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In estimating contrasts for ANOVA situations, the
BP will be much smaller. Consider the simplest case
of testing for equality of location parameters in a
balanced two-sample situation with n/2 observations
in each sample. Any two-sample test statistic con-
structed as the .difference of location estimates for
each of the samples will break down as soon as either
of the two location estimates breaks down. The best
we can hope for is to achieve the HBP of 0.5 for each
of the samples. But this results in a BP of 0.25 relative
to the entire sample size of n. The situation will quite
clearly be worse for the higher way ANOVA situations
of major interest. The basic problem in ANOVA is
that typically there are only a small number of obser-
vations per parameter, and thus a small number of
wild points can spoil the various contrasts of interest.
Thus, there will be a premium on maintaining the
highest possible BP in ANOVA situations. From this
point of view, the BP of 0.5 for each parameter ob-
tained with median-based methods (e.g., median pol-
ish where applicable) seems preferable for example to
the Hodges-Lehmann estimate BP of 0.29.

Returning to the M-estimates: versus. R-estimates
issue for a moment, it is important to note that the
latter have the attractive property that they do not
require estimation of a nuisance scale parameter. On
the other hand, M-estimates based on the popular psi
functions, e.g., Huber’s favorite or Tukey’s bisquare,
do require an auxiliary scale estimate. For the small
sample sizes per parameter that occur in many AN-
OVA situations, this may result in loss of robustness
in level and power relative to R methods. This issue
needs to be studied in detail.

One other robustness consideration is worth noting.
For those situations where one really needs to estimate
an effect rather than a true contrast, it will be impor-
tant to control the maximum bias due to asymmetric
contamination. In this regard it may be useful to
consider min-max bias robust estimates. For example,
Huber (1964) showed that among all translation equi-
variant estimates of location, the median solves the

Rejoinder
David Draper

Let me open the rejoinder by thanking the discus-
sants for their insightful and kind comments. They
have not given me much to disagree with, but (since
it is at least as much the job of the rejoinderer to be
contentious as it is for the discussants themselves) I’ll
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problem for ¢ contamination models. Hence, in that
case the HBP and min-max bias properties coincide,
but this is not always the case. Recently Yohai, Zamar
and I have been working on min-max bias robust
estimates of scale (Martin and Zamar, 1987) and
regression (Martin, Yohai and Zamar, 1987). In
the solutions found to date, the breakdown point
BP = BP(¢) will be relatively close to 0.5 for all but
very small ¢ in an e-contaminated model, and further-
more BP(¢) — 0.5 as ¢ — 0.5. Perhaps the min-max
bias robust approach will be of some utility in ANOVA
problems.
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see what I can do. I begin with some remarks about
the influence of robustness work on actual practice to
date; continue with some comments on the relevance
of expert systems research to the comparison of
modeling strategies; and finally devote most of my
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attention to some differences between the frequentist
and Bayesian approaches to robustness and their com-
parative strengths and drawbacks, along the way not-
ing some basic distinctions between inference and
prediction. By way of placing these remarks in the
context of the main paper under discussion, I should
say that in the years since I completed the research
on which the paper is based I have become consider-
ably more sympathetic to the Bayesian viewpoint.

1. ROBUSTNESS AND REALITY

Morrie DeGroot has invited distinguished repre-
sentatives from most of the various frequentist ro-
bustness schools—L, M, R (and S, as Roger Koenker
and Stephen Portnoy remind us)—to comment, and
each has spoken up for the merits of one approach at
the expense of the others: Alan Welsh and Koenker
and Portnoy for L procedures, Doug Martin for M-
estimates, Tom Hettmansperger and Jay Aubuchon
for the R school, and Peter Bickel as a comparative
agnostic. This has given the discussion the flavor of a
horse race (an alternative metaphor that springs to
mind comes from a conversation I had with Raj Ba-
hadur some years ago after attending my first Joint
Statistical Meetings. I commented on the bewildering
array of methods and viewpoints being advocated by
the presenters in talks and poster sessions, and Raj
said that the meetings always reminded him of market
day at the central bazaar in Calcutta, with people
shouting “Buy from me!” in all directions). So the
question becomes, “From whom should, and will,
people buy?”

