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The Unity and Diversity of Probability

Glenn Shafer

1. INTRODUCTION

Mathematical probability and its child, mathemat-
ical statistics, are relative newcomers on the intellec-
tual scene. Mathematical probability was invented in
1654 by two Frenchman, Blaise Pascal and Pierre
Fermat. Mathematical statistics emerged from the
work of the continental mathematicians Gauss and
Laplace in the early 1800s, and it became widely useful
only in this century, as the result of the work of three
Englishmen, Francis Galton, Karl Pearson and R. A.
Fisher.

In spite of these late beginnings, probability and
statistics have acquired a dazzling range of applica-
tions. Inside the university, we see them taught and
used in a remarkable range of disciplines. Statistics is
used routinely in engineering, business, medicine and
every social and natural science. It is making inroads
in law and in the humanities. Probability, aside from
its use in statistical theory, is finding new applications
in engineering, computer science, economics, psychol-
ogy and philosophy.

Outside the university, we see probability and sta-
tistics in use in a myriad of practical tasks. Physicians
rely on computer programs that use probabilistic
methods to interpret the results of some medical tests.
The worker at the ready-mix company used a chart
based on probability theory when he mixed the con-
crete for the foundation of my house, and the tax
assessor used a statistical package on his personal
computer to decide how much the house is worth.

In this article, I will sketch the intellectual history
of the growth and diversification of probability theory.
I will begin at the beginning, with the letters between
the Parisian polymath Blaise Pascal and the Toulouse
lawyer Pierre Fermat in 1654. I will explain how these
authors, together with James Bernoulli, Abraham De
Moivre and Pierre Simon, the Marquis de Laplace,
invented a theory that unified the ideas of belief and
frequency. 1 will explain how this unity crumbled
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under the assault of the empiricist philosophy of the
nineteenth century, how the frequency interpretation
of probability emerged from this assault and how a
subjective (degree of belief) interpretation re-emerged
in this century. I will discuss how these intellectual
movements have supported the amazing diversity of
applications that we see today.

I will also discuss the future. I will discuss the need
to reunify the theory of probability, and how this can
be done. Reunification requires, I believe, a more
flexible understanding of the relation between theory
and application, a flexible understanding that the
decline of empiricism makes possible. I will also dis-
cuss the institutional setting for reunification: depart-
ments of statistics. Departments of statistics have
been the primary vehicle for the development of sta-
tistical theory and the spread of statistical expertise
during the past half-century, but they need new strat-
egies in order to be a source of innovation in the
twenty-first century. We need a broader conception of
probability and a broader conception of what depart-
ments of statistics should do.

2. THE ORIGINAL UNITY OF PROBABILITY

In this section, I will sketch how the original theory
of probability unified frequency, belief and fair price.
(For details, see Hald, 1990; Daston, 1988; Hacking,
1975.)

In order to understand this unity, we must first
understand a paradox. The original theory of proba-
bility was not about probability at all. It was about
fair prices.

Probability is an ancient word. The Latin noun
probabilitas is related to the verb probare, to prove. A
probability is an opinion for which there are good
proofs, an opinion that is well supported by authority
or evidence.

Pascal and Fermat did not use the word probability
in their 1654 letters. They were not thinking about
probability. They were thinking about fair prices.

Here is the problem they were most concerned with,
a problem that had been posed in arithmetic books for
centuries, but that they were the first to solve cor-
rectly. You and I are playing a game. We have both
put $5 on the table, and we have agreed that the
winner will get all $10. The game consists of several
rounds. The first player to win three rounds wins the
game. I am behind at the moment—I have won one
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round, and you have won two—and I must leave to
give a lecture. My wife Nell is willing to take my place
in the game, taking over my position and my chance,
such as it is, of winning the $10. What should she pay
me for this chance? What is the fair price for my
position in this game?

You have won two rounds to my one round. So
perhaps you deserve two-thirds of the $10, and I
deserve one-third. Pascal gave a different answer. He
said you deserve three-fourths, and I deserve only one-
fourth. The fair price for my position in the game is
only $2.50.

Here is Pascal’s argument. Were we to play the next
round, we would have equal chances, and if you were
to win, you would get all $10. You are entitled to $5
right there. If you were to loose, we would be even,
with two games each. So we should split the other $5
equally. That leaves me with only $2.50.

Probability theory got started from this kind of
reasoning. Pascal and Fermat’s basic ideas were pub-
lished in a short but very influential tract by the Dutch
mathematician Christian Huygens. Huygens, together
with the French nobleman Pierre Rémond de Mont-
mort and the Huguenot refugee Abraham De Moivre,
found fair prices for positions in more and more com-
plicated games. The Swiss mathematician James
Bernoulli even found fair prices for positions in court
tennis, the complicated indoor ancestor of modern
lawn tennis.

There was no talk about probability at the beginning
of this work. Only equal chances and fair prices. There
wasn’t even a number between zero and one (my
probability of winning) in the discussion. Probability
was another topic. Probability was concerned with
evidence, and it was a qualitative idea.

