matter of changing
parameter values; the structure itself changes.

This is not a new idea. Keynes, in his exchange with
Tinbergen (Keynes, 1939, 1940; Tinbergen, 1940)
about models of national economies, said that

“IpJut broadly, the most important condition is
that the environment in all relevant respects,
other than fluctuations in those factors of which
we take particular account [by including them in
the model], should be uniform and homogeneous
over a period of time. We cannot be sure that
such conditions will persist in the future, even if
we find them in the past. But if we find them in
the past, we have at any rate some basis for an
inductive argument.”

In policy analysis—where we cannot wait a hundred
years for the right theory—and with the easy availa-
bility of “curve fitting” methods, which some users
misinterpret as absolving them of the obligation to
understand what they are modeling (see Hattis and
Smith, 1985), persistence is more deserving of atten-
tion. Without an assumption of persistence of struc-
ture, many popular and useful techniques—including
Box-Jenkins modeling and smoothers, for example—
are not very interesting. But further, the degree of
persistence one is willing to assume places a limit on
one’s ability to reduce structural uncertainty and risk
in predicting—one of Keynes’ points in his critique of
Tinbergen. If the relation of future structure to pres-

ent and past structure is highly uncertain, perfect
knowledge of present and past structure will not give
much certainty to predictions. Even if data on the
present and the past were perfectly collected and
unambiguously interpretable, if structure does not
persist little could be gained by applying elaborate,
costly techniques to those data.

Degrees of persistence of structure can be repre-
sented in the Bayesian approach. As suggested in
Section 2.1, it is possible to mix predictive distribu-
tions from different structures that capture the range
of plausible possibilities for the future period of inter-
est. A version of this idea is presented in Harrison
and Stevens (1971, 1976), and West (1986), and the
idea could be partly captured within an expansive
model like the vector autoregressive models of Litter-
man (1986).

3. STATISTICS AND POLICY ANALYSIS

When I describe the scheme in Section 2 to re-
searchers at RAND, it is well received because it
corresponds to their experience: the available data are
usually seriously deficient and distressingly scarce,
models in the literature are not particularly plausible
but are imbued with respectability by customary
usage, and approximations are ubiquitous. But time is
short, and clients are often analytically unsophisti-
cated and not particularly interested in the elaborate
brand of equivocation in which statisticians specialize.
A theoretical scheme to incorporate the three kinds of
uncertainty is interesting, but how can a practicing
analyst use it?

The scheme presented in Section 2 is valuable for
at least two reasons. First, it provides an explicit
framework for considering the strategy of an analysis,
for weighing the tradeoffs made in devoting resources
to diminishing or characterizing the different types of
uncertainty. This is examined in Section 3.1. Second,
it provides the basis for a proper system of accounting
for uncertainty, and extends statistical language to

"include many problems that currently must be han-

dled outside it. This is examined in Section 3.2.

3.1 Strategy of Analysis: Making Tradeoffs

People who use statistical methods to extract infor-
mation from data constantly make tradeoffs among
the three kinds of uncertainty. I do not suggest that
anybody try to construct a formal scheme for captur-
ing these tradeoffs (although such a scheme might
have a place in the economics of information), mainly
because it immediately creates a problem of infinite
regress. Rather, the point is that it is beneficial to be
aware of tradeoffs that must be made, and preferable
to be explicit about them.



UNCERTAINTY, POLICY ANALYSIS AND STATISTICS 271

For example, until recently the models of the part
failure and repair processes used at RAND were cho-
sen to permit analytical calculations. This was an
explicit acceptance of diminished realism of the
models (more structural uncertainty) in return for
increased economy and precision in calculation (less
technical uncertainty). If you prefer, a larger risk of a
prediction error induced by the representation of
structure was accepted in return for a smaller risk of
error induced by the use of approximations. Software
under development reflects a reversal of this choice:
the structures needed for analytical calculations are
too restrictive to counterbalance the diminishing com-
puting cost needed to get precise answers from Monte
Carlo simulations.