The plain truth is that a betting person, asked to
wager on which school would win the race toward
making a practical difference in science and decision
making, would be tempted on the basis of the thirty-
year track record of robustness work to date to bet on
“none of the above.” On the positive side, there have
been some nice mathematical results, some clarity has
been reached on some useful ideas about stability in
inference and the like, and some interesting and po-
tentially useful methods have emerged that have had
wide use descriptively and in exploratory settings. But
there are so few examples of robust methods actually
helping people to solve real inferential problems that
it seems fair to say that the impact on practice so far
has been small relative to the effort expended. Martin
takes me to task for not emphasizing practical exam-
ples in this paper, a criticism that is right on the mark.
In my defense I can only say that an already long
paper would have been twice as long and that I intend
to put out another paper contrasting robust, data-
analytic and model expansion approaches to inference
in a series of real-world case studies. The trouble is
that we have apparently all been meaning to write

such a paper, and it hardly ever seems to get written.
For robustness work to make a bigger difference, there
has to be a much wider availability of relevant soft-
ware, as Martin notes, and this phantom paper has to
get written by a number of people, each using a differ-
ent set of real examples, so that we may build up a
core of knowledge about the comparative strengths of
the numerous approaches to inference now available
in theory to practitioners.

2. CALIBRATION AND EXPERT SYSTEMS

Welsh touches on the good, and related, point that
as a general matter the overall frequency properties
of the data-analytic strategy are not well understood.
Frequentists are inherently curious about such ques-
tions, but Bayesians should be, too. Everybody ought
to be interested in whether they got the right answer
or not (or how close they came), and the ultimate test
of statisticians who are actually trying to help people
solve problems is to look back over their lifetimes with
an eye to the validity and efficiency of their separation
of signal from noise, and the quality of their predic-
tions, across the range of problems they tackled. (I
sometimes imagine St. Peter greeting statisticians at
the pearly gates (those who end up there, anyway)
with the news of how they did: “Do you remember
back in 1959 when you said that drug A was better
than drug B? Well, you were wrong,” and so on.) Thus
the calibration process, which it would seem is, or
should be, of universal interest, is inherently frequen-
tist in nature. This is a special case of a general
position that currently makes good sense to me on
what Jerzy Neyman used to refer to as “Bayesian-
frequentist controversy”: It is useful to think like a
Bayesian in formulating one’s inferences and predic-
tions, but it is also useful to think like a frequentist
in evaluating their quality. Box (1980) expressed
similar views.

The point of all this is that whether you are a
Bayesian or a frequentist it seems interesting to ask:

" What are the operating characteristics of John Tukey?

(Substitute some other good data analyst if you wish.)
A related question that might actually be answerable
is, What are the operating characteristics of a com-
puter program that embodies some significant portion
of his data-analytic wisdom? Current and future ex-
pert systems work (such as Gale, 1986a,b; Adams,
1988) can help in this direction. The idea is to write
programs that embody various data-analytic strate-
gies, run them on many different data sets and look
at the validity and efficiency of the raw scale back-
transformed findings. It is hard to think of another
way to make the data-analytic approach objective
enough so that systematic comparisons with the ro-
bust and model expansion strategies become possible.
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3. BAYESIAN VERSUS FREQUENTIST
ROBUSTNESS: INFERENCE VERSUS PREDICTION

Welsh also notes correctly that nonparametric
regression is not part of robustness work, at least as
he defines it, but it is clearly part of the more general
underlying problem:-quantifying the information con-
tent of modeling assumptions, understanding the sen-
sitivity of final conclusions to model specification—in
short, assessing and appropriately dealing with the
uncertainty that arises in the modeling process. In
this regard there is a worthwhile contrast to be drawn
between Bayesian and frequentist robustness, which
brings me to my final topic. In making this comparison
it helps to consider inference and prediction sepa-
rately, and to contrast the consequences of modeling
uncertainty in each. I will use I. J. Good’s convenient
‘device of referring to a person making modeling judg-
ments as You.

Inference

When inference is the goal, as is often the case in
science (for example) interest typically focuses on a
particular quantity like the mass of the electron or a
regression coefficient in a biological model, and other
features of the model specification process (hetero-
scedasticity, the underlying error distribution and so
on) are like nuisance parameters. Pulling a single
standard model off the shelf, as in Section 1’s “do-
nothing” strategy, is like plugging in known values for
these nuisance parameters, and You may get it wrong.
Frequentist robustness work has mainly concerned
itself to date with inference, and in that context it
involves a search for methods that walk a fine line in
relation to the “modeling nuisance parameters”—
methods that, within a certain neighborhood charac-
terized by certain departures from some target model,
are valid (in some consistency sense) and never do
badly in precision of estimation no matter what the
“right” model might be (within the neighborhood), but
which accomplish this by and large without formally
trying to adapt to the data at hand by estimating the
“model nuisance parameters.” The result, when this
fine line is walked successfully, is often an increase in
apparent precision (smaller standard errors) when
compared with the conclusions drawn from the off-
the-shelf model, and when this occurs it is because the
data are able to argue fairly convincingly that some
other model in the neighborhood fits better than the
off-the-shelf choice. The Bayesian approach to ro-
bustness in inference typically arrives at results sim-
ilar to those of the frequentist approach, but by a
different route; the two approaches will be exemplified
and contrasted below.

