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Comment

Trevor Hastie and Robert Tibshirani

Professor Ramsay has written an informative paper

about a topic that is new (at least to us) and deserves

exposure. The techniques that he describes and his
software implementations are potentially useful in a
number of different areas. However, we found that
after careful reading of the paper and experimenting
with monotone splines, we are in substantial disagree-
ment with him over a number of important points. In
particular:

e The monotonicity assumption inherent in mono-
tone splines will sometimes (often?) be unwar-
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ranted. A more useful modeling technique allows
a choice of smoother for each variable, perhaps
between linear, monotone and nonmonotone, to-
gether with a strategy for selecting the appropri-
ate form. A general estimation procedure called
backfitting can be used to estimate models of this
kind.

e The number and position of knots can make a
difference and we can see no clear way to make
these choices. Other smoothing techniques such
as smoothing splines have the significant advan-
tage that a single smoothing parameter controls
the smoothness of the output.

e The number of parameters inherent in a mono-
tone spline is not “far fewer” than the number in
a cubic smoothing spline or other common
smoothers, given a comparable amount of smooth-
ness.

e The data analysis in the paper are somewhat weak
and potentially misleading.

®
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Regarding the last point, we note that we ourselves
have been rightly accused of limp data analyses in this
journal; see Brillinger (1986), Hodges (1987) and
Draper (1987).

We now elaborate on these and other points.

WHY MONOTONE?

Nonparametric tools such as smoothers are meant
to be exploratory. Thus it doesn’t seem wise to restrict
a function to be monotone a priori unless there is a
very good reason for doing so. For example, a mono-
tone restriction makes sense for a response transfor-
mation because it is necessary to allow predictions of
the response from the estimated model. Similarly, in
Ramsay’s factor analysis model, the monotone trans-
formations can be thought of as a different metameter
for the variables. On the other hand, why restrict
predictor transformations (such as for displacement
and weight in the city gas consumption problem) to
be monotone? Instead, why not leave them unre-
stricted and let the data suggest the shape of the
relevant transformation? In some situations, the issue
is murky. For example in a dose-response experiment,
we might have reason to expect a monotone relation-
ship: then it would be informative to try both a
monotone and unrestricted fit.

The following strategy would seem to be useful in
general: fit an unrestricted model and then see if a
monotone model (with some or all of its components
monotone) fits as well. If this were the case, the
monotonicity would allow easier interpretations. Of
course one should also check whether a simple linear
fit is adequate for any of the components.

A BETTER WAY

Through use of the “backfitting” procedure (Fried-
man and Stuetzle, 1981; Breiman and Friedman, 1985;
Hastie and Tibshirani, 1986) one can mix monotone
splines with other smoothers to estimate more general
models. Consider for example the Down’s Syndrome
data (Section 4.7). For illustration, suppose there were
additional predictors available besides mothers age.
Then one can choose a smoother for each variable:
perhaps a monotone spline for one, a cubic spline for
another, linear least squares fit for another, etc. The
choice would be based on the nature of the variable
and a priori scientific considerations. Then the overall
model is estimated in an iterative fashion, using each
smoother in turn. Hastie and Tibshirani (1986) give
details. This hybrid approach may be used in most of
the settings that Ramsay considers (for example ACE
works in this way) and to us provides important
flexibility.

NUMBER OF PARAMETERS IN THE FITTED
FUNCTION

Ramsay says in Section 2 that “far fewer coeffi-
cients” are estimated in regression splines than in
smoothing splines. We doubt that this is the case.

To investigate this, we first need a suitable defini-
tion of the number of parameters of a smoother.
Cleveland (1979), Wahba (1983) and Hastie and Tib-
shirani (1986) develop various notions of “degrees of
freedom” or “effective number of parameters” in a
fitted smooth. Consider a set of n fitted values y =
(31, -++, 3,) based on a response y = (yy, « -+, yn).
Then the simplest definition is df(y) = Y, var(y;)/¢”
where ¢ = var(y;). If a smoother is linear so that §
can be written as Sy, where S is an n X n “smoother”
matrix not involving y, then df(y) = trace(SS’) and
thus can be computed without knowledge of y. (Note
that smoothing splines with a fixed smoothing param-
eter are linear whereas monotone splines, even consid-
ering the knots fixed, are not.)

Now Ramsay seems to imply that for a smoothing
spline, df(y) is close to the number of data points n.
However, when we apply a cubic smoothing spline to
data (or some other smoother like a running line or
kernel), the value of df(y) ranges from about 2 to 6.
According to Ramsay a monotone spline of order 3
(piecewise cubic polynomials) with m interior knots
uses m + 3 parameters. Thus one or two interior knots
would result in about the same complexity as a cubic
smoothing spline, at least for smoothing parameters
in the range that we use in practice. The actual num-
ber of parameters in a monotone (cubic) spline is
probably less than m + 3 because of the restrictions
necessary to enforce monotonicity. A more exact cal-
culation would require estimating Y, var(y;) by simu-
lation. More details on degrees of freedom can be
found in Cleveland and Devlin (1988) and Buja, Hastie
and Tibshirani (1988).

