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Rejoinder

Peter Jagers

In his famous deduction of the motion laws in an
ideal gas, Maxwell showed that if velocities in the
three base coordinates are independent and identi-
cally distributed and their joint frequency function
is determined by the kinetic energy, then the veloc-
ities must be normally distributed. This is an
unusual case: Idealized, but not ridiculous, assump-
tions determine a parametric family of standard
distributions. More frequently it is mathematical
convenience that dictates the assumption of the
most popular special distributions: exponential or
deterministic life spans, Poisson reproduction,
Brownian migration, special laws of neighbor inter-
action, to quote some examples from population
dynamics or particle systems. The rationale might
then be either the hope that the ensuing results
should have a more general validity than for the
special case in which they have been deduced or
that the special assumptions made are “natural” in
some yet unproven sense, or, possibly, that the
resulting mathematics is beautiful enough to war-
rant the work.

The general branching process approach to popu-
lation dynamics, which I have tried to sketch, be-
longs to another tradition. No assumptions about
special distributional forms are made, and results
are obtained through general mathematical and
probabilistic laws, like the law of large numbers.
This, of course, yields a much greater applicability
of results, and we can feel more secure that the
claims made are not based upon some incidental
property of, say, the exponential distribution. But
there is a price to be paid: Many topics cannot be
investigated in this general setting.

In particular, this concerns interaction proper-
ties, like those in genetics, or of spatial interaction.
Nevertheless, I like to see branching process on the
track toward more and more interdependence, along
similar lines as the classical analysis of sequences
of random variables has developed. In this spirit, I
described Galton-Watson processes as the theory of
sums of iid random variables on trees, and multi-
type processes as the theory of summation of
Markovian random entities on trees. A natural
continuation of such a program would be to con-
sider other concepts well known for sequences of
random entities for entities defined on trees, from
m-dependence and mixing to ergodicity. The case
of sibling interaction has already been treated
(Broberg, 1987), and work is under way on more
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general interaction that is local in the family tree.

I believe that Cohen’s remark about unobserved
heterogeneity and partially observed Markov chains
should fit well into such a research program (even
though his opening remarks about Markovianness
have to be taken carefully, since not even in his
simple case size and composition over types consti-
tute a Markov process in real time). Cohen’s second
suggestion, to join together random mating with
population growth models, is nice. One should only
realize that random mating forces a rather simplis-
tic age structure on the population growth model,
much as in Cohen’s own example. This is one of the
areas where the general type of modeling I have
advocated above seems to fall short.

The independence assumptions, that are clearly
the weak point of branching processes, are also
taken up in Sawyer’s comment. Here it is the
interaction between the population as a whole (car-
rying capacities) and individual reproduction that
are pinpointed. Again, I believe that there is little
hope to solve such problems without the assump-
tion of special distributions. The most general
results I know of concern Galton-Watson and
birth-and-death type processes (Klebaner, 1989, and
earlier papers).

Donnelly’s comments give a succinct description
of the structure of genetics models. I am par-
ticularly grateful for the carefully phrased and
nontechnical discussion of the molecular clock hy-
pothesis. If there is anything for me to add, it is
only to underline that this is a discussion in terms
of the traditional genetical models. Of course, this
is the framework in which the hypothesis was first
formulated and is usually discussed. However, it is
only a model, depicting some aspects of reality
acceptably well, others with rather much of contor-
tion. Like Sawyer, I find it comforting if the hy-
pothesis and therefore also related entities, like
Donnelly’s &, the rate of evolution along an ances-
tral line, or u, the rate at which mutations occur to
an individual, turn out to appear naturally in
branching processes as well. If k, = u always in
the context of population genetical models, but only
under added conditions in branching models, it is
natural to check whether these extra assumptions
are implicit in population genetical models and to
what extent they seem to be valid in reality. The
formation and testing of the molecular clock hy-
pothesis in various models is an important part

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é@J}ﬁ

Statistical Science. MINORY

www.jstor.org



GROWTH AND STABILIZATION OF POPULATIONS 283

of testing its validity beyond particular models
(a point that is certainly clear to Sawyer and
Donnelly, but may be not so to the most ardent
proponents of the molecular clock!).

Let me end by thanking the discussants for
their comments, and also the editor for a choice
of discussants, supplementing my own background
in branching processes with distinguished repre-
sentatives of other traditions within population
dynamics.
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