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of 8 to be “unbiased,” or require an advance specified
upper bound to the probability of error of the first
kind. That such requirements could lead to absurdities
such as randomised “conclusions,” assertions with
only 90% confidence that a real number lay between
—o and +o, etc., was noted by several of the older
Berkeley’s associates; but the energy, courage, gener-
osity of spirit, brilliant wit, and human warmth of N’s
character so impressed all those who came into contact
with him that the inherent impossibility of the task
N had set himself was not stressed, and old Berkeley
grew into the over-rigid system which Lindley so
mercilessly attacks. Of course, as with the somewhat
similar attempts by von Neumann, Birkhoff, and oth-
ers to “pure-mathematicise” quantum physics, N’s

Comment
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1. INTRODUCTION

There are many reasons to adopt the Bayesian
paradigm. Professor Lindley emphasizes the founda-
tional and axiomatic rationales in this paper. Having
followed that route to Bayesianism myself, I am par-
ticularly appreciative of the job Lindley has done in
illuminating the route. I only regret that this paper
was not around when I started studying the issues.
I emphasize the foundational nature of Lindley’s
paper for two reasons. First, it is a common miscon-
ception that the arguments for Bayesian statistics are
all theoretical, as opposed to practical. To the con-
trary, an extremely strong case for Bayesian statistics
can be made purely on the pragmatic grounds that it
is much easier to understand and yields sensible an-
swers with less effort. Lindley has reasonably concen-
trated on the foundational side, but it is important to
note the existence of these very pragmatic rationales.
Of course, I completely agree with Lindley that foun-
dational issues can have a profound effect on practice.

The second reason for mentioning the foundational
nature of the paper is that, in foundational matters,
virtually everyone disagrees in some respect, even (or
perhaps especially) Bayesians. Thus the bulk of my
discussion focuses on the foundational differences that
I have with Lindley, primarily the issue of specifica-
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programme produced many insights and valuable re-
sults in spite of its ultimate failure.
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tion of unique prior probabilities. While this is per-
haps a significant issue foundationally, it is much less
of an issue in terms of Bayesian statistical practice.
Hence, my disagreements with Lindley are actually
quite minor from the perspective of statistics in gen-
eral. Indeed, my motivation for raising the issue (in
Section 3) is mainly to argue that uncertainty in
probability specifications can be incorporated into the
Bayesian paradigm without any major changes being
necessary.

2. FREQUENTIST BAYESIANISM

As I read Section 1 of the paper, I agreed with
virtually all of the points raised but felt uneasy at the
conclusion that coherence is missing from the Waldian
paradigm. After all, admissibility is at the heart of the
paradigm and, in a sense, admissibility is just a fre-

"quentist version of coherence.

Would Wald have disagreed that the correct solu-
tion to the mixture problem is to choose a procedure
that is Bayesian? Perhaps not. Indeed, there have
existed frequentists who consider themselves coherent
Bayesians, in the sense that they agree with the use
of Bayes’ rules, and even utilization of prior infor-
mation, but still want to base their evaluations of
accuracy on frequentist (Bayesian) measures of per-
formance. Such statisticians would presumably disa-
gree with Lindley’s statement that “only the Bayesian
attitude is coherent . . . Consequently the sample space
is irrelevant.” They would agree with the first part,
but disagree with the second because of their insist-
ence that only frequentist measures are meaningful.
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The frequentist Bayesian position cannot be under-
mined from within. It can only be questioned exter-
nally, with notions of conditioning. Thus some version
of the conditionality principle (see Birnbaum, 1962,
or Berger and Wolpert, 1988) is needed to argue
for the posterior Bayesian approach. To illustrate
this, consider a modification of one of my favorite
examples.

EXAMPLE: Let E and E’ be two experiments, each
of which consists of observing X and Y, the observa-
tions equalling the unknown 6 + 1 with probability .5
each. In E it is known that X and Y are unequal, while
in E’ it is known that X and Y are equal. For experi-
ment E, the obvious estimator of 8 is § = (X + Y)/2,
which is admissible for reasonable losses and can be
evaluated by noting that the frequentist probability
that 6 equals 6 is 1. For experiment E’, a reasonable
estimator of 6 is # = X + 1, which is admissible for
reasonable losses and can be evaluated by noting that
the frequentist probability that 6 equals 6 is .5.