It was nearly 60 years after Pascal and Fermat’s
letters, in 1713, that their theory of fair price was tied
up with probability. In that year, five years after James
Bernoulli’s death, his masterpiece Ars Conjectandi was
published. Most of this book is about games of chance,
but in Part IV, Bernoulli introduces probability. Prob-
ability is a degree of certainty, Bernoulli says, and it
is related to certainty as a part is related to a whole;
Probabilitas enim est gradus certitudinus, & ab hac
differt ut pars a toto. Just as the rounds you have won
and lost in a game entitle you to a definite portion of
the stakes, the arguments you have found for and
against an opinion entitle you to a definite portion of
certainty. This portion is the opinion’s probability.
(Some qualifications are required here. The idea of
probability was already connected to Pascal and
Fermat’s theory in a general way in the very influential
Port Royal Logic (Arnauld and Nicole, 1662). George
Hooper used the word probability to refer to a number
between zero and one in work published just before
1700 (Shafer, 1986). It was the intellectual grounding

provided by Bernoulli, however, that bound the idea
of probability irrevocably to Pascal and Fermat’s
mathematics.)

Bernoulli’s introduction of probability was moti-
vated by his desire to apply the theory of fair price to
problems beyond games of chance, problems in civili-
bus, moralibus & oeconomicis, problems in domains
where the qualitative idea of probability had tradition-
ally been used.

This ambition also led Bernoulli to another inno-
vation, the theorem that is now called the law of large
numbers. Bernoulli knew that in practical problems,
unlike games of chance, fair prices could not be de-
duced from assumptions about equal chances. Chances
might not be equal. Probabilities in practical problems
would have to be found from observation. Bernoulli
proved, within his theory, that this would be possible.
He proved that if a large number of rounds are played,
then the frequency with which an event happens will
approximate its probability.

Bernoulli’s ideas were quickly taken up by Abraham
De Moivre, who made them the basis of his book, The
Doctrine of Chances (De Moivre, 1718), which served
as the standard text for probability during the eight-
eenth century. The French mathematician Laplace
extended De Moivre’s work further, into the beginning
of mathematical statistics. Laplace’s Théorie analy-
tique des probabilités (1812), served as the standard
text for advanced mathematical probability and its
applications for most of the nineteenth century.

I cannot trace this development here. I do want to
emphasize, however, that Bernoulli and De Moivre’s
mathematics bound fair price, belief and frequency
tightly together. The probability of an event, in their
theory, was simultaneously the degree to which we
should believe it will happen and the long-run fre-
quency with which it does happen. It is also the fair
price, in shillings, say, for a gamble that will return
one shilling if it does happen.

Figure 1 summarizes the logic of the classical theory.
Probability (i.e., degree of certainty or degree of war-
ranted belief) was defined in terms of fair price, and
long-run frequency (or more precisely, knowledge and
belief about frequencies and other aspects of the long
run) was derived in turn from probability. A whole
mathematical structure goes along this route; the rules
for mathematical probability derive from the proper-
ties of fair price, and the details of our knowledge of
the long run derive from these rules.

Fair Probability

Fi1G. 1. The classical theory.
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3. THE RISE OF FREQUENTISM

If you had been asked, before you began to read this
article, what mathematical probability means, what
would you have said?

Most people would emphasize frequency in their
answer. The probability of a fair coin landing heads is
one-half, they might say, because it lands heads half
the time. Defining probability in terms of frequency
seems to be the proper, scientific, empirical thing to
do. Frequency is real. You can go out and observe it.
It isn’t vague, mushy and metaphysical, like “degree
of certainty” or “degree of warranted belief.”

If this is the way you think, then Figure 1 looks
backwards to you. We should start with the facts, you
will say. Start with the fact that the coin lands heads
half the time. This is why even odds are fair. Don’t
start with some metaphysical idea about fair price and
try to deduce facts from your metaphysics.

The pioneers of probability theory did not take this
hardnosed empirical point of view, which seems so
natural to you and me today. Our modern empiri-
cism—positivism, it is sometimes called—is a fairly
recent development in the history of ideas. It got
started only in the nineteenth century.

In the case of probability, we can pinpoint just when
positivism entered the stage. Independently and al-
most simultaneously, in 1842 and 1843, three empiri-
cist philosophers, John Stuart Mill, Richard Leslie
Ellis and Jakob Friedrick Fries, published criticisms
of Laplace’s classical definition of probability as de-
gree of reasonable belief. Probability, these authors
declared, only makes empirical sense if it is defined as
frequency. So Bernoulli’s theorem, which goes through
mathematical contortions to prove that probability is
equal to frequency, is pure nonsense. (For a fuller
account of the thinking of Mill, Ellis, Fries and their
allies and opponents, see Porter, 1986.)

