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from the training sample as priors, construct a poste-
rior predictive distribution for the unobserved time
point given that individual’s growth curve up to that
point. The result of all this will be an analysis in which
the data help make the necessary exchangeability
judgments adaptively, and in which the posterior pre-
dictive variability captures all three sources of uncer-
tainty above—structural, estimation and prediction.

I am grateful to Professor Rao for having written a
paper that provoked a great deal of thought in me,
and I look forward to comparing the results of this
propagation of uncertainty analysis with those from
his prediction methods and from other approaches to
prediction in growth curve models.
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Comment«

Alan Julian Izenman

1. INTRODUCTION

It gives me great pleasure to comment on this paper
by Professor Rao. The central issues raised here are
choice of a prediction model and assessment of asso-
ciated prediction errors for growth curve data. Profes-
sor Rao has given us a number of different approaches
to these problems. I offer a few general comments and
some specific comments, mention alternative direc-
tions in growth curve modeling and prediction and
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also make some comments on the mice data used in
this paper.

2. SOME GENERAL COMMENTS

For a statistician, context should always play a role
in the modeling process. Too often, data are analyzed
without regard to the original purpose of their collec-
tion. This can be especially true when modeling a
growth process where biological reasoning may help
in the modeling and subsequent interpretation of re-
sults. The first thing I noticed about this paper is that
there is no clear description of the three data sets used
as illustrations or why they are even interesting for
prediction purposes. (Does anyone understand what
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“the ascending part of the mandible” means as a
definition of ramus height? What was actually meas-
ured for the dental data?) For the record, the ramus
data (Table 3) originally appeared in Elston and Griz-
zle (1962) and the dental data (Table 4) in Potthoff
and Roy (1964). Contrary to the legend of Table 4,
the dental data were not mentioned in Grizzle and
Allen (1969).

For assessing prediction error and thereby finding
a reasonable predictor, Rao follows Stone (1974) and
Geisser (1975a) in using a cross-validation (CV) cri-
terion computed via a “leave-one-out” algorithm. The
CV criterion is used in this paper to choose an optimal
prediction function from a given class of such func-
tions (ranging from linear regression functions to
polynomials to factor analytic type functions) by se-
lecting the best subset of available predictor variables.
Thus, for linear regression growth models, it reduces
to selecting a subset of the immediately previous meas-
urements; for polynomial growth models, the choice
involves a trade-off between the degree of the poly-
nomial and the number of immediately previous meas-
urements; and for factor analytical type growth
models, the choice is the number of factors. This use
of cross-validation is similar in spirit to that used by
several authors for optimally choosing a bandwidth in
nonparametric density estimation, regression and
spline smoothing contexts. However, in this paper, the
only insight we get into the CV procedure is its appli-
cation to three very similar data sets. Because there
appears to be nothing special in the way these data
sets were treated throughout the paper, Rao could just
as well have used a single (or even a simulated) data
set to illustrate his points. I think that a more carefully
selected set of examples might have been used with
greater effect here.

It would be interesting to have had some discussion
in this paper of the reliability of the CV method for
assessing prediction error in growth models. Recently,
work has been carried out regarding the bias of the
CV estimate (2.3.5) of the true error rate (2.3.2) as-
sociated with the predictions of future observations in
a variety of regression situations. Efron (1982, 1983,
1986) and Gong (1986) studied a variety of estimates
of the true prediction error rate, including CV, boot-
strap and jackknife estimates. Under certain condi-
tions, the bootstrap estimate was found to yield a
substantial improvement over the CV estimate. A
related paper is Bunke and Droge (1984). Has Profes-
sor Rao any comments on or experience of such bias
for his growth curve prediction methods?

An interesting theoretical point that was not pur-
sued in this paper is the relationship, if any, for the
linear prediction model, of the cross-validation assess-
ment error (CVAE) to the number of immediately
previous observations in the subset. There is numeri-

cal evidence in Table 5, for example, that the relation-
ship is not quite monotonic; yet, contrary to the usual
variable selection results in multiple linear regression,
it appears that as a general rule CVAE gets smaller
when there are fewer predictor variables in the model.
Can Professor Rao explain why this should be true?
Does it have anything to do with the correlation
structure of the predictor variables?