Consider now the mixed experiment, E*, formed by
selecting either E or E’ on the basis of a fair coin flip.
(This experiment is easily seen to be equivalent to
that in which X and Y are independently equal to 6 +
1 with probability .5.) In E*, 8, as defined above (equal
to the average of X and Y if they differ, and equal to
their common value plus 1 otherwise), is again admis-
sible and is generalized Bayes. And the frequentist
probability that 6 is equal to 6 is now .75.

The point to be made is that all the above con-
clusions are compatible with frequentist Bayesian
coherency. In each of the three experiments, the esti-
mator used is the Bayes estimator with respect to the
same (generalized) prior, so that there is no incoher-
ency there. And the accuracy reports in the three
experiments are fully consistent in a frequentist (even
a frequentist Bayesian) sense.

What is questionable here is the violation of the
conditionality principle, in that the accuracy report
for E* would always be .75, even though the coin flip
will lead to actually performing E or E’, which have
accuracies of 1 and .5, respectively. The intuition of

,most people is that the reported accuracy should be
that from E or E’, whichever is actually performed,
rather than the average of .75. This example provides
especially strong support for this intuition, because it
would be rather ludicrous to end up performing E, in
which case 6 clearly becomes known, and yet report
an accuracy of .75. My point here is simply that
conditioning, and not just coherency, must be involved
to argue against the frequentist position.

There are, of course, many types of conditional
coherency that could be employed to argue against the

frequentist Bayesian position (such as separate “scor-
ing” of the accuracy reports for each possible obser-
vation), but something akin to the conditionality
principle can be found in all of them. Also, there have
been efforts on the frequentist side to develop coherent
frequentist theories that allow some conditioning, so
as to escape the silly behavior described in the above
example, but few predict success for these theories
(and they cannot be fully consistent with the condi-
tionality principle).

3. UNIQUENESS OF PROBABILITY AND
MEASUREMENT

Enhancing ability to measure probability is of un-
questioned value in Bayesian statistics. In this regard,
the proposals of Lindley toward a theory of probability
measurement are of great interest. The successes
achieved in explaining existing ad hoc guidelines are
impressive. The proposals also suggest intriguing new
guidelines, such as the suggested use of the predictive
form of Bayes’ rule in measurement of probability.
This is exciting stuff.

The question of the foundational centrality (as
opposed to practical usefulness) of such a theory of
measurement in the Bayesian paradigm is substan-
tially murkier, however. The foundational role of
measurement of probability is strongly related to an-
other issue, that of uniqueness of probability judge-
ment. Lindley’s view on this subject is reflected by his
comment in Section 3.2:

“Other axiom systems lead to variants of the
probability approach: for example, to upper and
lower probabilities . . . These are defective to me
because they do not incorporate the notion of a
unique recommendation.”

It is because of his desire to maintain the thesis of
unique specification of probabilities, that Lindley in-
troduces the notion that the problem requires only a
new theory of probability measurement.

Before addressing this properly as a scientific issue,
let me make some sociological observations. First, the
axiom systems which lead to the unique-probability
Bayesian paradigm all contain the unrealistic axiom
that we are capable of arbitrarily fine distinctions in
judgment; that, if one thought long enough, one could
decide whether one’s subjective probability of rain
tomorrow was .38792567 or .38792566 (to paraphrase
I. J. Good). Lindley’s response—that the unique-
probability Bayesian paradigm is an ideal that we
approach through a theory of probability measure-
ment—may be sensible scientifically, but it surrenders
the axiomatic high ground. The opposing position—
that the ideal is, in practice, not approachable (i.e.,
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that the measurement problems are insurmount-
able)—is, logically, a viable escape for non-Bayesians.

For this sociological reason, I have always favored
axiom systems (such as that of Smith, 1961) that
weaken the axiom of complete comparability yet still
basically lead to Bayesian analysis. One may have to
worry about classes of probabilities (and utilities), but
it is still only Bayesian processing that is allowed.
(A few other esoteric possibilities might creep in, but
nothing in contradiction to Bayesian reasoning can
emerge.) One should, in practice, consider classes of
probabilities and utilities anyway (through sensitivity
studies), so giving up the complete comparability
axiom regains the high ground at little cost.

