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Comment

Nan Laird and Nick Lange

One can scarcely think of any problem in growth
curve estimation without bringing to mind the exten-
sive contributions of C. R. Rao, which span some
thirty years of research in this area. With his present
paper, Professor Rao demonstrates once again his
capacity for stimulating his audience to think in new
ways about an important problem, in this case the
prediction of future observations.

We choose to confine our discussion to the use of
least squares and empirical Bayes procedures for the
polynomial growth curve models discussed in Sections
4.1 to 4.4, primarily because of the connection to our
previous work (Lange and Laird, 1986). As Rao notes,
there are many ways to approach the empirical Bayes
prediction problem, and these choices depend upon
what data one employs when estimating the parame-
ters of the prior model. In Rao’s notation, one can
either use only the past data values {U;, X;}% for all
n + 1 individuals (Method I) or all data values {U;,
W;, X;, x;}%, for only n individuals (Method II). Both
methods retain balance in the data, and thus either
choice allows one to obtain closed-form estimates for
(v, o2, T), and also for the predicted W.. There are
also many numerical methods available for estimating
these parameters with unbalanced data (cf. Goldstein,
1986; Laird, Lange and Stram, 1987; Longford, 1987),
and hence one could in principle use all available data
on n individuals, {U;, W;, X;, x:}%., and only past data
{U., X.} on the cth individual (Method III). Reinsel
(1985) also discusses noniterative estimators, similar
to Rao’s and suitable for unbalanced data. Figure 1
illustrates how our three methods compare in their
use of data available for estimating the prior and for
prediction. Each method obviously gives rise to a
different empirical Bayes predictor.

Rao (Table 7) considers only a Method I empirical
Bayes predictor. Although such an approach yields a
minimum CVAE under a polynomial growth curve
"model for the ramus and dental data, its performance
with the mice data is very poor when compared to
Rao’s calibrated predictor.
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On intuitive grounds, we would expect that a
Method I predictor might perform poorly in a variety
of situations. Method I makes no use of {W;, x;}%; in
obtaining W., and thus is essentially extrapolating the
prior model beyond the range of the data used for the
fit. The same is true for Rao’s individual regression
predictor, which performs slightly worse than his em-
pirical Bayes predictor. Rao uses the calibrated pre-
dictor to fix up the individual regression predictor.
One can also calibrate the Method I predictor

in exactly the same way. Alternately, one could .

use Method II empirical Bayes, which includes the
{W;, x;}; to fit the prior at the expense of not using
any data on the cth individual. Method III would
appear to be the ideal empirical Bayes predictor, be-
cause it makes maximum use of available data to
estimate prior parameters.

We compare the four empirical Bayes predictors
(Methods I, II and III and Method I calibrated) on the
three example data sets in Table 1. Rao’s individual
regression and calibrated predictors are given in pa-
rentheses next to Method I and Method I calibrated,
respectively. (The CVAE for our Method I predictor
differ slightly from those in Table 7 of Rao, due
apparently to computational issues. All of our calcu-
lations were obtained through use of the S system
running on a Sun 3/160 workstation.)

For the mice data, Method II shows marked im-
provement over Method I, although the calibrated
Method I is clearly superior to any other. The cali-
brated empirical Bayes predictor appears more stable
than its least squares counterpart for the mice data.
Method III’s performance with these data is disap-
pointing, showing hardly any improvement over
Method I. An ordinary Method I empirical Bayes
remains the best predictor for both the ramus and
dental data sets, with neither the calibrated Method I
nor Methods II and III showing any improvement.

A seemingly attractive feature of the Method I
predictor is that Rao gives a formula (4.4.15) that
expresses this predictor as a function only of n™'B =
'+ 6%(X"X)™. Because B is always positive definite,
the issue of nonpositive definite I" never arises; in fact,
T never need be estimated explicitly. Rao’s expression
(4.4.15) can be written alternately as

W® = 2[b® - g' QWY - )],
where

Q = 2(X"X) I + ¢2(XTX) '™
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Three methods for obtaining an empirical Bayes predictor of a future observation for a current individual (indicated by ?). The various

uses of observed data for the CVAE comparison of predictors under the different methods are denoted as follows. Thick-lined boxes, for estimation
of parameters and for prediction; thin-lined boxes, for estimation of parameters only; dotted box, for prediction only; long-dashed box, data

completely ignored.

and
,_[ (n+ 1) —k—1) ][n—k—3]
E S ln+ D -Fk-1) +2 n |

The matrix @ appears in Rao’s expression (4.4.3) and
clearly shows that whenever I' has nonpositive diag-
onal elements, the eigenvalues of @ can be greater
than 1. Such cases correspond to “shrinking beyond
the prior” in the univariate dimension. However, such
“over-shrinking” is probably compensated by the use
of a g’ < 1, and considerably so in some cases. Sub-
stituting n — k — 2 for n — k — 3 in g’ would give a
constant consistent with Reinsel’s formula (1985,
equation 6, page 643), and also consistent with the g
in equation (4.4.9) of Rao.

