LISP-STAT: BOOK REVIEWS 349

Comment

Forrest W. Young

1. INTRODUCTION

This review, which covers the Lisp-Stat software
as well as the Lisp-Stat book, is organized around
the full title of the book, to which I have added the
words functional, extensible and free. Fortunately,
Luke Tierney didn’t use all of these words in his
title (which would have become something like
“Lisp-Stat: A Functional and Object-Oriented Envi-
ronment for Statistical Computing and Dynamic
Graphics that Is Extensible and Free”), but this
expanded title does incorporate what I see as all of
the most important aspects of Lisp-Stat, and does
make for a good way of organizing this review.

2. LISP

The key insight in Lisp-Stat is that it would be
reasonable, even beneficial, to develop a statistical
system based on the Lisp language. This insight
was not Tierney’s, but rather it belongs to one of
the computational statisticians who have advocated
such a development over the last few years (see
McDonald and Pedersen, 1988; Oldford and Peters,
1988; Stuetzle, 1987; and Buja, Asimov, Hurley and
McDonald, 1988). At first, Lisp seems like a very
strange choice, especially for those of us who are
only familiar with procedural languages such as
Fortran, C or Pascal. In fact, Tierney asks very
early in his book (page 3) the rhetorical question:
“Why Lisp?” His answer: Lisp combines the
strengths of a general purpose programming lan-
guage with the needs in data analysis for interac-
tive, experimental programming. He also notes that
Lisp is a functional language that is object-oriented
and that can be easily and elegantly extended (see
below). There are few, if any, other general purpose
languages that provide all of these characteristics.

At first, Lisp is a bit strange to use, since it is
based entirely on prefix notation using a very sim-
ple and consistent syntax. However, the consist-
ency and simplicity of the notation and syntax is
soon seen to be one of the true strengths of the
language. Indeed, the language and the statistical
system are very easy to learn and to teach to novice

Forrest W. Young is Professor of Psychometrics and
Biostatistics at the University of North Carolina, BC
3270 Davie Hall, Chapel Hill, North Carolina
27599-3270.

25
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to SO
Statistical Science. NINOIY

programmers and novice data analysts. The tuto-
rial chapter (2) is good for getting started with
Lisp-Stat and Chapters 3 and 4 on Lisp provide an
introductory overview of Lisp that is sufficient for
using Lisp-Stat. If one wants to do serious program
development a book specifically on Lisp (Winston
and Horn, 1989) will be needed.

Lisp-Stat is currently based on the XLISP
implementation of Lisp, which is a subset of the
industry-standard version of Lisp known as Com-
mon Lisp. XLISP has two drawbacks. The major
drawback is that XLISP has no compiler, only an
interpreter. While this is appropriate for “interac-
tive, experimental programming,” a compiler is
better for Lisp-Stat code that is stable and that will
be re-used many times. Tierney (personal commu-
nication) says that a new implementation of Lisp-
Stat, based on Kyoto Common Lisp (KCL), which
has a compiler, is being developed. The second
drawback, which seems to be less critical, is that
XLISP does not implement CLOS, the industry
standard Common Lisp Object System. Since ob-
ject-oriented programming is very important for
dynamic graphics, Tierney has developed his own,
nonstandard subsystem. While I have no experi-
ence with CLOS, Tierney’s object system (TOS?) is
easy to learn and use, and seems appropriate for
dynamic statistical graphics and for other data
analysis uses. The KCL implementation will in-
clude both object systems.

3. STAT

What Lisp lacks, and what Lisp-Stat adds, are
the capabilities needed for statistics, data analysis
and statistical graphics. Thus Lisp-Stat is Lisp ex-
tended to include vectorized arithmetic, functions
for basic statistical computations (mean, standard-
deviation, etc.), functions for maximization and
maximum likelihood estimation, functions for lin-
ear algebra and matrix manipulation (transpose,
svd, etc.), an interface to several windowing sys-
tems (X-Window, Amiga, Macintosh, but not yet
Microsoft Windows) and tools for constructing
graphs and dynamic graphs.