Loath to give up Bernoulli’s theorem, the mathe-
maticians resisted this attack from the philosophers
as best they could. Throughout the nineteenth cen-
tury, we find probabilitists defending Laplace’s ideas.

Eventually, however, probability theory came to
terms with the empirical spirit of the age. There are
two parts to the story of this adaptation. One part of
the story is about the application of probability—how
a theory of statistics was developed that was suitable
for the analysis of frequency data. The other part of
the story is about the mathematics of probability—
how the mathematical theory was adapted to the
frequentist interpretation of probability, so that you
could be a frequentist and still prove Bernoulli’s theo-
rem. Both parts of the story take us through the end
of the nineteenth century into the twentieth.

Statistics. In order for probability to be empirical,
it should be about actual populations and actual var-

iation in populations. But the technical content of the
mathematical theory of probability in the early nine-
teenth century was not well adapted to the study of
variation. The ideas of correlation and regression,
which statisticians use nowadays to study variation,
were not worked out until the end of the nineteenth
century.

At the beginning of the nineteenth century, the best
developed application of probability theory was in the
analysis of errors of measurement, used in astronomy,
geodesy and other areas of natural science. It was in
this error theory that one found the normal distribu-
tion, the bell-shaped curve that statisticians now use
in the study of variation. Adolphe Quetelet, the Bel-
gian polymath who tried to apply the normal distri-
bution to social statistics in series of publications from
1827 to 1870, ultimately failed because he was unable
to escape from the conceptual setting of error theory.
Just as the astronomer’s measurement was an approx-
imation to an ideal true value, Quetelet saw each
individual in his human populations as an approxi-
mation to an ideal type. Quetelet’s ideal was the
average man.

The concepts of correlation and regression were
finally discovered in the course of the study of hered-
ity, by the Englishman Francis Galton. Galton’s work
was refined into a statistical methodology at the turn
of the century by Karl Pearson and R. A. Fisher. All
three of these scholars were genuinely interested in
variation, because they were eugenicists. They were
not content to regard the average Englishman as the
ideal Englishman. They wanted to take advantage of

variation to improve the race. (The story I sketch so

briefly here is told in depth in Porter and Stigler,
1986). The influence of eugenics on the development
of mathematical statistics is discussed in Mackenzie,
1981).

Once the basic ideas of correlation and regression
were developed, the particular problem of eugenics
faded from the center of mathematical statistics.
There is variation everywhere. Yet the frequentist
statistical methodology developed by Pearson and
Fisher is still the core of statistical theory.

Mathematical Probability. The mathematical
theory of probability was adapted to frequentism in a
less direct way. The key to the adaptation was the
philosophy of mathematics of the great German math-
ematician David Hilbert (1862-1943).

Roughly speaking, Hilbert believed that mathemat-
ics is a formal exercise, without any essential connec-
tion to reality. The business of mathemmnatics, he held,
is the derivation of formal mathematical statements—
mere strings of symbols, really—from other formal
mathematical statements. Getting mathematics right
is a matter of making sure the derivations follow
certain rules.
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Hilbert’s ideas inspired an effort to base all mathe-
matics on axioms, like the axioms you learned for
plane geometry in high school. Most advanced math-
ematics, it turns out, can be built up axiomatically
starting with set theory, the abstract theory of “groups
of things” invented by the German mathematician
George Cantor (1845-1918). Many of the less mathe-
matical readers of this article will remember set theory
from the late 1960s and the early 1970s, when the
“new math” brought it into the elementary schools in
this country.

In the case of probability, the reduction to set theory
was completed only in the late 1920s and early
1930s. The definitive formulation was by Andrei
Kolmogorov, the great Russian mathematician who
died in 1987. Kolmogorov’s axioms for probability are
extremely simple. They treat events as sets, and prob-
abilities as numbers assigned to these sets, and they
require that these numbers obey certain rules. The
main rule is additivity. The probabilities of disjoint
events add.

Kolmogorov’s axioms have been extremely success-
ful as a basis for the further development of mathe-
matical probability. They have freed mathematicians
from all the paradoxes and confusions that bedevil the
interpretation of probability, leaving them a clear view
of their purely mathematical problems. The axioms
have been so successful, in fact, that pure mathema-
ticians often proclaim, with a straight face, that “prob-
ability began with Kolmogorov.”

I will not inflict on you the notation required to
state Kolmogorov’s axioms. I do want to point out,
though, that these axioms take us far away from the
setting in which Pascal and Fermat began, where
repeated rounds of a game are played and prices and
hence probabilities change. Kolmogorov’s axioms are
about a single probability space. Neither price nor
repetition are fundamental now; they are both arbi-
trary elements added on top of the basic foundational
axioms.

4. THE ROLE OF THE STATISTICS DEPARTMENT

Probability and statistics have become so broad that
in order to understand their development in the twen-
tieth century, we must focus on institutions rather
than on individual scholars.