But either of the choices in the last paragraph can
be justified, depending on the circumstances. Software
plays a crucial role here. The GLIM system (Baker
and Nelder, 1978), for example, permits the following
kind of choice: by restricting himself to generalized
linear models, an analyst gains the ability to consider
a large range of models easily and cheaply. That
analyst might accept an increment of structural un-
certainty by restricting himself to the models handled
by GLIM, but the ease and thrift of GLIM allow him
to consider a greater range of models, thus reducing
the increment.

Many times at RAND we have data sets that are so
enormous (e.g., the entire Medicare case file for several
years) that expensive logistical problems can be
avoided with little loss by using samples of the data
" set. This is obvious for exploratory work—who wants
a scatter plot of ten million points?—Dbut it also holds
for the products of the analysis, say, for confidence
intervals. A data set can be so large that a 20% sample
of it will still give confidence regions small enough
that the increase in size over full sample regions
cannot be detected among the other uncertainties in
the problem (i.e., the region is still too small to be
believed). In such a case, the substantially reduced
cost and risk of processing errors can justify using the
sample instead of the whole data set.

Similarly, an analyst might choose to avoid iterative
methods. This might mean accepting estimation
methods with larger standard errors or approximation
error in return for fewer problems with iterative pro-
cedures (e.g., convergence) and lower cost. This
tradeoff is implicit in the methods of West, Harrison
and Migon (1985) and West (1986). This choice be-
comes particularly important when the data set is
large and the iterative procedure requires one pass
through the data for each iteration.

Anyone who applies statistics to real problems can
add examples to this list—compromises like these are
part of the statistical common sense that practitioners
develop. But in the absence of a common measure for

all the types of uncertainty, it is difficult to apply to
these tradeoffs what we know about allocating re-
sources among competing demands. The scheme in
Section 2 offers a possibility, with the common meas-
ure being predictive uncertainty expressed as proba-
bility.

3.2 Accounting for Uncertainty

The absence of a system of accounting for uncer-
tainty and for analytical tradeoffs creates several
problems that do not fit into current statistical theo-
ries. With the scheme presented in Section 2, some of
these problems can be treated as statistical problems,
as they should be.

To begin with something familiar, as part of an
analysis a statistician might be inclined to expand his
model by adding parameters. If he uses the usual
statistical framework and tools, he converts previously
uncounted structural uncertainty into counted esti-
mation risk, reducing his unexplained residuals in an
exercise restrained only by consideration of the
vague evil of “overfitting.” I have never seen a se-
rious attempt to define overfitting, but the notion
is operationalized in some smoothing techniques
through penalized likelihoods, in which a penalty for
the roughness of the smoothed fit is added to the log
likelihood (as entry points to this large literature, see
Leonard, 1978; O’Sullivan, Yandell and Raynor, 1986).
The notion of overfitting that is almost explicit in
Leonard’s paper is that past a certain point, choosing
a fitted model (in his case, a density estimate) closer
to the observed data means choosing a model that is
less probable according to the prior distribution of
densities in the space of continuous functions. The
extension of this idea is natural within the scheme
presented in Section 2, and hardly needs to be re-
worded at all. Overfitting occurs when movement from
a less to a more elaborate model means moving to a
model with lower posterior probability (in spite of
smaller residuals, for example). This fits naturally into

" the mixing approach suggested in Section 2.1, in which

the predictive distributions corresponding to the var-
ious models are mixed according to the probability
assigned to the models. A model believed to be over-
fitted would be assigned a relatively smaller probabil-
ity for that reason, and accordingly it would contribute
less to the mixture. This is analogous to the effect
produced by shrinkage estimators, some of which have
explicit Bayesian interpretations.

Another problem permitted by the absence of an
accounting system is model stereotyping: some fields
develop stereotypical models or modeling approaches.
For example, Builder (1986) contrasts the modeling
styles of the United States armed forces: Army mod-
elers prefer highly detailed models, whereas Air Force
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modelers let the level of detail depend on the problem.
Economists, for another example, work hard to ex-
press ideas in operational forms, to divine behavioral
relationships and to. gather data, and all too often
dump this work into a linear or log-linear regression
with scarcely a second thought. As an illustration,
Feldstein’s (1975) policy for eliminating wealth effects
in local education spending depends entirely on his
unexamined assumption of a log-linear regression. If
the log-linear form is incorrect, his recommendation
is as likely to produce perverse wealth effects on local
education spending as the competing policies he crit-
icizes. In a similar fashion, military logistics modeling
has been stalled for decades, unable to move beyond
compound Poisson models. Clearly, structural uncer-
tainty deserves more attention, and within the scheme
presented in Section 2, it gets it.