What this provides is an environment in which it
is easy to perform basic statistical calculations,
optimization, matrix algebra and dynamic graph-
ics. What this does not provide (and here we have
the major limitation of Lisp-Stat) is an environ-
ment in which it is easy to manipulate data (there
is no spreadsheet, no datasets, etc.) or to perform

®
WwWw.jstor.org



350 LISP-STAT: BOOK REVIEWS

major, ‘“prepackaged” statistical computations
(such as analysis of variance, cluster analysis, etc.).
Other than “model-objects” (analysis procedures)
for multiple regression (linear and nonlinear) and
approximate Bayesian computations, there are no
major statistical analysis procedures. More discus-
sion of these limitations appears below.

4. FUNCTIONAL

Lisp is a functional language based on prefix
notation. Thus, if one wants to take the mean of a
vector containing precipitation levels in a number
of cities, the appropriate Lisp statement is

(mean precipitation),

which seems natural. However, if one wants to add
the elements of two vectors, say for different types
of automobile emissions, the statement is

(+ hydrocarbon carbon-monoxide),

which at first takes some getting used to. If one
wants to also define a new vector as the sum of
those two, the statement becomes

(def total (+ hydrocarbon carbon-monoxide)),

which seems even stranger (there is no assignment
statement, assignment being done by the prefix
function def). However, these initial concerns soon
disappear and are replaced for an appreciation for
the simple elegance of Lisp’s slavish use of prefix
notation, and the power of being able to nest func-
tional statements indefinitely deep. (Just as an
example of the power of Lisp’s simple notation,
recursive programming is so straightforward that if
one hasn’t used other languages such as Fortran or
C, one doesn’t think that recursive programming is
something special.)

The statistical extensions to Lisp consist in large
part of Lisp functions modeled on the S statistical
system (Becker, Chambers and Wilks, 1988). These
functions, most of which are vectorized, .include
basic data-handling functions, sorting, interpola-
tion and smoothing, probability distributions, ma-
trix manipulation, linear algebra and regression
computation. The vectorization is particularly nice,
making linear algebra and matrix manipulation
straight-forward and, since the vectorization is
written in the underlying compiled C language,
very fast. Chapter 5 presents these functions and
has examples of them being used to construct a
projection operator and to create a robust regres-
sion function. The statistical functions fit cleanly
into Lisp, due to its basic functional nature, and
the examples are sufficient to enable the

reader/user to construct his or her own additional
statistical functions.

5. OBJECT-ORIENTED

Perhaps the most important, and least familiar,
feature of Lisp-Stat is its object-oriented program-
ming paradigm. This feature will be unfamiliar to
most statisticians, since no widely used statistical
system is object-oriented. However, recent develop-
ments in computational statistics seem to indicate
that an object-oriented programming paradigm is
very useful for graphics programming, for develop-
ing flexible data structures and for representing
statistical models.

In an object-oriented environment, an object is a
collection of data and programming code, where the
data somehow ‘“knows” how to use the code. In
Lisp-Stat, the data could be “variables” and the
code could implement a plot or an analysis proce-
dure. The user could send a message to a variable
asking it to “plot itself,” and, depending on the
measurement nature of the variable (continuous,
discrete, ordinal, etc.), the plot would be a boxplot,
a histogram, etc. The point is that the user doesn’t
have to know the measurement nature of the vari-
able, since the variable knows its own nature and
can determine which kind of plot is appropriate.

As mentioned above, Tierney has developed his
own prototype-based object system, a system that
does not correspond, even philosophically, to CLOS,
the standard Lisp object system. While this may be
a problem for Lisp aficionados, the reasons given by
Tierney for the nature of his object system stem
from the observation that statistical program-
ming is “experimental programming,” and from
his (among others) conclusion that a prototype-
based system is more appropriate for this type of
programming. Lisp-Stat provides prototype data-
objects, model-objects and graphical-objects. The
adequacy of these objects varies a great deal, as I
discuss in the next two sections.