Though the new statistics was invented in Britain,
it was taken up as a practical methodology more
quickly in the United States than in Britain itself.
Leadership in statistical theory, on the other hand,
remained in Britain until the Second World War.
American strength in statistical methodology might
be attributed to our practical spirit, but it was also
due to the flexible organization of American univer-
sities. (Ben-David, 1971, discusses how the depart-

mental organization of American universities allowed
the rapid development not only of statistics but also
of other new fields.) American weakness in statistical
theory can be attributed, paradoxically, to our rela-
tively impractical mathematics. The American drive
to match the best mathematics of Europe had led by
1900 to a dominant role for pure mathematics in
American mathematics, and that dominance has per-
sisted within our mathematics departments through-
out the century. (Birkhoff, 1977, lists Thomas S.
Fiske, E. H. Moore, William F. Osgood, Maxime
Bocher, and Henry Burchard Fine as the most prom-
inent of the pure mathematicians who took over
the leadership of the American Mathematical So-
ciety around 1900. For further information on the
development of American mathematics, see Duren,
1989).

What were the reasons for this dominance of pure
mathematics? Folklore tells us that the Americans did
not feel they could compete with the Europeans in
applied mathematics. Our graduate students were un-
willing to spend the time needed to master both math-
ematics and a field of scientific application, and our
universities lacked the depth in science of the Euro-
pean universities. We could make a mark on world
mathematics only by working as far as possible from
applications. (This folklore deserves serious historical
examination. This would require both assessment of
the possibilities in applied mathematics at the turn of
the century and much archival work. In their public
declarations, Fiske and his colleagues expressed strong
support for applied mathematics.)

The Second World War did bring leadership in
statistical theory, along with leadership in most sci-
entific fields, to the United States. Many of the leading
European theoretical statisticians, including Jerzy
Neyman and Abraham Wald, immigrated to the
United States before or during the war, and our mili-
tary invested heavily in statistical theory. Our univer-
sities accommodated this move into statistical theory
not by changing the character of their departments of
mathematics but by creating departments of statistics.

The rationale for the statistics department was
worked out in the late 1930s and early 1940s by a
remarkable group of American statistical statesmen,
including Harold Hotelling, Jerzy Neyman, W.
Edwards Deming, Burton H. Camp, S. S. Wilks,
Walter Bartky, Milton Friedman and Paul Hoel. It
was articulated by Hotelling in two famous lectures,
“The Teaching of Statistics,” delivered at Dartmouth
in 1940, and “The Place of Statistigs in the Univer-
sity,” delivered at Berkeley in 1946. (The written
versions were published in 1940 and 1949, respectively.
They were reprinted, along with comments by some
of today’s leaders in statistics, in Hotelling, 1988a
and b.)
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In Hotelling’s design, the statistics department is a
bridge between mathematics and the disciplines in the
university that use statistical methods. This bridging
role can be seen in the undergraduate curriculum of
the department, in its graduate curriculum and in its
faculty’s research.

Most statistics departments have relatively few un-
dergraduate majors; they play a service role at the
undergraduate level, while relying on mathematics
departments to train undergraduates for their own
graduate programs.

The graduate curriculum is divided between math-
ematical probability, with at least a few courses taught
at the most austere level, and statistics, with a few
basic courses taught abstractly and others in a more
practical spirit. Thus each doctoral student is forced
to make for him or herself the journey from mathe-
matics to applications.

The faculty for courses in mathematical probability

often have joint appointments with the mathematics
department; sometimes they are simply drawn from
the mathematics department. More importantly for
the university, the statistics department seeks joint
appointments with other departments that use statis-
tics, from electrical engineering and geology to psy-
chology and educational research. The faculty with
joint appointments in these user departments gener-
ally have degrees in statistics and regard statistics as
their primary home. Their role is to transfer the latest
statistical methodology to potential users. They also
provide for communication in the opposite direction;
by consulting in particular applied fields, statisticians
develop interests in new statistical problems in those
fields, and they communicate these problems, along
with their own attempts at solutions, to their statis-
tical colleagues.

Hotelling’s design has been very successful. There
are now over 60 statistics departments in this country,
generally at the larger public and private universities.
Smaller colleges cannot afford statistics departments;
but they have followed the lead of the statistics de-
partments with various joint departments and degree
programs. All told, degrees in statistics are given by
over 200 colleges and universities in the United States.

5. THE REVIVAL OF SUBJECTIVE PROBABILITY

Statistics departments are a product of frequentism,
and the teaching in statistics departments is still
predominantly frequentist in philosophy. Yet frequen-
tist statistical theory has its difficulties and limita-
tions, and these have become increasingly obvious
with age. I cannot detail these shortcomings here, but
I must point out that they have led to resurgence of
subjective ideas within statistics during the past 30
years. Since the publication of L.J. Savage’s Founda-

tions of Statistics in 1954, a minority of statisticians
(The “Bayesians”) have revived the view that proba-
bility means degree of belief. The Bayesians have had
a great impact not only in statistics, but also in eco-
nomics, psychology, computer science, business and
medicine.