A COMPARISON OF SMOOTHING AND
REGRESSION SPLINES

One method for comparing the behavior of two
smoothers is to examine the equivalent kernel over
the domain x. For a linear smoother, we can plot the
rows of the smoother matrix S against x. Note that if
s; is the ith row, then y; = Y, s;y,. In this demon-
stration we compare cubic smoothing splines to (non-
monotone) regression splines, because our focus is on
the effect of the knot placement. As data (x values)
we use the 128 unique values of a pressure gradient
variable described in a later section. We used a cubic
regression spline with one interior knot at the median.
The cubic smoothing spline was calibrated so that
trace(SS*) = 5, which is the number of parameters in
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FIG. 1. A comparison of the equivalent kernels of a cubic regression spline with one interior knot and a cubic smoothing spline with 5 “degrees
of freedom.” The x values are the 128 unique values of DAGGOT PRESSURE GRADIENT used in Figure 4, and are represented by the “whiskers”
at the base of the plot. The one interior knot at 24 is indicated, and the vertical line is the target point of the kernels. The broken curves represent

smoothing splines, the solid curves the regression splines.

a (nonmonotone) regression spline. Figure 1 compares e

arbitrarily selected rows of the smoother matrices .

(dashed curves are for smoothing splines, solid °

curves for regression splines). The whiskers at the 3 o |

base of the plot indicate values of x, the longer tick g

indicating the one interior knot. The vertical line g 3

indicates the target point at which the fitted value is o |

desired. The most alarming feature of these plots is °

that the regression spline shows some very nonlocal e ' . ; ' '

. behavior in contrast to the smoothing spline. It is also s 10 5 20 25
influenced more by the extreme right “outlier.”
Another question of interest is: how big is the class
of functions that the smoother can recover or detect? FIG. 2. A comparison of the eigenvalues of the regression spline and
The eigendecomposition of the respective smoother smoothing spline used in Figure 1, truncated at number 25. The
matrices is illumina ting in this regard, because the regression spline is a projection, and has 5 eigenvalues of 1, the rest

order

eigenvalues tell us by how much the smoother are zero-

“shrinks” the corresponding eigenvector. Figure 2

compares the eigenvalues of the smoothing spline to ing to the space of linear functions), and then they
those of the regression spline used above. Because the shrink toward zero. Because the sum of squared eigen-
regression spline is a projection, we know that it has values is 5 in both cases, we see that the cubic spline
5 eigenvalues equal to 1 and the rest zero. The smooth- sacrifices exact fits of lower order functions for some

ing spline has two eigenvalues equal to 1 (correspond- detection of higher order ones.
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F1G. 3. The effect of smoothing the first 10 eigenvectors of the smoothing spline by itself (shrunken broken curve) and by the regression spline
(solid curve). The numbers at the base of the plots give the norms of the fitted functions, and hence an indication of how much shrinking was

done (ss = smoothing spline; rs = regression spline).

The eigenvectors for the smoothing spline resemble
orthogonal polynomials, in that the number of zero-
crossings increases with the order of the eigenvalue.
It is instructive to see what happens when we smooth
these eigenvectors with either smoother. Figure 3
shows the first 10 eigenvectors. The solid curve is the
smoothing spline eigenvector, the shrunken solid
curve is the result of the smoothing spline applied to
this eigenvector, and the dashed line is the result of
the regression spline. The space of eigenvectors for
the regression spline corresponding to eigenvalue 1 is

" spanned by the four-dimensional space of cubic poly-
nomials plus a piecewise cubic that resembles a quartic
polynomial. The regression spline therefore has no
trouble with the first five eigenvectors of the smooth-
ing spline, and does better than the smoothing spline
itself! After that it essentially annihilates all higher
order functions, whereas the smoothing spline pro-
duces increasingly shrunken versions of these. Again
the smoothing spline has sacrificed a little bit on the
higher order functions, in order to partially recover
higher order functions. This comparison may be a
little unfair, though, because we are playing ball in
the smoothing spline’s home court.

AN ACTION REPLAY

In Section 4.4 Ramsay uses monotone splines to
enhance a canonical correlation analysis. He reports
p? = .806, and displays all the monotone transforma-
tions. We ran a standard linear canonical correlation
analysis on the same data, and the resulting p® was
.803!

In Section 4.3, monotone additive regression was
applied to the car data. The conclusions are an item-
ized list of interpretations, separating the roles of the
two regressors over their ranges. Yet the correlation
between these two variables is 0.90! The “confidence
curves” certainly do not support these separate inter-
pretations either. Even the need for transformations
is unclear in this case. We fit a linear regression model
to these data using the same transformed response
and untransformed covariates. A crude test of the
effect of the transformations, using approximate de-
grees of freedom described earlier, does not reject the
linear model.

