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Comment

Grace Wahba

Professor Ramsay is to be congratulated for writing
a lively and interesting paper and giving us a handy
descriptive tool.

Without at all intending to criticize “eyeball” meth-
ods, which play an important role in data analysis, it
should be clear that the success of the method depends
on the ability of the user to select the number and
location of the knots to give a pleasing picture. As the
author observes, in the examples given, the results are
fairly insensitive to knot location. This is, of course
why it is difficult to select knots in the computer by
an objective numerical criterion—numerically, that is
an ill-posed problem. I would expect that the picture
would be different if the number of knots is changed
drastically.

Subjective notations of what the answer “ought to”
look like appear to play an important role in the
proposed method.

Having said this, I would like to raise the issue of
“subjective” versus “objective” inference, both of
which clearly play a role in statistics. Of course, the
dividing line between these types of inference are
blurred, every “objective” method has some subjectiv-
ity behind it, namely, the statistician had some pre-
conceived framework about the truth when selecting
a technique (no matter how “objective” the technique
is). Conversely, any good “subjective” method, ideally
will display the data in such a way that the “facts”
about the truth are helped to come out.

One way of classifying subjective versus objective
techniques is the following. A technique may be viewed

Grace Wahba is Bascom Professor of Statistics, De-
partment of Statistics, University of Wisconsin, 1210
West Dayton Street, Madison, Wisconsin 53706. These
comments were written while the author was Clare
Boothe Luce Visiting Professor of Statistics at Yale
University.
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to be on the objective end of the spectrum, if at least
in principle, one could discover its properties on at
least some useful class of “truths,” by simulating data
from various “truths,” applying the technique, and
studying how well the inference matched the simu-
lated “truth.” If I had an “objective” method for con-
structing confidence intervals or estimating variances,
then I could run a big Monte Carlo study and see
whether in fact the confidence intervals or estimated
variances had an appropriate relation to the simulated
“truth.”

I am somewhat concerned here with the use of, for
example, the “estimated sampling variance” of a. It
appears that these estimates are conditioned on cer-
tain subjective choices made by the statistician. If I
really wanted to claim that these estimates had some
objective properties if used in the future, I should do
a simulation study, sampling from a population of
users who are going to use the eyeball method for
choosing the location and number of knots.

On a different tack, I would like to thank Professor
Ramsay for his kind reference to my work on smooth-
ing splines and to take this opportunity to compare
and contrast smoothing and regression splines. Posi-
tivity and monotonicity can also be imposed on
smoothing splines (see Villalobos and Wahba (1987)
and references cited there), and there is quite a bit of
activity in the development of efficient alogrithms for
doing this, but, in the absence of user-oriented soft-
ware, it is work to start from scratch to implement a
relatively objective constrained smoothing spline as
described in Villalobos and Wahba (1987).

The monotone regression splines, as proposed by
Professor Ramsay, appear to be quite accessible to
relatively unsophisticated users who know how to call
a quadratic programming algorithm.

In examples with larger data sets, smoothing splines
do have the ability to resolve finer structure than
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regression splines because the optimum number of
knots (the smoothing parameter) in regression splines
can be quite low—O(n'®) under some assumptions;
but, of course, in the applications described here,
discovering fine structure is not the goal. Despite this
remark, we looked at Table 1 with its data on gas
consumption (city gas, y), displacement (x;) and
weight (x;) and became tempted to try an additive
smoothing spline model, to see how the results would
compare with the monotone regression splines pre-
sented by the author. We have to admit that this
temptation was fueled by the recent paper (Gu, Bates,
Chen and Wahba, 1988) which provides code allowing
the efficient objective choice of several smoothing
parameters simultaneously by generalized cross-vali-
dation (GCV).

The additive (cubic) smoothing spline is a function
£(21, 23) of the form

821, 22) = p + fi(21) + fo(22)

ffl(zl) dz, = ffz(zz) dz;, =0

and fi, f; in the Sobolev space W,,,, which minimizes

ls (y,- — (u + fAlal)) + fz(zz(i))))

n =1

with

+ M f (f"(21))? d21 + X f (fa"(25))* dz,.

(See Hastie and Tibshirani, 1987; Barry, 1986; Wahba,
1986; Gu, Bates, Chen and Wahba, 1988.) The two
smoothing parameters A\; and A, can be chosen by
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generalized cross-validation by finding A; and A, to
minimize the GCV function.

(1/n) | (I = A\, M)y 2
(1/n) Trace (I — A(A\y, A\2))*’

VA, ) =

where A(\;, N\2) is the influence matrix for the prob-
lem. If \; and A\, should turn out to be «, then a linear
model has been fitted.

In preparation for fitting an additive smoothing
spline model we first, in Figure 1a plotted the points
(%1, x2) and observed (as could be ascertained from the
text) that x; and x, are highly correlated. (There are
only 41 points visible because of replications). We
made the transformation to the canonical variables z;
and 2, (using S) which resulted in

21 = .393x; + .919x,, 2, = —.919x; + .393x,.

2, is plotted against z, in Figure 1b.

The “color” coding of the dots codes the response y,
with open circles having the smallest values of y,
circles with small dots next largest, circles with big
dots next and filled circles the largest. Increasing
response along the diagonal in Figure 1a is obvious.
In Figure 2a we plot ¥, versus z;, and in Figure 2b we
plot y. versus z,. Figures 1b, 2a and 2b are almost
“sufficient” for the data. For example, the circled point
in Figure 1b is also circled in Figure 2a, so that if one
visualizes a cube with the 44 points (y, x;, x,) in it,
Figure 1b is looking down at the top, Figure 2a is
looking into the face perpendicular to the z, axis and
Figure 2b is looking into the face perpendicular to the
2, axis.
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F16. 1. The independent variables. a, original variables; b, canonical variables.
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F1G. 2. The responses. a, versus z;; b, versus z.

The line in Figure 2a represents the least squares
straight line regression of y onto z; and the line in
Figure 2b is the mean.

Considering that these data didn’t really come from
a normal population (etc.) but that the scatter is most
likely due to auxiliary design variables not accessible
here (rather than “error”), we weren’t sure that much
more structure would (or even should) be extracted
from this data set.

Nevertheless, I persuaded Chong Gu to fit an addi-
tive smoothing spline model to this data (covering
the rectangle in Figure 1b) and the GCV function
V(M, N2) did indeed have a (local) minimum at
(o, ®), which is equivalent to identifying the model
as linear in 2; and 2,. Unfortunately, V also had
a (global) minimum at values of \; and A, which led
to a nonsense function which was attempting to follow

the data in Figure 2b much more closely than a rea-

sonable person would like. This case and the other
“nonsense” pictures generated by other local minima
could have been eliminated by eyeball, leaving us with
the straight lines in Figure 2. However, this exercise
just brought home to us the general difficulty in ob-
taining “objective” nonparametric function estimates
with relatively small data sets (44 is not large for two

independent variables) whereas reasonable-looking
descriptive estimates like the I-splines or even like the
least square lines of Figure 2 can be obtained if human
intervention is part of the estimation process. We
should, however, be reticent about ascribing “statisti-
cal” properties to subjective estimates in examples
where they don’t really have them.

Again, we thank the author for an interesting

contribution.
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