3. THE MICE DATA

The mice data (Table 2) used to illustrate the meth-
ods of this paper are presented without description or
comment. However, certain features of the data need
to be explained here. The data are actually a portion
of those given in Williams and Izenman (1981). The
latter were obtained by randomly selecting 35 litters
of mice from the same generation of a well established
control line, and then randomly choosing a single male
offspring from each selected litter. Of those 35 mice,
33 were weighed every third day according to the
following schedule: 11 mice (Group 1) were weighed
at ages t = 0, 3, 6, 9, 12, 15, 18 days after birth; 10
mice (Group 2) were weighed at ages t = 1, 4, 7, 10,
13, 16, 19 days after birth and 12 mice (Group 3) were
weighed at ages t = 2, 5, 8, 11, 14, 17, 20 days after
birth. The remaining two mice (D1 and D2) were
weighed daily from ¢ = 0 through ¢ = 20 days after
birth. Thus, the data in Table 2 consist of the follow-
ing: the first eleven mice are the twelve Group 3 mice
with the third mouse omitted, and the last two mice
(numbers 12 and 13) are the D1 and D2 weighings,
respectively, at those days after birth.

Three minor points should be noted regarding
Table 2. First, the column headings are in error by
one day. Second, the weight of 0.640 marked by an
asterisk is correct; in fact, there are several instances
in the complete mice data of declining weight from
one time point to the next. Third, there is a transcrip-
tion error in Table 2: the weight of mouse number 10
on day 3 is incorrect and should be 0.225 rather than

* 0.255. This error was, unfortunately, carried through

all the paper’s statistical computations.

A much more interesting situation was created when
Rao constructed Table 2 by omitting one of the Group
3 mice. This mouse weighed noticeably less than the
remainder of his group, which was probably the reason
for his omission; his series of seven weighings was as
follows: 0.141, 0.260, 0.472, 0.662, 0.760, 0.885, 0.878. °
(He was not the lightest mouse in the complete mice
data set, however.) This naturally raises the following
question: if this mouse had been retained in the data
set used in this paper, what effect would his measure-
ment record have had on the prediction results? More
generally, we find ourselves interested in the detection
and identification of deviating growth records, because
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all growth records enter into computations for mod-
eling and prediction. A theory of influence functionals
for growth curves is, therefore, needed here, just as
Martin and Yohai (1986) developed such a theory for
time series analysis. A comprehensive survey of the
influence function approach may be found in Hampel,
Ronchetti, Rousseeuw and Stahel (1986); similar tech-
niques would be appropriate for developing influence
functionals for growth curves.

4. SOME SPECIFIC COMMENTS

I have a few specific comments about this paper.
First, the decompositions of the multiple squared cor-
relation coefficient of Y,.; on Y, - - -, Y; for the three
data sets appear to be the only evidence in the paper
that “the squared correlation between Y,., and Y,
dominates - - - indicating that no improvement can be
expected by using other measurements, except per-
haps Y,-,.” This is an interesting result. However,
could not some growth curve data be constructed so
that these conclusions do not hold?

Second, Rao obtains certain conclusions that do not
necessarily follow from the empirical results of this
paper. For example, in Section 4.1, the claim is made
that “in all the cases studied, the best procedure is to
fit a straight line to just the two previous measure-
ments, Y,, Y,—;, and extrapolate to predict Yp.;.”
This conclusion was reached from the numerical re-
sults in column (3) of Table 7. Yet, assuming the
computations as they appear in Table 7 are correct,
then for both the ramus and the dental data sets, such
a conclusion clearly does not follow. Similarly, in
Section 4.2, Rao’s statement that “the values in col-
umn (4) are smaller than those in column (3)” of
Table 7 is not true for the ramus data.

Third, in Section 4, Rao remarks that “models
which provide an adequate description of the past
observations may not necessarily be suitable for pre-
dicting future observations.” Perhaps this may be true,
but Rao offers no justification (or reference) for such
a remark in this paper. What would happen, for ex-
ample, if any of the four nonlinear regression models
listed at the beginning of this section was used for
prediction purposes with the three data sets?

5. RELATED WORK

Interest has been shown recently in a nonparamet-
ric approach to modeling the dynamics of growth. It
has been argued that the traditional parametric ap-

proach to fitting models to longitudinal data some-
times fails to account for sufficient relevant structure.
Thus, in modeling height measurements over time of
children, Gasser, Miiller, Kohler, Molinari and Prader
(1984) remarked that “the midgrowth spurt—not
being part of the parametric models—disappeared
from the literature when statistics and computing
came into common use in growth studies,” and thereby
systematically distorted the estimation of onset of the
pubertal spurt. This attitude led to nonparametric
kernel regression analysis of individual (Gasser,
Miiller, Kohler, Molinari and Prader, 1984) and av-
erage (Hart and Wehrly, 1986) growth curves, and
clearly constitutes an important new direction in
growth curve modeling with possibilities also for pre-
diction. It should be noted that similar remarks would
hold for a maximum penalized likelihood approach to
growth curves.
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