One of the more challenging problems in additive
regression modeling is to provide appropriate guide-
lines for when separate interpretations are valid, and
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to gauge the sensitivity of the models to different
functional forms for the covariates. If simpler models
(such as the linear model) fit as well, we would cer-
tainly want to know about it.

AN EXAMPLE

We tried fitting a monotone spline regression (Ram-
say’s Section 4.3) using the ozone concentration data
analyzed by Breiman and Friedman (1985). For this
purpose Dr. Ramsay kindly supplied us with his FOR-
TRAN code for monotone spline regression. There are
330 observations, the response being OZONE CON-
CENTRATION and the two predictors, INVERSION BASE
HEIGHT and DAGGOT PRESSURE GRADIENT chosen,
for simplicity, from a set of 10 predictors. (ATTEN-
TION DRAPER AND HODGES: We are using this
for illustration only; a more complete analysis can be
found in Breiman and Friedman, 1985!) Figure 4 a—c
shows the effect of increasing the number of knots on
the estimated monotone splines. The estimate for

DAGGOT PRESSURE GRADIENT varies quite a bit, es-
pecially when one remembers that the monotonicity
assumption reduces its freedom quite substantially.
Figure 4, d, e and f, shows the estimated transforma-
tions from ACE. The ACE results suggest that the
effect of DAGGOT PRESSURE GRADIENT and possibly
INVERSION BASE HEIGHT are not monotone. A crude
F-test rejected monotonicity in both cases.

A MISCONCEPTION ABOUT ACE

Ramsay makes some incorrect statements about
ACE at the end of Section 4.3: “There is also a
theoretical explanation for this phenomenon ....”
This is an attempt to explain the fact that for the city
gas consumption data, the estimates depend on the
order that the variables are entered into the algorithm.
Although it is true that the population version of ACE
solves an eigenvalue problem, so does the data version,
if linear smoothers are used in the algorithm. Details
can be found in Breiman and Friedman (1985). Buja,
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F1G. 4. a-c, the fitted functions using monotone splines on the meteorological data. The different curves show the effect of adding knots. Solid
line, 1 knot at median; dotted line, 2 knots at tertiles; dashed line, 3 knots at quartiles. d-f, the fitted functions produced by ACE for the same

data.
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Hastie and Tibshirani (1988) extend the results of
Breiman and Friedman and show that if cubic spline
smoothers are used in ACE, the algorithm converges
to the desired solution, independent of the order or
values of the starting functions, unless there is an
exact collinearity among the predictors.

The implementation of ACE used by Ramsay uti-
lizes “supersmoother,” a highly nonlinear smoother.
Thus one can’t make definitive statements about con-
vergence. However, we found similar convergence dif-
ficulties using cubic smoothing splines in this problem.
The source of the trouble is the high collinearity
between the predictors. This causes the algorithm to
converge quite slowly and the residual sum of squares
can change very little in the iterations despite the fact
that the estimated functions are still changing consid-
erably. The ACE implementation, used by Ramsay,
decides to terminate based on the change in residual
sum of squares. Reducing the default threshold value
doesn’t seem to help in this example. The solution is
to use the change in the functions as the termination
criterion: this alleviates the problem. Perversely, we
might say that ACE is warning us about the strong
correlation between the regressors!

Actually, there is a strong similarity between ACE
and the monotone spline procedure. To facilitate the
comparison, let’s use monotone splines as the
smoother in ACE. Then one can show that ACE
minimizes the residual sum of squares between the
transformed variables, subject to var(f,(Y)) = 1 and
the monotonicity constraints. We assume Ramsay is
using the Box-Cox type likelihood criterion. In this
case one can show that the criterion he minimizes is
residual sum of squares, subject to ([J%.[f{(Y:)]?)Y" =
1 and the monotonicity constraints. Both criteria are
the same up to the scale functional used to penalize
the transform of Y. In particular, this version of the
ACE problem can be solved without the iterations
needed for more general smoothers. It also seems clear
that if the ACE criterion has multiple minima, then
so does the likelihood criterion.

An alternative method for this problem uses the
notion of a variance stabilizing transformation (the

- “AVAS” procedure, Tibshirani, 1988).

CORRELATION AMONG FITTED VALUES

Ramsay states in Section 4.1 that the “lack of
coupling among distinct regions where the curve is
most flexible is one of the great virtues of splines.”
We don’t understand this point. A binning smoother
(that is, taking means in disjoint partitions) results in
zero correlation in fitted values between different par-
titions, but this is not- a very useful smoother. Put
another way, the process of smoothing uses local av-
eraging to “borrow strength” across predictor values,

so we should expect correlations among fitted values.
This is highlighted in the equivalent kernels in Fig-
ure 1. The smoothing spline borrows strength from
observations close by. The regression spline borrows
strength in a very nonlocal fashion.

