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Comment

Arthur Cohen

A historical perspective on one of the more fasci-
nating and intriguing theoretical results of statis-
tics is most welcome. I have some comments
that are concerned with rounding out the story and
generalizations.

If one requires an estimator which is both location
invariant and scale equivariant, then the best equi-
variant estimator of ¢2 with respect to squared error
loss is S?/(n + 1), and of course it is admissible within
its class. For the confidence interval problem, if the
vector loss L, = (0-1 for correct coverage or not,
length) is replaced by the vector loss L, = (0-1 for
correct coverage or not, 1-0 for covering false values
or not), then the “usual” confidence interval is admis-
sible. This latter fact follows from the duality of
hypothesis testing and confidence intervals. In this
problem and in several other interesting problems, the
following pattern holds for the “usual” procedure:
admissible as a test and hence admissible as a confi-
dence interval for the vector loss L,; inadmissible as
a confidence interval for the vector loss L, and inad-
missible as a point estimator for squared error (or
other) loss. Table 1 indicates some problems where
this pattern holds. A stands for “admissible” and I for
“inadmissible.” For the problem of estimating the

normal mean vector see Stein (1956) and Brown -

(1966). For the common mean problem see Brown and
Cohen (1974) and Cohen and Sackrowitz (1977). For
the normal quantile problem see Zidek (1971), and for
the Poisson problem see Clevenson and Zidek (1975).

There is a substantial amount of work in decision
theory on estimating a normal covariance matrix or
generalized variance. Again the “usual” estimators are
inadmissible for reasonable loss functions. In some
cases, the sample mean can be used as in the univar-
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iate case to get “help.” This is the situation in papers
by Sinha and Ghosh (1987) and Sarkar (1989). In
other cases there is a “Stein” or dimensional effect
and improvements can be made even without using
information from the sample mean (see the survey
paper of Lin and Perlman, 1985).

The statement in the paper that Stein knew his
estimator was not admissible is a bit confusing. Stein
may have speculated that the generalized Bayes esti-
mators form a complete class as is the case of some
one parameter exponential family models (see Sacks,
1963). The basis of the conjecture then is that, since
it cannot be generalized Bayes because it lacks
smoothness properties, it is inadmissible. As it turns
out Stein’s estimator is easily beaten and that is why
it is inadmissible. It is not known whether the class
of generalized Bayes estimators for problems with
unbounded nuisance parameters is a complete class
except in isolated examples where it is not true.

Although Brown (1968) is already referenced, it is
important to note that his paper contains many results

TABLE 1
Admissibility status of “usual” procedure

Type of inference

Confidence set Point
Problem estimation
Testing Loss L, Loss L, squared
error loss
Normal variance A A I 1
Normal mean vector A A 1 1
of dimension 3 or
more
Common mean of A A 1 1
two independent
normals
Normal quantile A A I
Independent Pois- A A I
son parameters of
dimension 2(3)
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pertaining to the robustness with respect to loss func-
tions and distributions, of the results on estimation in
the present paper.
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Comment

Edward |. George

I would like to begin by congratulating Maatta and
Casella for an extraordinarily lucid and thought-
provoking account of developments in decision-
theoretic variance estimation. By systematically
organizing so many related results, they have success-
fully exposed the main thread of ideas running
through these developments. Effectively, this paper
will serve as a springboard for further research ideas.
To emphasize this point, my comments will focus on
two new directions -along which such ideas might
proceed. The first concerns multiple shrinkage gen-
eralizations, and the second concerns further improve-
ments to shrinkage estimators of the mean.

Let me mention before going on that, although my
comments are limited to suggestions for future devel-
opments in point estimation, I am optimistic that
these may also lead to analogous developments in
interval estimation. I say this in light of the close

. connections between developments in these two areas
which is brought out so clearly by Maatta and Casella.

1. MULTIPLE SHRINKAGE GENERALIZATIONS

A key idea behind the improved variance estimators
described by Maatta and Casella is that of adaptively
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pooling possibly related information. In the single
sample setting X, -, X, ~ iid N(u, ¢?), the esti-
mators of Stein, Brown and Brewster and Zidek each
improve on the “straw man” estimator S?/(n + 1),
(8%2= 7Y (X; — X)?), by exploiting the possibility that
u/o = 0. The improved estimators are of the form
#(Z)S2, (Z = VnX/S), where ¢(Z) is bounded above
by 1/(n + 1) and decreases as Z?2 decreases. When Z*
is small, which is likely when w?/c® is small, these
estimators “shrink” S%/(n + 1), effectively regain-
ing the lost degree of freedom used in estimating u.
Indeed, Stein’s estimator replaces S2/(n + 1) by
Y X?/(n + 2), an appropriate estimator when it is
known that u = 0.

At first glance, this phenomenon may seem to be
only a mathematical curiosity. After all, one degree of
freedom will usually be a minor practical gain. This
is precisely the point of the 4% bound on relative
improvement described by Rukhin (1987a). However,
it is straightforward to generalize these results to the
general linear model case, as Maatta and Casella in-
dicate in Section 5, where there are many more degrees
of freedom and important gains may be realized. In-
deed, the seminal results of Stein (1964) are obtained
in such a case, although he states that “even in this
case . .. the improvement is likely to be slight.”

Unfortunately, there may be good reason to agree
with Stein’s pessimism. This can be seen in the ca-
nonical context of Section 5 where we observe inde-
pendent normal variables X, - - -, X,, X,41, « -+, Xoup,