Prediction

When prediction is the goal, as it is so often in
decision making (for instance) interest typically fo-
cuses on questions like “What will the world average
spot price of oil be two years from now if such-and-
such a policy is put into place?” The statistical task
in such cases is to say what You think would happen
in the future under given sets of conditions and attach
believable measures of uncertainty to Your predic-
tions, so that an appropriate amount of hedging may
be built into the actions taken. Overall predictive
uncertainly may be partitioned into three basic
sources (Hodges, 1987; Draper, Hodges, Leamer,
Morris and Rubin, 1987): structural or modeling
uncertainty (How will the available predictor vari-
ables behave in the future? How are the outcomes
of interest linked to the predictors?); estimation uncer-
tainty (The model linking outcomes to predictors
typically involves unknown parameters; what are
reasonable values for these parameters, conditional
on the model?); and prediction uncertainty (since
unexplained stochastic fluctuation is built into most
predictive methods even if there is no structural or
estimation uncertainty).

Typical practice is to make a single structural choice
and assess estimation and prediction uncertainty con-
ditional on that choice, as if the chosen model were
“right.” A frequent outcome of predictive exercises is
the unpleasant realization that Your prediction errors
are larger than You expected them to be. Retrospective
investigation, when conducted, often reveals that the
observations in the previous two sentences are
causally connected; uncertainty in the modeling step
on the analysis has not been accurately assessed and
propagated through to the overall measure of predic-
tive uncertainty. To improve on this outcome it is
evidently necessary to remove in some way the con-
ditioning on a single model that has led to the under-
statement of uncertainty. The result will then often
be a decrease in apparent precision (larger predictive
variances) when compared with the conclusions drawn
from a single model, and when this occurs it is because
substantial uncertainty exists as to which model is
“right” and conditioning on a single model would
underpropagate that uncertainty.

Propagation of Model Uncertainty

Two frequentist ways to approach this removal of
conditioning on the model in predictive settings have
been suggested (Draper, Hodges, Leamer, Morris and
Rubin, 1987): mixture likelihoods, which will be dis-
cussed below, and bootstrapping the modeling process,
as in Efron and Gong (1983). The approach taken
in the latter is to generate a number of bootstrap
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replicates of the full data set and to carry out the
modeling process separately on each bootstrap data
set (as independently as possible; this is another place
where expert systems can help). This permits
both within-model and between-model uncertainty
to be assessed and then combined. Attention will
be restricted here to a Bayesian approach to im-
proved propagation of model uncertainty (de Finetti,
1974/1975; Leamer, 1978; Hodges, 1987; Draper, 1987)
that, in the taxonomy of Section 1 of the main paper,
can be thought of as both a Bayesian form of the
“model expansion” strategy and as a version of Baye-
sian robustness (Smith, 1983). The idea is as follows.

On the predictive scale a model is just a joint prob-
ability distribution for the observables, so it becomes
possible to conceive of the space of all possible models
as the collection of all such distributions. This space
may seem hopelessly complicated, and indeed in real
life problems it is exceedingly rich, but it is useful to
think about no matter how complex it is, and in simple
cases one can even visualize it quite clearly and work
with it mathematically. When there are no covariates
and the outcomes are binary, for example, the set of
all probability distributions on an n vector of 0’s and
1’s is the 2"-dimensional simplex (Fienberg, 1968;
Diaconis, 1977; Meeden, 1986). What people usually
refer to as a “model” with unknown parameters is a
low-dimensional curve in the space of all possible
models, indexed by the parameters (the word “model”
in quotes below will refer to such a subspace). Choos-
ing a single “model” corresponds in a Bayesian sense
to putting a prior distribution on model space that
concentrates all its mass on such a curve. To improve
on this You have only to entertain a richer prior
distribution on model space and perform an additional
integration over this new source of uncertainty. In
practice the priors on model space needed for realism
in the modeling process often take the form of enlarge-
ments of, or neighborhoods around, one or more stand-

ard “models.” Examples of this approach will be given

below.