In the scientific domain, much can also be said for
the “classes of probabilities” approach. (“Probabili-
ties” is here used to denote both the model and the
prior distribution.) The reason is that, because of the
difficulty of the probability measurement process, it
is often impractical to have a priori a highly accurate
assessment of all possibly relevant probabilities. Some
probabilities will matter, and some will not, depending
on the eventual data and the utility structure. The
degree of accuracy necessary in the measurement
process will likewise often depend on elements of the
problem (such as the data) that are unknown or im-
possible to assess a priori.

This practical difficulty can be addressed via the
“classes of probabilities” approach, in that one can
begin with a broad class of prior probabilities (based
on a few gross features that can be easily specified)
and see if the posterior statistical conclusion is essen-
tially the same for any prior probability in the class.
(Traditionally, this is done just by trying disparate
members of the class, but there is a large and growing
literature concerned with global calculations involving
large classes of prior distributions; cf. DeRobertis and
Hartigan, 1981, and Berger, 1989.) If it is found that
the probabilities in the class give markedly different
answers, then further elicitation of probabilities (i.e.,
refinement of the class) will be needed. Happily, the
above process will often indicate where refinements
are most needed. In making these refinements, a the-
_ ory of probability measurement may be very helpful,
but consideration of when and where refinement is
needed is arguably at least as basic. (A side benefit of
this paradigm is that it can accommodate the group
consensus problem: the “class of probabilities” could
be that arising from a group of different individuals.)

Lindley draws an analogy between the unique-
probability Bayesian paradigm and the paradigm for
mapping the Earth’s surface. The latter became rou-
tine when good measurement methods became avail-
able, and he hopes that the same will happen for the
former. The analogy is good in many respects, but the

above comments reflect two possible limitations. First,
it can be argued that routine statistical users may
never be highly proficient in probability measurement.
Even experts may find it difficult to achieve more
than, say, first significant digit accuracy. Thus, we
may have to accept the frequent presence of a large
degree of measurement uncertainty in our Bayesian
analyses. The second point is the importance in sta-
tistics of interacting with the data in learning where
to concentrate measurement efforts. I do not see an
analog of this in the mapping problem.

There are, of course, certain concerns with a para-
digm that allows refinement of probabilities in light
of interaction with data. Everyone does it (in model
choice, etc.), but few claim it as a virtue. A Bayesian
justification for refinement, and claiming it as a virtue,
can be made along the following lines.

Imagine yourself reading an applied Bayesian analy-
sis. The author has considered a variety of models for
the data and a variety of prior distributions for the
parameters of the models, and perhaps a variety of
residuals, Bayesian likelihood and predictive diagnos-
tics, etc., all of which (together with your own knowl-
edge of the subject) convince you that as many
reasonable possibilities have been covered as can be
expected. Lo and behold all considered models and
priors yield essentially the same answer. Would you
be happy, even if the development of the models and
priors utilized the data?

I would, as long as I felt that the models and priors
covered the range of reasonable possibilities. This
would be especially so if I knew the researcher was
honest, and would not purposefully fail to disclose
models or priors that were reasonable and yet sup-
ported different conclusions. The point is that I see
in front of me the data and the probabilistic descrip-
tions of the situation, and as a Bayesian that is all I
feel I need. I care only that all reasonable probabilistic
descriptions have been considered. In particular, if the
researcher has utilized the data to determine where to
focus his elicitation efforts, I would not object.

To be sure, insistence on complete specification of
all probabilities (including the model) prior to obser-
vation of the data would lessen the risk of purposeful
or unintended “cheating” (by which I mean the selec-
tion, while looking at the data, of models or priors
that are overly special), but this security comes with
an impossibly heavy price.

In practice, this Bayesian paradigm involving non-
unique probabilities and refinement would not neces-
sarily operate through formal consideration of classes
of probabilities. In particular, simplifications of the
probability structure will often be made, for pragmatic
reasons. A simplification should only be made, how-
ever, if it seems likely to yield the same answer that
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all reasonable Bayesian analyses would have yielded
(i.e., if the answer is robust over the class of full
probabilities consistent with the simplification).

