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Comment

S.-l. Amari

1. STA.TISTICS AND GEOMETRY

It has clearly been shown by Kass that the pioneer-
ing ideas of Fisher and Jeffreys naturally lead to a
geometrical theory of statistics and that differential
geometrical concepts, especially curvatures, play fun-
damental roles in the asymptotic theory of statistics.
However, one might further ask if there are any results
obtained only by the geometrical method and not by
ordinary analytical methods. If there are none, why
do we need complicated geometrical concepts? Before
answering this everlasting question, I should like to
explain intuitively the reason why the geometrical
method is natural and useful.

A statistical method S = {p(x, 6)}, where p(x, 6)
is a probability density of x parameterized by an n-
dimensional vector parameter 0, is naturally regarded
as an n-dimensional manifold imbedded in the set
{f(x)} of all the probability density functions, which is
a subset of the L*-space. Characteristics of statistical
inferential procedures depend on the analytic proper-
ties of functions p(x, #) in the model. However, we can
show that relevant properties are geometrically rep-
resented by the imbedded form of S in L'. In the
first-order asymptotic case where the number of
observations is large, an inferential procedure is so
accurate that it suffices to take a neighborhood of the
true distribution into consideration. This implies ge-
ometrically that we can approximate a curved model
manifold S by a flat tangent space at the true distri-
bution and can evaluate inferential procedures by
using this linear model. The first-order theory is a
linear approximation. This is the reason why we have
a distribution-free first-order asymptotic theory de-
pending only on the Fisher information matrix, be-

cause every tangent space is geometrically isomorphic

(equivalent).

When we construct the second- or third-order
asymptotic theory, it is natural to approximate the
statistical model S by a second-order osculating
manifold at the true distribution. It is then expected
that we have unified distribution-free results, depend-
ing only on the Fisher metric (linear approximation)
and the curvatures (which are characteristic quantities
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for the second-order approximation). This is true, and
the curvatures play a fundamental role as Kass dem-
onstrated.

However, the geometry of a family of probability
distributions turns out to be neither Euclidean nor
simply Riemannian. The geometry should represent
analytical properties of p(x, #). This requirement nat-
urally leads us to a Riemannian manifold having a
dual pair of affine connections. The dual connections
introduce a new concept in differential geometry, and
we are required to construct a new theory of dualistic
geometry. Here is a big contribution of statistics to
geometry. We have two kinds of curvatures (exponen-
tial and mixture), both of which play proper roles in
statistics.

Returning to the problem we posited, it is true that
we can construct an asymptotic theory without ge-
ometry. This is true in the sense that any mathemat-
ical theory can be constructed without geometry. Even
the results of Euclidean geometry can be described by
algebraic equations (analytical geometry). However, if
instead of saying that two edges have an equal length
in a triangle when two angles are equal, we write down
the corresponding statement in the form of equations,
we lose clear intuitive understanding. It is awkward
and difficult to prove the statement without geomet-
rical intuition. It is more natural and easier to use
geometry when we study objects having geometrical
structures.

I would like to emphasize that geometry can sum-
marize necessary analytic properties of a family of
probability distributions and of their inferential pro-
cedures in a unified manner. Statistial models have
natural geometrical structures.

I agree that most of the higher-order asymptotics
have been constructed without geometry. I would like
to point out one result which was first obtained by
the geometrical method (Amari, 1983, 1985; Kumon
and Amari, 1983). We have known many efficient
tests (the likelihood ratio test, Wald test, Rao test,
etc.) of testing Hy: t = t, against Hy: t > ¢, (one-sided)
or H: t # t, (both-sided). Their performances are
equivalent in the first-order asymptotics, and their
power functions are automatically equivalent up to
the second-order. However, the third-order terms of
the power functions are different, so that they have
different characteristics represented by their third-
order power-loss functions or deficiency curves.
Only the geometrical method has succeeded in cal-
culating these quantities, elucidating the higher-order
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characteristics of these efficient tests. They could have
been derived without geometry, but no one has yet
succeeded in doing so.

2. RECENT RESULTS

Although its origin goes back to the 1940’s, the
geometry of statistical manifolds is relatively new and
is now growing slowly but steadily. I would like to list
here some of the recent results.

Barndorff-Nielsen has opened new directions of
development such as observed geometry conditioned
on ancillary statistics, string calculus and geometry
of transformational models. The results are summa-
rized in his book (Barndorff-Nielsen, 1988; see also
Barndorff-Nielsen and Jupp, 1989; Mitchell, 1989;
Murray, 1988). Vos (1989) studied the geometry of
generalized linear models and an invariant decompo-
sition of higher-order quantities. Differential geome-
try of a semiparametric model is given by Amari
(1987¢) and Amari and Kumon (1988) and is related
to estimation in the presence of infinitely many nui-
sance parameters. Picard (1989) presented new char-
acterization of invariant geometrical structures.