Thus we have two situations, inference and predic-
tion, in which uncertainty in the modeling process
arises, and procedures based on conditioning on a
single model can be improved on. In inference one
goal of robustness work is to diminish the needlessly
large “give or takeés” associated with estimates arising
from a single partly misspecified model; in prediction
the goal is the production of more realistic predictive
uncertainty assessments, which will often be larger
than those implicit in a 'single modeling choice. In
both cases the robustness work undertaken in search
of this improvement concerns itself with neighbor-
hoods in model space around certain “models.” How
is the uncertainty in the modeling process implied by

the specification of these neighborhoods treated in the
frequentist and Bayesian approaches? How are these
neighborhoods specified in practice?

Optimization Versus Integration

In a familiar echo of other Bayesian-frequentist
comparisons, the operation performed in frequentist
robustness is typically an optimization of some kind
over neighborhoods in model space, whereas in Baye-
sian robustness an integration over the modeling un-
certainty captured by the choice of neighborhood is
performed, quite literally treating model specification
as a (possibly high dimensional) nuisance parameter.
To take two examples of the frequentist optimization
process in estimation settings, the idea that led Peter
Huber to M-estimates (Huber, 1964, 1981) was to
minimize the asymptotic variance of an estimator over
the relevant neighborhood subject to Fisher consist-
ency and a bound on asymptotic bias. Hampel’s (1974)
influence function approach, which often leads to
results similar to Huber’s (Hampel, Ronchetti, Rous-
seeuw and Stahel, 1986), involves an “optimal” com-
promise between efficiency and resistance in the
neighborhood, based on a simultaneous minimization
of asymptotic variance and asymptotic bias.

Two examples of the Bayesian approach based on
integration over modeling uncertainty are worth ex-
amining in contrast. First, in perhaps the earliest
paper on Bayesian robustness, Box and Tiao (1962)
considered the one-sample location problem with un-
known mean p and variance ¢% and expanded the
usual normal theory model p(x|u, %) by adding a
third unknown parameter o for kurtosis in such a way
that & = 0 corresponded to the- original, unenlarged
model: p(x |, o2, 0) = p(x|u, ¢%). They then inte-
grated out the model uncertainty captured by « to
obtain a marginal posterior for x and o2,

(1)  p(u, 0| x) = f plw, ¢*| %, a)p(a|x) da

This approach moves away from a prior distribution
on model space that puts all its mass on a single
“model” by indexing a somewhat richer subspace of
the space of all models parametrically with the one-
dimensionally quantity «. As a second example in a
predictive setting that is considerably more compli-
cated, Smith and West (1983) used the state-space,
time series, multiprocess Kalman filter methodology
of Harrison and Stevens (1971, 1976) to build a system
that monitors serum creatinine levels in kidney trans-
plant patients to detect changes in the level of func-
tioning of the transplanted organ. When state-space
methods are used in a short-term forecasting setting
such as this, model uncertainty takes the form of lack
of knowledge about which of several states the time
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series is in: steady state, single-period outlier, sudden
change in level and sudden change in slope, for ex-
ample. The posterior- predictive distribution (ppd)
characterizing the next period forecast is obtained as
a weighted average of the ppd’s conditional on each
“model” /state, using as mixing weights the posterior
distribution on the “models”:

@) p(future | data) = [ p(future | data, “model”)
. p(“model” | data) d “model”.

Equation (2) is the predictive analogue of equation
(1)’s integration over model uncertainty («) in an
estimation setting. This setup differs from Box and
Tiao’s in the form that the prior distribution on model
space takes: instead of expanding a single “model”
smoothly with a continuous parameter, Smith and
West put a discrete prior on model space with mass
on the four “models” corresponding to the four
states above, so that the integration in (2) is really
a summation here. Considerable medical interest
focuses in this example on how the posterior distri-
bution on model space p(“model” | data) unfolds
over time, because the states correspond directly to
clinical stages of the patient’s progress; this distribu-
tion arises as a natural part of the Bayesian updating
calculations.

Whence the Neighborhoods?

One issue ought always to be uppermost in the
specification of the neighborhoods in model space (as
it was in the Smith and West example)—realism—
but in practice two other matters often constrain:
tractability and identifiability. In frequentist robust-
ness the optimization-problem has been sufficiently
difficult that the neighborhoods have been restricted
to date by tractability considerations mainly to {point
mass on iid models, varying only the underlying error
distribution F} (although there are some recent excep-
tions: see Martin and Yohai (1986) in a time series
context, for instance). Embracing the Bayesian ap-
proach in all its generality leads to potentially horren-
dous integration problems over model space, to say
nothing of the prospect, at first sight daunting, of
putting a prior distribution on the space of all possible
models. The first of these obstacles seems to be yield-
ing to steady recent progress with such methods as
Laplace approximations (Tierney and Kadane, 1986)
and reparameterized Gaussian quadrature (Smith,
Skene, Shaw, Naylor and Dransfield, 1985); for
some thoughts on why the second task is not nearly
as daunting as it might seem, see Draper, Hodges,
Leamer, Morris and Rubin (1987). As for identifiabil-
ity, in inferential settings considerable care is required
in specifying a neighborhood around some target
“model” so that the parameters of interest retain their
meaning in all “models” over which uncertainty is