The intellectual foundation for this subjectivist re-
vival] was laid earlier, in the 1920s and 1930s, by the
English philosopher Frank Ramsey and the Italian
actuary Bruno de Finetti. Ramsey and de Finetti saw
a way to make degree of belief, as opposed to fre-
quency, respectable within positivist philosophy. We
can give degree of belief an empirical, behaviorist
interpretation by insisting that people be willing to
bet on their beliefs. A degree of belief of 2/3 in rain,
for example, can be interpreted as a willingness to
take either side of a 2-to-1 bet on rain.

The revival of the subjective interpretation was
facilitated, paradoxically, by Kolmogorov’s axioms.
Though these axioms were meant by Kolmogorov as
a mathematical foundation for the frequentist inter-
pretation, their formality makes them equally suscep-
tible to a subjective interpretation. Indeed, since they
do not require a structure for repetition, the axioms
play into de Finetti’s contention that repetition is not
necessary for mathematical probability to be mean-
ingful. In Kolmogorov’s framework, structures for
repetition are built on top of the axioms and are
therefore optional. In the new subjective theory, rep-
etition is optional in the interpretation of the theory
as well.

Within statistics, Bayesianism amounts to a minor-
ity view about how to solve the standard problem of
modeling statistical variation. We just add to the class
of models we are considering some prior subjective
probabilities about which model is correct. But beyond
statistics, Bayesianism cuts a wider swath. During the
past 30 year, it has allowed probability to penetrate
into areas where statistical modeling is inappropriate
because statistical data is unavailable, but where evi-
dence is sufficiently complicated to make quantitative
judgments useful.

The best known practical Bayesian technique is the
decision tree, which originally appeared in Abraham
Wald’s frequentist statistical decision theory, but
which, since the late 1950s, has been used more and
more with subjective probabilities. Subjective decision
trees have long been a standard topic in the under-
graduate business curriculum, and now they are
spreading to many other fields, including medicine
and engineering.

Bayesian decision theory, the abstract version of
subjective decision trees, has also become influential
in philosophy and psychology. Philosophers debate
whether Bayesian methods constitute a standard of
rationality, and psychologists study the extent to
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which they describe actual human behavior under
uncertainty.

The greatest impact of the revival of subjective
probability has come in theoretical economics. The
Bayesian model of rationality has found a role in a
plethora of micro-economic models during the past
25 years, and in the past 10 years it has had a growing
role in macro-economics as well.

I must also mention the new and growing influence
of subjective probability in artificial intelligence. Since
its inception in the 1950s, this branch of computer
science has seen symbolic logic as its principal math-
ematical tool. But in the past 10 years, the desire to
build expert systems in areas where uncertainty must
be explicitly managed has inspired new interest in
subjective probability judgment, and new work in
probability theory. This new work provides a new
perspective on probability, a perspective that puts
much more emphasis on the structure of conditional
independence than on numbers. It has also stimulated
new work on the theory of belief functions, an alter-
native theory of subjective probability on which I have
worked for many years (see Shafer and Pearl, 1990).

6. THE BALKANIZATION OF PROBABILITY

I have been painting a picture of intellectual vitality. .

The mathematical theory of probability has been
flourishing, spilling over all disciplinary and institu-
tional boundaries. But this wild growth has its
negative aspects. Conceptually and institutionally,
probability has been balkanized.

Twenty-five years ago, the statistics department
was clearly the intellectual center of probability.
Those in other disciplines who wanted to use proba-
bility or statistics came to the statistics department
to study these subjects. Those who were concerned
about the meaning of probability came to the statistics
department to hear the debate, then still fresh and
stimulating, between frequentists and Bayesians. To-
day, the picture has changed. On both the practical
and philosophical sides, many of the new develop-
ments in probability are now taking place outside the
statistics department.

Within statistics, we still introduce probability the-
ory either as a prelude to statistical modeling or as a
prelude to probability as pure mathematics. “Proba-
bilist,” to us, still means mathematician. We have not
adapted our teaching to serve students who want to
use probability in computer science, engineering or
theoretical economics. Consequently, new traditions
for teaching probability are growing up within these
disciplines. Whereas our approach once provided a
common language for all areas of application, it is now
in danger of being reduced to one voice in a tower of
Babel.

On the philosophical side, the debate between fre-
quentists and Bayesians within the statistics depart-
ment has calcified into a sterile, well-rehearsed
argument. The real debate has moved outside the
statistics department, and the main divisions over the
meaning of probability now follow disciplinary lines.
Frequentists predominate in statistics and in the ex-
perimental sciences, while Bayesians predominate in
the professional schools, theoretical economics, and
artificial intelligence. To most Bayesians, the debate
in statistics now seems parochial; it is concerned only
with statistical modeling, not with the larger issues.
Most frequentist statisticians, on the other hand, see
Bayesians in other disciplines as cranks. Today busi-
ness and engineering schools, in their brashness and
practicality, may do more than statistics departments
to bring together the broad range of interpretations of
probability.