Mathematicians have began to pay attention to this
new dual geometry. Dodson (1987) organized an inter-
national workshop to bridge mathematicians and stat-
isticians. Syriaev and Fomenko also organized one
in the USSR. It was pointed out that the dual geom-
etry has some relation with affine differential geome-
try (Nomizu and Pinkall, 1986; see also Lauritzen,
1987b). Recently, Kurose (1988) developed the dual
theory from the point of view of affine and projective
differential geometry. Amari pointed out that a se-
quential inference procedure gives rise to a conformal
transformation in the statistical manifold, and geom-
etry of sequential estimation is studied by Okamoto,
Amari and Takeuchi (1989).

3. INFORMATION GEOMETRY

The dual geometry is useful not only for the higher-
. order asymptotics of statistical inference but also for
many other problems which make use of probability
distributions. It is thus expected to become a unifying
method of a wide range of information sciences in-
cluding statistics. This may be called information
geometry. The following are some examples of new
directions of developments.

Time Series Analysis and Theory of Control
Systems

Let x ={x,},t=---,0,1,2, ---, be a sample path
of a regular stationary stochastic process. For exam-
ple, we consider an ARMA (p, ¢) model in which x, is

determined recursively by the equation

p q
X+ Y ax—; = ) bie,
=0

=1

where {¢;} is a unit white Gaussian noise process. The
probability distributions of the process x (which is
infinite-dimensional) are specified by a (p + g + 1)-
dimensional parameter § = (a;, b;). We symbolically
write this as P(x, 0). Then, the set S of all the ARMA
(p, q) processes forms a (p + g + 1)-dimensional
manifold which is equipped with the Fisher metric
and the two dual affine connections (Amari, 1987b).
The geometric properties represent their inner rela-
tions related to stochastic properties.

One may regard an ARMA model as a linear
discrete-time stationary system driven by white noise.
One may then identify a set of parameterized linear
systems with the set S of the corresponding output
stochastic processes. We can elucidate properties of a
family of linear systems by dual geometry.

It is shown that an AR model is e-flat (¢ = —1-flat).
We can solve not only inferential problems on these
models but also approximation problems of stochastic
processes or linear systems by one belonging to a
lower-dimensional family. Geometry provides an in-
tuitive and natural guidance to the intrinsic properties
of these families.

Information Theory

An information source produces a stochastic proc-
ess, so that a parameterized family of information
sources has a natural geometric structure (Campbell,
1985). For example, a set of all the Markov chains on
a fixed finite alphabet set forms an e-flat manifold.
An encoder defines a mapping from a manifold of
information sources to another one. Its characteristics
can be studied geometrically by using properties of the
mapping.

Geometrical structures are also useful for studying
multiterminal problems. Let (X, Y) be two correlated
information sources, with joint probability p(x, y; 6)
parameterized by 6. Let x;, ---, xn, and y; -+, ¥n
be N independent observations, where x; and y; are
correlated. When N data {x;} and N data {y}
are summarized in the statistics mx(x;, ---, xy) and
my(y1, -+-, yn) independently, some information is
lost. When their cardinalities | {mx} | and | {my}| or
the Shannon information amounts are limited, what
is the amount of loss of Fisher information or of
the loss of power in the case of testing? This gives
a very good example to show how geometrical struc-
tures are important for solving problems of corre-
lated information sources (Amari and Han, 1989;
Amari, 1989). I believe that differential geometry
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becomes a key tool for connecting information theory
and statistics.

Linear Programming Problem

It is interesting that the dual geometry is useful for
some other problems. When a convex function ¥ () is
defined, we have a Legendre transformation from 6 to
n with a dual convex function ®(5). We can introduce
a dually flat geometry when it is equipped with a pair
of convex functions. In the case of statistics, ® is the
negative of the entropy function and ¥ is the cumulant
generating function. We have natural convex func-
tions derived from linear and non-linear programming
problems.

It is interesting to point out that a continuous
version of the Karmarkar inner method is just to
proceed along an m-geodesic in the space thus
equipped with the dual connections. This method can
easily be generalized to a nonlinear programming
problem. This shows a wide applicability and univer-
sality of dual geometry.
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Comment

O. E. Barndorff-Nielsen

Dr. Kass’ fine account calls for little comment in

itself. However, as he himself stresses, it leaves out

parts of the subject, particularly of the more advanced
aspects, and it may be useful here to outline briefly
some of these parts so as to provide the interested
reader with a fuller, though still far from comprehen-
sive, picture of the scene. The discussion below relates
mainly to work with which I have been to some degree
associated, and it gives, in particular, virtually no
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impression of the important and extensive work of
S.-1. Amari and his collaborators.

As will be indicated, the statistical problems have
led to various developments and questions of a purely
mathematical nature, and there are also interesting
relations to theoretical physics.

INDEX NOTATION

The index notation of classical differential geometry
and certain extensions thereof have turned out to be
highly useful for many calculations in statistics, in-
cluding some that are not of differential geometric
nature (cf. McCullagh, 1987; Barndorff-Nielsen and
Blaesild, 1988b; Barndorff-Nielsen and Cox, 1989,
Chapter 5). The index notation makes many multi-
variate calculations just as easy as the corresponding