There is another more subtle effect like this. A
model can develop momentum: people working on a
problem become accustomed to it, larger models are
built on it, computer programs are written for it and
the language of workers in the field can even come to
be defined in its terms, which may not be meaningful
if the model is badly inaccurate. All of these things
have happened in the forecasting of Air Force spare
parts requirements. A similar effect has occurred with
models of conventional forces in the United States
Army, which are used to make decisions about
purchasing, organization, doctrine and training
(Stockfisch, 1975). Again, the inappropriateness of
this tendency is clear in a scheme that treats struc-
tural uncertainty like it treats risk.

Finally, the absence of a proper system of account-
ing for uncertainty makes it difficult or impossible to
attach a believable measure of uncertainty to a pre-
diction. In the Air Force work I have described in this
paper, structural uncertainty, estimation risk and
technical uncertainty are ignored in numerical calcu-
lations. Hattis and Smith (1985, Section 3.1.3)
describe a similar practice in quantitative risk assess-
ment. In probabilistic risk assessment for nuclear
power plants, uncertainty about the consequences of
an accident is not propagated—is treated as if it
doesn’t exist—precisely because it is so great (Vasely
-and Rasmuson, 1984). Ignoring these kinds of uncer-
tainty amounts to acting as if more is known than
actually is. This introduces a consistent bias into
policy considerations based on these calculations,
because the efficacy of some policy options—like pre-
positioning of spare parts and repair facilities—de-
pends on knowing where and when part failures are
going to occur, although others—such as making a
heavy investment in lateral resupply capability—do
not.

This problem also manifests itself in the pervasive
orientation toward parameter estimation mentioned

in Section 2.2, and the resulting widespread use of
statements about parameters for predictive purposes.
For example, Ehrlich (1975) postulated utility maxi-
mizing behavior by murderers to motivate a Cobb-
Douglas “production function” for the rate of murders
in the United States as a function of the rate of
executions, among other things. (For a description of
Cobb-Douglas production functions, see Mansfield,
1979, page 150.) In this specification, the deterrent
effect of capital punishment is captured in a3, the
elasticity of the murder rate with respect to the exe-
cution rate. (This elasticity is (0Q/0E)(E/Q), where @
is the murder rate and E the execution rate. See
Mansfield, 1979, page 24.) Using aggregate data for
the United States for the years 1933-1969, and some
minor variations on his specification, Ehrlich got es-
timates for a3 ranging between —0.039 and —0.074,
with ratios of estimates to approximate standard er-
rors ranging between —1.59 and —3.82.

Ehrlich interpreted this as evidence that capital
punishment has a deterrent effect. Using one of his
estimates for a3, he then predicted that eight potential
murder victims would be spared for each execution.
When the endpoints of the 90% approximate confi-
dence interval for a; were used to calculate this
tradeoff, the “expected tradeoffs . . . range[d] between
limits of 0 and 24” (page 414). This prediction was
surrounded by verbal qualifications. For example,
Ehrlich acknowledged that it was inherently weak
because it “may be subject to relatively large predic-
tion errors” (page 414)—even though his article con-
tains no evaluation of the predictive power of his
result, not even the R? values for his regressions—and
that the “validity” of his estimated tradeoff “is con-
ditional upon that of the entire set of assumptions
underlying the econometric investigation” (page 414).