entertained; in his comments Welsh puts the same
point somewhat differently: “- . - without the specifi-
cation of a precise underlying model, the whole
concept of a deviation from that model loses its foun-
dation.” But note that identifiability restrictions are
completely absent in predictive settings: the common
denominator for all “models” is the next observation
on the outcome scale of interest, so all models are fair
game, and the prior distributions on model space in
the Bayesian predictive approach can be very rich.
This is a key distinction between inference and
prediction.

Which Is Better?

Under what conditions do the Bayesian and fre-
quentist approaches to dealing with model uncertainty
lead to similar results, and under what conditions does
one approach produce better results than the other,
where “good” means both feasible in practice and
yielding inferences and predictions that stand up well
to out-of-sample validation? The question is similar
to others like it in frequentist-Bayesian comparisons
(When to maximize a likelihood, when to integrate
it?), but more complex because it is not just a few
parameters that are at stake but uncertainty in the
entire modeling process. Not much seems to be known
in general about the answer to this question. An
example of a simple inferential setting in which the
two approaches are competitive is given by Smith
(1983) and Spiegelhalter (1981). Smith considers the
familiar one-sample location problem y; = u + oe;,
i=1, ---, n, but incorporates uncertainty about the
underlying distribution of the errors e; by making them
iid from one (and only one) of m known distribution
functions F = {F,, ..., F,} symmetric about 0 and
having Var(e; | F;) = 1. Starting from a prior distri-
bution p(k, o, F) and likelihoods p(y | g, o, F}), it is
straightforward to update to a marginal posterior
p(n|y). Spiegelhalter takes m = 3, F = {normal,

_ double exponential, uniform}, and a “neutral” prior

specified by p(F;) = ¥ and p(u, o | F;) proportional to
1/0 to construct a “Bayesian adaptive robust estimator
of location,” namely the posterior mean arising from
this prior, that performs well in comparison with M-
estimates and adaptive trimmed means. An alterna-
tive frequentist formulation, not investigated by these
authors, that more closely mimics the modeling story
told by the Bayesian setup is to employ a sort of
random-effects two-stage sampling model. Nature
chooses a distribution at random from {F;, - -, F,}
according to p(F;) = p;; then, conditional on Fj, gen-
erates n iid values e;; and finally lets the statistician
observe y; = u + oe;. This induces a mixture likelihood

(3) P(ylll» U)= ‘glpjp(ylﬂw U’E)'
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One can now maximize this in x and ¢ and do sensi-
tivity analysis on (pi, - - - , pm). Here this should just
correspond to the Bayesian inference with flat priors
on u and o, although I am not aware of any compara-
tive work confirming or denying this.

In the vacuum created by the absence of compara-
tive studies there is plenty of room for speculation.
Based on the examples I have looked at, it would seem
(1) that the Bayesian and frequentist approaches pro-
duce similar results in the fairly simple inferential
settings in which the frequentist optimization problem
can be solved; (2) that in really complicated inferential
settings the optimization problem may be too hard,;
(3) that the Bayesian integration problem in compli-
cated settings is not to be glossed over, either, but that
it seems to be yielding to the recent intensive efforts
by Bayesians interested in practical applications; and
(4) that, in complicated predictive problems like the
oil price forecasting example mentioned at the begin-
ning of this section or the kidney transplant example
of Smith and West above, the Bayesian approach
seems well suited to the kinds of regions in model
space over which uncertainty needs to be propagated
to achieve realism in uncertainty assessment, whereas
the available frequentist approaches seem much more
problematic. (More detail on this position may be
found in Draper, Hodges, Leamer, Morris and Rubin,
1987.) Thus these days I favor the Bayesian approach,
on grounds of flexibility and comprehensiveness, ac-
knowledging the computational difficulties, but for
lack of enough evidence the jury may still be said to
be out in the most important arena of all: actual
practice. This can be remedied, but it requires that we
concentrate on real problems and write case studies
for each other on what works and what doesn’t, two
things that sometimes seem more at a premium than
they should in our ostensibly empirical science.
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