As an example, if a plot of real-valued data closely
follows a normal histogram with no outliers, one will
usually feel confident in assuming normality, con-
fident in the sense that alternative more general
analyses (compatible with prior beliefs about the
smoothness of the situation) will likely yield very
similar conclusions. Or suppose there are clear “out-
liers.” Depending on the situation, one might try out-
lier contamination models or densities with fatter
tails, but in any case one is now probably willing to
completely forget about the normal model. (The pre-
dictive likelihood of the data under a normal model
will be so small that a full blown Bayesian analysis,
incorporating prior probabilities of a range of models,
would give essentially no posterior weight to the nor-
mal component.)

Of course, if the data does not look normal enough
that one feels confident that the assumption of nor-
mality would be innocuous, but normality is not com-
pletely ruled out by a diagnostic such as predictive
likelihood, then one has to carry along both normal
and alternative models. Often I might carry along
separate models until the end, hoping that the answer
will turn out to be insensitive to the various models.
If the model does turn out to matter, however, I will
retroactively assign prior probabilities to the models
or, more likely, try to embed them in a larger class of
models (by introducing more parameters) and place a
prior distribution on the class (or on the defining
parameters). Of course, I’ve seen the data and this
may contaminate my thinking about the prior, but
again all that matters is whether or not the final
probability structure is judged reasonable. (In this
sense, of course, it is only the Bayesian who can even
attempt to proceed. The classical statistician has no
internally justifiable mechanism to go back and ret-
roactively incorporate alternative models in a unified
analysis. There is nothing systematically wrong with
the Bayesian doing this; one can question the proba-
bilities assigned to the models, but one can always
* question these.) '

‘Note that the flexible Bayesian paradigm I am
advocating does not license non-Bayesian methods,
even in the simplification phases. For instance, I
would argue strongly against choosing between two
models based on a chi-squared significance test, since
this has almost no relationship to whether a Bayesian
analysis would allow simplification to one of the
models or require consideration of both. Of course,
approximate Bayesian methods may be useful. For
instance, consideration of likelihoods alone (as op-
posed to posteriors) may often suffice to carry out a
variety of judgements concerning simplification; the

evidence from the likelihood can be strong enough
that one feels confident that the posterior would re-
flect the same thing. Asymptotics is another potential
tool in this regard. But all such tools have to justify
themselves as being reliable in attaining the Bayesian
goal. As an example, I feel that significance tests are
so unreliable in reflecting Bayesian judgements, that
I would argue against their being part of the simplifi-
cation toolkit.

4. MINOR COMMENTS

(i) Some would argue with the implication at the
beginning of Section 5.1, that the modern Bayesian
paradigm has only developed in the last 50 years.
Much of Laplace’s work would be hard to differentiate
from modern Bayesian work. And many statistical
advances throughout the nineteenth century were
initially made using “inverse probability.”

(i1) I would quibble with the implication in Section
5.1 that it is “ridiculous” to think about a prior for a
Greek letter 6, divorced from the reality it represents.
At one level I certainly approve of the sentiment, but
I also happen to feel that there is a very valuable role
for noninformative priors in Bayesian statistics. And
because noninformative priors are meant to be auto-
matic priors that can be used for their associated
statistical models, they will, almost by definition, be
priors for Greek letters rather than for real quantities.
Of course, not all Bayesians are enamored with non-
informative priors. (My advocacy of noninformative
priors may seem somewhat paradoxical, in that I
argued in Section 3 against basing the foundation of
statistics on using a single prior. How can I now say
that it is okay to use a single automatic prior, one that
requires no thought? Well, Bayesian analysis with a
noninformative prior is very good; Bayesian analysis
with a subjective single prior is usually even better;
and doing it with a class of priors is best.)