This paper spawned a substantial scholarly litera-
ture (at least 168 citations in the Social Science Ci-
tation Index up to August 1986) and was a central
part of the Solicitor General’s argument to the Su-
preme Court in Gregg v. Georgia (see Justice Mar-

. shall’s dissent, 1977, page 909), which reaffirmed the

constitutionality of capital punishment (Glenn, 1978).
Taking into account Ehrlich’s paper and the subse-
quent criticisms of it, the majority opinion of Justices
Stewart, Powell and Stevens (1977) in Gregg v. Georgia
found the evidence of a deterrent effect to be “incon-
clusive” (page 881) and dJustice Marshall declared
Ehrlich’s study “of little, if any, assistance in assessing
the deterrent impact of the death penalty” (page 909).
Both the court majority (page 881) and Marshall
(page 909) cited papers criticizing Ehrlich’s use of data
aggregated across the entire United States to draw
inferences about the effect of state laws, the sensitivity
of Ehrlich’s finding to the choice of time period used
in his regressions, the quality of his data, the choice
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of explanatory variables, the absence of consideration
of the collinearity of the explanatory variables and the
choice of a functional form for the regression. In effect,
these critics—who for the most part used Ehrlich’s
own data—performed the assessment of structural
uncertainty that Ehrlich omitted. It is reasonable to
wonder how much less influential his paper would
have been had it included an accounting of predictive
risk and a proper consideration of structural uncer-
tainty.

This inability to capture structural uncertainty, par-
ticularly uncertainty about the model, has a deeper
effect. Consider the statistical techniques used in set-
ting radiation exposure standards. The effects of long
term exposure to low levels of radiation are beyond
the reach of laboratory methods. Radiation standards
are set by subjecting animals to large doses of radia-
tion, observing cancer rates, estimating a model for
the relationship between dose and cancer rate, and
extrapolating back to the low doses (Kalbfleisch and
Prentice, 1980, page 69; Hattis and Kennedy, 1986;
Hattis and Smith, 1985). Leaving aside the issue of
extrapolating from animals to humans, the low dose
extrapolation is purely conventional. Without obser-
vations on animals subjected to the lower doses, there
are no data against which to check the adequacy of
the model. Kalbfleisch and Prentice give two models
that have plausible substantive rationalizations, but
note that “. .. [d]ifferences in tail shape for these
models generally lead to completely different low dose
risk estimates” (page 69). Thus, radiation standards
are largely determined by the choice of a model, i.e.,
by the selection of a convention.

The selection of this convention—that determines
standards that can affect large numbers of lives—is
made perhaps by a few experts, or perhaps by a few
people who know how to run logistic regression pro-
grams and little about the subject area (Hattis and
Smith, 1985). This selection can have a huge effect on
the eventual policy choice, yet there might be no
evidence in the record that any selection has occurred.
An analogy can be drawn to the larger scale debate
over the terms and ethical presuppositions that will

. be used to construe issues. This latter goes on con-
stantly in attempts by contending parties to construe,
say, abortion as a legitimate choice a woman must
have or as a heinous crime. The choice of the terms
in which issues will be construed is at the core of
democratic politics. But most models, in terms of
which technical issues are construed, are chosen qui-
etly by experts and accepted with little public con-
tention: models for nuclear reactor safety, for safe
radiation levels, for food inspection schemes, for
pension projections, for the accuracy of nuclear mis-
siles and so on. As the low-dose extrapolation example
illustrates, our tools can induce substantive outcomes

by their inability to propagate model uncertainty, that
is, by the information inserted into deliberations by
their use (Section 3.1.2 of Hattis and Smith (1985) is
of particular interest in this regard).

4. CONCLUSION

The goal of this paper was to make a beginning at
devising language and ideas that would allow a more
complete context for quantitative empirical analysis,
particularly policy analysis. The main thrust of the
attempt was to distinguish among types of uncertainty
that an analyst faces, to describe their natures and
catalog statistical methods used to analyze them and
to apply this construction to the strategy of analysis
and to the problem of properly accounting for uncer-
tainty. Clearly, much work remains to be done in
developing the context described here. In particular, I
know of no explicit system embodying the scheme of
three uncertainties. The theory of de Finetti (1974,
1975) comes closest, but his theory lacks a crucial
connection to real problems, and this paper is an
attempt to provide the connection. I have suggested,
in an echo of Tukey (1962), an empirical approach to
the matter of whether the ordinarily omitted types of
uncertainty are important, and to constructing an
operational understanding of the accuracy of approx-
imations. These two tasks can be undertaken without
new theory, and work is in progress.
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