In addition to failing to occupy the new ground of
probability, the statistics department is also losing
much of the ground it did occupy. Its role as a bridge
from mathematics to users of statistics in engineering
and the sciences has declined over time. This is due
in part to the growth of statistical expertise within
these disciplines, which makes the outside specialist
less needed.

Hotelling argued that students in all fields that use
statistics should take their first course in statistics
from the statistics department. Only the statistical
specialist, he argued, would have the mathematical
grasp of statistical theory needed to teach the sub-
ject well. We have clung to the element of truth in
Hotelling’s argument, but in most universities we have
lost the argument. This is only partly because the level
of mathematical competence in the other disciplines
has risen. It is also because progress has changed what
the disciplines want their students to learn in the
introductory course. Students in the social and biolog-
ical sciences who come to learn statistics now surely
deserve to be taught not only the logic of the subject
but also the decades-long record of its successes and
failures in their discipline. If the statistics depart-
ments cannot undertake this task, the disciplines
must.

The growing isolation of the statistics department
is due in part to its mathematization. Perhaps any
discipline that serves as a bridge between mathematics
and an area of application will tend, once the leader-
ship of its founders is gone, to move back towards
mathematics. It is clear that his has happened in
statistics. Today most of the artieles in the leading
statistics journals are so mathematical that the
postwar founders of our statistics departments would
not be able to read them, and so impractical that they
would not want to. The joint appointments that made
statistics departments so influential in the 1950s and



UNITY AND DIVERSITY OF PROBABILITY 441

1960s have become difficult to replicate. When we
look at the departments where these appointments
were most successful, such as Stanford and Wisconsin,
we find that few such appointments were made in the
1970s and 1980s. Younger statisticians have had to
concentrate on their mathematics in order to be rec-
ognized as first-rate.

I want to mention one more area in which the
leadership role held by statisticians through the 1970s
has been wrested from us. This is in our own history.
When ours was a young and brash field, we controlled
our own history by default. No one else cared. We
didn’t really know much about this history, but we
told what we knew with authority. This, too, has
changed. Starting with the philosopher Ian Hacking’s
book The Emergence of Probability in 1975, we have
seen our history taken over by philosophers and
professional historians of science. In the past decade,
we have seen more books and articles on the history
of probability and statistics than were published dur-
ing the entire preceding existence of these subjects.
The more technical of these works still tend to be
written by statisticians, but most of the books that try
to describe the big picture are now written by histo-
rians with relatively little technical training. The story
they tell sounds very different from the story we once
told. Whereas we saw probability and its progress from
the inside, the historians see probability and its vicis-
situdes as the result of larger cultural and historical
forces.

I do not believe that the balkanization of probability
is a good thing. We need ways of understanding the
unity that still exists in probability, and we need an
institutional center for probability and statistics. We
need institutions that can bring together divergent
tendencies in philosophy and application, so that these
tendencies can learn from each other.

In the remainder of this article, I will be concerned
with how probability can be reunified. On the concep-
tual side, I will sketch how we can recreate an under-
standing of probability that has room for both
frequentist and Bayesian applications, without the
worn-out dogmas of either group, and also room for
the newer applications. On the institutional side, I
will advance some theses about what our statistics
departments must do to recover their leadership role.

7. THE CONCEPTUAL REUNIFICATION OF
PROBABILITY

On the conceptual side, I believe we can go back to
the original unity of belief and frequency. The positiv-
ism that drove these two aspects apart no longer holds
quite the sway that it held in the nineteenth century.
For the positivists, every element of a theory—every
object in the theory and every relation between

objects—had to have a definite, verifiable, empiri-
cal reference. Today, it is possible to be more flex-
ible about the relation between a theory and its
application.

The point is that we can apply a mathematical
theory to a practical problem even though it does not
model that problem empirically. In order to apply a
theory to a problem, it is sufficient that we relate the
problem, perhaps even very indirectly, to another
problem or situation that the theory does model.

The only situation that the mathematical theory of
probability models directly is still the very special
situation studied by Pascal and Fermat, the special
situation where we flip a fair coin or play some other
game with known chances. In this special situation,
which I call the ideal picture of probability, the unity
of belief and frequency is unproblematic. If we know
the frequency with which a coin lands heads, this
known frequency is a sensible measure of the degree
to which we should believe it will land heads on any
particular flip.

Whenever we use mathematical probability in a
practical problem, we are relating that problem, in
one way or another, to the ideal picture. In my forth-
coming book, The Unity and Diversity of Probability,
I argue that the different ways Bayesians, frequentist
and others use probability should be thought of as
different ways of relating problems to the ideal picture.
Much standard statistical modeling amounts to using
the ideal picture as a standard of comparison. Statis-
tical arguments based on sampling or experimental
randomization depend on artificially generated ran-
dom numbers which simulate the ideal picture, and
they relate this simulation to real problems in clever
ways. Bayesian arguments can be thought of as argu-
ments by direct analogy to the ideal picture. And
arguments based on the theory of belief functions
involve analogies that are less direct.