(iii) Multiple comparisons and related ranking
problems (cf. Berger and Deely, 1988) are indeed
wonderful domains for showing the intuitive sensibil-
ity of the Bayesian approach. As another illustration
of this, suppose, in an unbalanced model, that the
largest observed treatment effect has associated with
it a much larger variance than the other treatment
effects. Intuition would argue against choosing this as
the best treatment, but it is hard to do anything else
within the classical paradigm. On the other hand,
common hierarchical Bayesian analyses naturally lead
to a substantial downweighting of the largest observed
treatment effect in such a situation.
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Comment

José M. Bernardo

I was delighted to be asked to contribute to the
discussion of this article by the man whom I have
always proudly considered my maestro. I will limit my
comments to a couple of issues.

1. Professor Lindley has long been arguing for the
indirect assessment of probabilities, suggesting that
one should always try to “extend the conversation” to
include other related events, and then combine the
results by simple use of probability theory. It is hard
to overestimate the importance of such advice, and
the work he reports on conditions under which im-
provement is guaranteed is especially welcome.

I would like to illustrate this procedure with a
suggestive example drawn from my recent work in
election forecasting. Trying to predict the outcome in
Valencia of the recent European Parliamentary elec-
tions, I designed a survey where 1000 people over 18
randomly chosen from the census were asked to state
not only the party they intended to vote for, but also
the party they voted for in the last election. By only
using the numbers {n;, i = 1, ---, 6}, of the people
expressing their intention to vote for party i, I got the
estimates of the percentages of the vote to be obtained
by each party which are reproduced in the first row of
Table 1.

Alternatively, using the numbers {n;;,i=1, ---, 6,
Jj=1, ---, 6}, of the people expressing their intention
to vote for party ¢ given that they voted j last time,
and then using the probability equation

6

p(i|data) = ¥ p(i|j, data)p(j),
Jj=1
I obtained the estimates reproduced in the second row.
Note that the p(j)’s, the proportion of people who
voted for party j last time, are known, for those are
the results from the past elections.

José M. Bernardo is Personal Advisor to the President
of the State of Valencia and is on leave of absence from
his position as Professor at the University of Valencia.
His mailing address is Departamento Estadistica,
Presidencia de la Generalitat, Caballeros 2, E-46001
Valencia, Spain.

BIRNBAUM, A. (1962). On the foundations of statistical inference
(with discussion). J. Amer. Statist. Assoc. 57 269-326.

DEROBERTIS, L. and HARTIGAN, J. (1981). Bayesian inference using
intervals of measures. Ann. Statist. 9 235-244.

In both cases I used a hierarchical Multinomial-
Dirichlet model, with a reference prior for the
Dirichlet (hyper)parameters, and allocated nonre-
sponse by means of a probabilistic classification pro-
cedure (Bernardo, 1988) based on the social profiles
(age, sex, level of education) of the nonrespondents,
which are known from the census.

Comparison of these estimates with the final results,
reproduced in the third row of Table 1, is striking.
The direct estimates are rather poor, probably due to
the bias induced by people’s propensity to relatively
overstate their alignment with the party in power (the
socialists in Spain). The indirect estimates, however,
are surprisingly good, with an average absolute error
of about 0.4%, to be compared with the standard
deviations of about 1.5% which would correspond to
the naive analysis of the sample of size 1000. It is
important to note that I had no need to invent some
form of “bias correction”; probability theory did it all
“automatically.”

2. Any review is invariably biased by his author’s
preferences, and Lindley’s account is no exception. I
would like to draw attention to one of my own biases,
the role and use of reference “noninformative” priors,
which he has chosen not to mention.

In Section 5.1, Lindley recognizes the need for ro-
bust procedures with respect to the choice of the prior
(), to the point of considering this necessary for the
change of paradigm to take place; surprisingly how-
ever, he blames Berkeley for not taking on the job.
But, if Berkeley has not, Bayes has made some
progress. Indeed, reference priors (Bernardo, 1979;
Berger and Bernardo, 1989) are best seen as robust

TABLE 1
European parliamentary elections. Percentage of valid votes in the
province of Valencia

Conserv- Nation- Commu-

Socialist . . X Liberal Other
ative alist nist
Direct 53.9 15.7 7.2 8.0 5.5 9.8
Indirect 41.1 20.0 10.4 7.3 6.4 14.8
Final 41.0 20.7 11.0 6.5 6.3 14.5