With Method II and III, however, T" must be esti-
mated explicitly. For Method II, Rao suggests zeroing
out all rows and columns of I' corresponding to any of
its nonpositive diagonal elements. Alternately, one

can obtain the restricted maximum likelihood -

(REML) estimator of I', as has been described by
Lange and Laird (1986). Covariance component esti-
mators are maximum likelihood (ML) or REML only
if their solutions yield positive definite matrices.
When such is not the case, the ML or REML solution
occurs on a boundary of the parameter space, and the
total amount of variation in the data can be appor-
tioned differently between these estimators, as fol-
lows. From the original ¢2 and I", we have

I'= 6°G"(c2A — )G,
where A = 321, + GTT'Gand Gak + 1 square matrix

satisfying GG" = X"X. Note that G~ TAG™ =
I' + 62(X"X)™", and hence A is always positive

definite for any I'. (G"TAG™ is Rao’s n™'B.) Let
E = diag(é,, ---, éx+1) be the diagonal matrix of
eigenvalues of ¢ 2A and L be the orthogonal matrix
of eigenvectors. When TI' is not positive definite, we
may use E and L to extract the positive definite part
of I'. Let ¢ < k + 1 be the number of eigenvalues in E
that are greater than or equal to 1. Also, let E* be the
version of E with é; replaced by zero whenever é; < 1,
fori=1, , k + 1, and let I* be a version of the
k + 1 identity matrix with its corresponding diagonal
elements replaced with zeroes. Lange and Laird (1986)
showed that by adapting an approach given by Ame-
miya (1985, pages 116 and 117) to the present context,
the REML solutions on the boundary are

f‘+ = 6,2G—T£(E‘* _ \I*)l‘lTG—l,
and
k+1

=hi?+(1-h) ¥ &,

i=qg+1
where, for Method 1I,

_ n(s — k- 1)
Tns—k-1)+dk+1-¢q)°

For ML estimation,d = n, andd =n — k — 1 for
REML estimation.

We computed the Method II estimates in three
ways. First, we simply used Rao’s formula (4.4.9) with
I as in (4.4.8), making no adjustment for nonpositive
definite values, as this estimator would be comparable
to Method I. We then also applied Rao’s zeroing out
suggestion. Last, we used Rao’s formula (4.4.9) replac-
ing any nonpositive definite value of I' by the REML
estimate. (We defined “nonpositive” on the computer
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TABLE 1
CVAE for the three-example data sets under the four empirical Bayes prediction methods

Empirical Bayes predictors

Previous Degree of
measurements  polynomial
used ftted Method I° cﬁf;f;‘:jb Method I Method III °

. Mice data: prediction of Y, n = 13°
Y;: = Yeorr® 5 — (7472) —  (0.252) 3.483

4 0.400 ( 0.600) 0.186 (0.235) 0.254

3 0.142 ( 0.175) 0.070 (0.093) 0.098

2 0.088 ( 0.104)  0.033 (0.037) 0.067

1 0.194 ( 0.206) 0.036 (0.035) 0.131 0.182
Y2 = Yeorr 4 — ( 2.405) — (0.235) 0.900

3 0.175 ( 0.241) 0.102 (0.141) 0.125

2 0.076 ( 0.095) 0.033 (0.040) 0.063

1 0.144 ( 0.158)  0.036 (0.035) 0.087 0.153
Y5 — Yeorr 3 — (. 0.757) —  (0.192) 0.258

2 0.070 ( 0.096) 0.032 (0.052) 0.045

1 0.097 ( 0.111)  0.035 (0.034) 0.062 0.089
Y, — Yeors 2 — (0.229) —  (0.094) 0.065

1 0.053 ( 0.066) 0.033 (0.034) 0.044 0.053
Ys — Yeorr 1 — ( 0.055) — (0.033) 0.036 0.046

Ramus data: Prediction of Y,, n = 20

Y: = Yson 2 — (2.989) — (2.172) 0.751

1 0.533 ( 0.584) 0.616 (0.683) 0.558 0.602
Y. — Yaora 1 — (0.812) — (0.751) 0.637 0.860

Dental data: Prediction of Y,, n = 27

Y~ Yaor 2 —  (47.398) —  (9.483) 6.143

1 2.266 ( 3.998) 2.496 (3.680) 2.722 2.767
Y: — Yo 1 —  (12.426) — (8.358) 3.694

¢Values in parentheses are from individual regression predictions.

® Values in parentheses are from calibrated individual regression predictions.
¢ Entries are 13 times the actual values.
¢ Methods II, III and I calibrated use measurements taken on the last occasion of observation, but
not for the current individual; Method I ignores these data.

as any diagonal value of T less than or equal to 5 X
107°.) The CVAE reported in Table 1 for Method II
are based on REML estimates. The CVAE for the
first two of our approaches were very similar, not
uniformly smaller or larger than those given in the
table.

The problem of adjustment on a boundary actually
occurs frequently in calculations with these data. For
example, under Method II, the fit of a linear growth
curve model to the last three time observations of the
dental data, deleting the data on the first individual
(considered as the “current” individual), yields

0.93
-0.23|

R - 4.59
2 = —3
6°=215 and T [0093
as one may anticipate by examining the plot of this
data set given in Figure 2. We see considerably greater
within-variation relative to between-variation for the
dental data. (Such does not appear to be the case for

the mice or ramus data.) Similar nonpositive definite
T occur when every individual is deleted one-at-a-time
for this case, as well as for several others in the other
two example data sets. Application of our adjustment

to the original ¢ and T' yields

0.88 0.17

For Method III, we used the REML estimate of o2
and T, calculated iteratively as described by Laird,
Lange and Stram (1987). As noted by Reinsel (1985),
it is not possible to give a closed form for the optimal
value of the “shrinking constant” in obtaining empir-
ical Bayes estimates in the unbalanced case. Hence,
as an approximation, we used Reinsel’s constant for
the balanced case, which assumes all n + 1 individuals
contribute s + 1 observations in estimating the prior.
This yields

W® = x[b® - g*Q(bY — )],

62=142 and T, = [4'59 0'88].
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Fic. 2. Plots of example data.
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Comment: On Exchangeability Judgments in
Predictive Modeling and the Role of Data in
Statistical Research

David Draper

Professor Rao has shared with us some thought- eling. The paper has four basic attributes, two of which
provoking ideas on prediction in growth curve mod- seem positive and two negative. On the positive side,
_—_ o the basic problem is predictive in nature, thereby
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