Recognition of this continuing centrality of the ideal
picture will allow us to move back to unified under-
standing that we find in Pascal, Fermat, Bernoulli
and De Moivre. We can insist on the unity of belief
and frequency in the ideal picture even while ad-
mitting that they go their separate ways in many
applications.

We cannot simply return to the mathematics of the
seventeenth and eighteenth century, for we have
learned much since that time. We can, however, re-
formulate the mathematical foundations of probabil-
ity in a way that incorporates rather than ignores the
pioneers’ insights into the fundamental role of fair
price and repetition. In The Unity and Diversity of
Probability, 1 argue for reformulating Kolmogorov’s
axioms in the framework of a sequence of experi-
ments, in which the mathematics of Figure 1 can be
recaptured.
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We do need to go beyond Figure 1 in one important
respect. Work in the twentieth century by the fre-
quentist scholars Richard von Mises, Jean Ville and
Abraham Wald has shown that the theory of proba-
bility can be developed mathematically starting with
the knowledge of the long run, which includes both
knowledge of long-run frequency and knowledge of
the impossibility of gambling schemes (see Martin-
Lof, 1969; Cover, Gacs and Gray, 1989). Thus Fig-
ure 1 can be expanded to Figure 2, which shows fair
price, belief and frequency bound together in a trian-
gle. From a purely mathematical point of view, any
point in this triangle can be taken as an axiomatic
starting point, but from a conceptual point of view,
none of these starting points can stand on its own.
The axioms or assumptions that we must set down
when we start from any one of the starting points can
be justified only by reference to the other ideas in the
triangle (see Shafer, 1990b).

8. THE INSTITUTIONAL REUNIFICATION OF
PROBABILITY

What can be done to make the statistics department
once again the intellectual center of probability?

The well-worn answer is that we should try harder
to live up to Hotelling’s design. We should teach
better, so that other departments will send their stu-
dents to us rather than developing their own proba-
bility and statistics courses. We should play university
politics better, so that these departments are not
allowed to develop their own courses. We should ex-
amine the mathematics we do more critically, to make

Knowtedge

of the - [ F&r

Long Run

Probability

(Warranted
Belief)

F1G.2. The theory of probability starting with knowledge of the long
run.

certain it is relevant to applications. We should pro-
duce more statisticians who are so bright that they
can meet today’s standard for mathematical accom-
plishment while continuing the tradition of being in-
volved in practical problems.

Our best statistics departments are doing these
things. This has not been enough, however, to stop
the balkanization I have described. I believe the time
has come to address the problem directly. We need a
new conception of the statistics department, one that
suits our times.

The new statistics department should assess and
absorb into its teaching and research what other dis-
ciplines have learned about probability and statistics.
The department’s introductory teaching of probabil-
ity, at both undergraduate and graduate levels, should
be comprehensive enough to serve all users. The de-
partment should teach not only the logic of statistics,
but also the issues involved in its applications. In our
undergraduate statistics courses, we should try to as-
sess past performance and future prospects for statis-
tics in each of the disciplines we serve. Our graduate
teaching should include comparative assessment of
the possibilities for statistics in different fields, in-
cluding both the disciplines we serve within the uni-
versity and fields that we serve outside the university,
such as the census.

Our best statisticians have been willing to evaluate
the uses to which other fields put statistical ideas.
(See, for example, the debate between John Tukey
and the economists Heckman and Robb in Wainer
1986). The discipline of statistics has failed however,
to produce broad assessments of the use of statistics
in different fields, with examples of successes as well
as failures, and with lessons for practitioners. Such
assessments should be a major research and teaching
goal for the new statistics department.

Where can we find the faculty for these tasks? We
do not have to look far. We must co-opt the historians,
computer scientists, philosophers, economists, psy-
chologists and others who are contributing to our
understanding of probability and statistics. We must
enlist faculty from these disciplines to help us in our
teaching mission, at both the undergraduate and grad-
uate levels. We must make dissertations and careers
concerned with aspects of probability and statistics
that have been developed in these other disciplines
possible within statistics.

In some cases, we should recruit people trained in
these disciplines as full-time members of the statistics
department. In other cases, we should ask them, in
their role as faculty members in another department,
to serve on an advisory committee for statistics and
teach courses in the statistics department. In other
cases, we should seek joint appointments. In the past,
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we have thought of joint appointments as a way for
statistics to contribute to other disciplines. We must
now think of them also as a way for the other disci-
plines to contribute to statistics.