MODELS FOR BINOMIAL DATA

Ramsay suggests smoothing binomial data with a
monotone spline constrained between 0 and 1. Apart
from our objection to monotonicity, we note that this
procedure works only for one covariate. For more than
one, Hastie and Tibshirani (1986) suggest the gener-
alized additive model: log{P(x;)/[1 — P(x))]} = Bo +
Yh_1 fr(x;x) which forces the fitted probabilities to lie
in (0, 1). The f, can be monotone or arbitrary smooth
functions. Bachetti (1987) describes a closely related
procedure for binary data, using isotonic regression in
a backfitting algorithm. We also note that Friedman
and Tibshirani (1984) proposed an ad hoc method for
monotone smoothing that entails smoothing the data
with an arbitrary smoother, then applying isotonic
regression to the smoothed values. This can also be
used in the backfitting procedure.

CONCLUSIONS

Our discussion has emphasized points of disagree-
ment (naturally) and hence has been critical. Overall,
we feel that monotone splines are potentially useful,
especially in settings for which a monotonicity re-
quirement is natural or in conjunction with other
smoothers in a backfitting algorithm. We are con-
cerned about the difficulty of choosing the number
and position of knots.

With the increasing flexibility of modern regression
tools, there is, more than ever, a danger of over-
interpreting results. We feel that for any of these tools
to be useful, we need a strategy for selecting an appro-
priate model that will protect us from over-interpre-
tation, and we must be guided by considerations of
the scientific (data) problem at hand. Thus we endorse
wholeheartedly the crusade of Draper and Hodges,
namely that “a pint of technique combined with a
quart of numbers” does not yield a data analysis. We
hope to pursue some of these questions and hope that
Dr. Ramsay will consider them in future research as
well.
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Comment

Grace Wahba

Professor Ramsay is to be congratulated for writing
a lively and interesting paper and giving us a handy
descriptive tool.

Without at all intending to criticize “eyeball” meth-
ods, which play an important role in data analysis, it
should be clear that the success of the method depends
on the ability of the user to select the number and
location of the knots to give a pleasing picture. As the
author observes, in the examples given, the results are
fairly insensitive to knot location. This is, of course
why it is difficult to select knots in the computer by
an objective numerical criterion—numerically, that is
an ill-posed problem. I would expect that the picture
would be different if the number of knots is changed
drastically.

Subjective notations of what the answer “ought to”
look like appear to play an important role in the
proposed method.

Having said this, I would like to raise the issue of
“subjective” versus “objective” inference, both of
which clearly play a role in statistics. Of course, the
dividing line between these types of inference are
blurred, every “objective” method has some subjectiv-
ity behind it, namely, the statistician had some pre-
conceived framework about the truth when selecting
a technique (no matter how “objective” the technique
is). Conversely, any good “subjective” method, ideally
will display the data in such a way that the “facts”
about the truth are helped to come out.

One way of classifying subjective versus objective
techniques is the following. A technique may be viewed
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West Dayton Street, Madison, Wisconsin 53706. These
comments were written while the author was Clare
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University.
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to be on the objective end of the spectrum, if at least
in principle, one could discover its properties on at
least some useful class of “truths,” by simulating data
from various “truths,” applying the technique, and
studying how well the inference matched the simu-
lated “truth.” If I had an “objective” method for con-
structing confidence intervals or estimating variances,
then I could run a big Monte Carlo study and see
whether in fact the confidence intervals or estimated
variances had an appropriate relation to the simulated
“truth.”

I am somewhat concerned here with the use of, for
example, the “estimated sampling variance” of a. It
appears that these estimates are conditioned on cer-
tain subjective choices made by the statistician. If I
really wanted to claim that these estimates had some
objective properties if used in the future, I should do
a simulation study, sampling from a population of
users who are going to use the eyeball method for
choosing the location and number of knots.

On a different tack, I would like to thank Professor
Ramsay for his kind reference to my work on smooth-
ing splines and to take this opportunity to compare
and contrast smoothing and regression splines. Posi-
tivity and monotonicity can also be imposed on
smoothing splines (see Villalobos and Wahba (1987)
and references cited there), and there is quite a bit of
activity in the development of efficient alogrithms for
doing this, but, in the absence of user-oriented soft-
ware, it is work to start from scratch to implement a
relatively objective constrained smoothing spline as
described in Villalobos and Wahba (1987).

The monotone regression splines, as proposed by
Professor Ramsay, appear to be quite accessible to
relatively unsophisticated users who know how to call
a quadratic programming algorithm.

In examples with larger data sets, smoothing splines
do have the ability to resolve finer structure than