Computer science is one of the first disciplines with
which we should seek joint appointments. Probability
has begun to play a whole spectrum of roles in com-
puter science, from a tool in the evaluation of algo-
rithms to a model for distributed processing to a model
for learning and inference in artificial intelligence.
This, together with the ever increasing role of com-
puting in both theoretical and applied statistics,
makes it essential that ties between statistics and
computer science be cultivated.

History is another field with which we need recip-
rocal ties. Historians need our help, for in recent
decades they have joined the social sciences as users
of statistics. We need their help in order to carry out
the assessments of statistical practice that I am ad-
vocating. Our task is to write the history of probability
and statistics in the twentieth century.

I subscribe to David S. Moore’s thesis that statistics
belongs among the liberal arts (Moore, 1988). I believe,
moreover, that we cannot teach statistics as a liberal
art unless we practice it as a liberal art. The research
and graduate program in the statistics department
should include real attention to the history and phi-
losophy of probability and statistics.

The proposals I have just made are far-reaching.
Their implementation will not be easy or painless. It
will take many years to reshape our curriculum in the
directions I have suggested, and when this has been
accomplished, we will have to deal with much more
diverse colleagues and students than we have dealt
with in the past. Evaluation of students and faculty
will be more difficult and possibly more contentious.
The new statistics department will not work without
leadership.

Is is necessary to take so difficult a path? Many
statisticians do not share my conviction that the sur-
vival of the statistics department is threatened by the
balkanization of statistics. They are willing to cede
the new applications of probability and the more mun-
dane topics of applied statistics to other departments,
confident that the statistics department will remain
indispensable as a home for those at the forefront of
research in mathematical statistics. The need for this
research seems to guarantee the survival of the statis-
tics departments.

I believe this is true in the short run. But those who
would rely on the prowess of a mathematical elite for
the survival of statistics as a separate discipline should
look over their other shoulder. Since the David Report
in 1984 (Committee on Resources for the Mathemat-
ical Sciences, 1984), the mathematics community in

this country has taken remarkable strides in broad-
ening its conception of its subject. Incredible as it
seems to those of us who studied mathematics in the
heyday of American fascination with the mythical
French pure mathematician Bourbaki, many Ameri-
can mathematicians are now broadly interested in
applications. It is conceivable that in the next gener-
ation we will see mathematics departments capable of
interacting with a broad range of disciplines. Were
this to happen, the independence of elite departments
of very mathematical statisticians would no longer
make sense. Such departments would be reabsorbed
into mathematics.

As stewards of a legacy from a line of giants stretch-
ing from Pascal to Hotelling, we should not relish such
an outcome. Statistics, as a discipline, has proven
fruitful because it has had an intellectual basis broader
than mathematics. Because it has been rooted in the
practical and philosophical problems of inference as
well as in mathematics, statistics has been able to play
a leadership role extending throughout the sciences.
Our goal today should be a renewal of statistics that
will keep it in this position of leadership.
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Comment

Hirotugu Akaike

Professor Shafer’s paper shows his concern for the
future of statistics. He considers that the present
situation of statistics is alarming and, assuming that
mathematical statistics is a child of mathematical
probability, attributes this situation to the populari-
zation and diversification of the use of probability. I
completely agree with Professor Shafer on the recog-
nition of the problematical status of statistics and
would like to add some observations on the nature of
statistics and probability.

STATISTICS FOR PLANNING AND PROBABILITY
FOR DECISION

It is almost certain that the original concept of
statistics started with the description of the state of a
nation by counting and classifying its people. Any
country appearing in the history must have used some
kind of statistics for the management of the country.
Along with this very old origin of the concept of
statistics was also the use of probabilistic mechanisms
or randomizers by ancient kings.

A typical example of the use of a randomizer is
given by the I Ching, or the Book of Changes, which
shows the wisdom of ancient Chinese people for the
handling of uncertainties. With this book there is an
advice that recommends the minimum use of the book
to attain a proper objective.
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Consider a king who was going to declare a war
against another country. It is almost certain that he
used statistics for the planning of the war. But there
must have remained some uncertainty. If he intended
to consult the I Ching, then the advice would have
forced him to make utmost effort to minimize the
uncertainty before he turned to the randomizer. This
means that the process of setting up a probability
distribution for a particular purpose must be based on
a fully efficient use of available information which is
often supplied by the related statistical data in the
case of the decision related to the future of a nation.

Here we can see a typical example of the use of
statistics for planning and probability for decision.
This example also demonstrates the inherent connec-
tion of probability and statistics with the proper use
of information.

PROBABILITY OF A SINGLE EVENT

Consider a situation where probability p(A) of the
occurrence of an event A is given. When p(A) is greater
than 0.5, according to the interpretation of probability
as described by Shafer, it would seem reasonable to
bet on the occurrence of A. However, since probability
does not tell anything about actual occurrence of a
particular event, some justification is required for the
decision to bet on A. .

This problem is deeply related to the argument of
objectivity or subjectivity of probability. If the proba-
bility is considered to be objective, in the sense that it
is accepted by most of the members of a society, the