6. STATISTICAL COMPUTING

The statistical computing environment consists
primarily of statistical functions, data-objects and
model-objects. As I mentioned above, the statistical
functions are based on S and are very complete. On
the other hand, the data-object seems to be poorly
designed, providing weak foundation for further
work. The example that I presented in the previous
section (data that ‘“know” their measurement na-
ture and can use this knowledge to decide which
kind of plot to produce) cannot be done with the
data-object that comes with Lisp-Stat. In fact, the
data-related aspects of Lisp-Stat are its weakest



LISP-STAT: BOOK REVIEWS 351

point, with a lot of work needing to be done to
make its data-handling capabilities as useful and
powerful as many other systems. There is also very
little attention given to input/output facilities,
other than to standard file system manipulation
capabilities, and to the extensive dynamic graphics
discussed below.

Of greater concern is that I found the data-object
examples in Chapter 6 to be nearly nonexistent and
not particularly useful in helping me to strengthen
Lisp-Stat’s data handling facilities. It is not yet
clear to me that the design of the data-object that is
provided is useful for the development of additional
data-objects. Perhaps better examples would con-
vince me the design is good. Of course, lack of
a powerful standard data-object means that indi-
vidual users can develop whatever types of data-
objects they find most useful for a particular appli-
cation. While this could be a strength, it becomes a
weakness in the absence of guidance in construct-
ing new data-objects, let alone guidance showing
what kinds of data-objects would be best for specific
uses. Furthermore, lack of any standards may well
lead to substantial divergence between developers
creating objects for similar tasks.

The two model-objects (multiple regression and
nonlinear multiple regression) that are provided
with Lisp-Stat are well designed. While these two
objects do not form a complete set, their discussion
in Chapter 6 (and the discussion in the recent
research report by Tierney of a model-object for
generalized linear models) is quite useful in guid-
ing the development of new model-objects. It has
been fairly straight-forward for myself and my stu-
dents to develop model-objects for principal compo-
nents, discriminant analysis and multidimensional
scaling, even though none of us had previously
used an object-oriented system.

7. DYNAMIC GRAPHICS

The graphical-object system is very complete and
the design is well thought out. It is described exten-
sively and clearly in Chapters 7-10, with examples
that are very well constructed. The system of
five graphical-objects includes all of the recent pop-
ular dynamic graphics facilities (spinning plots,
scatterplot-matrices, brushing, linking, etc.), and
the examples show how to create additional dy-
namic graphics such as grand-tours and parallel
coordinate plots. What is most exciting is that the
graphical-objects can be easily modified to perform
exactly what you have in mind. For example, I
have created a guided-tour biplot object based on
my Visuals algorithm (Young and Rheingans,
1991), which took only about 2 weeks to develop as

compared to the 2 years that it took a professional
programmer to do the original version! My students
and I have also created SpreadPlot (Young, Fal-
dowski and Harris, 1990), a graphical spreadsheet
that involves a fundamentally new type of linkage
that didn’t exist within Lisp-Stat (or in any other
system). While SpreadPlot is based on ideas that I
have had for a number of years, I never conceived it
could actually be created without hiring a profes-
sional programmer who would spend several years
working on it. With Lisp-Stat, my students and I
created SpreadPlot in a few months, even though
we were all just beginning to learn the Lisp-
Stat system! The graphical-object system is truly
marvelous.

8. EXTENSIBLE

Lisp-Stat is a totally “open” environment which
the competent computational statistician (and
his/her students) can easily extend. The functional
nature of Lisp makes it trivial to define new func-
tions. It is also possible to write programs in For-
tran or in C and to dynamically load them so that
they are accessible from within Lisp-Stat. Of greater
importance, it is fairly straight-forward to define
new model-objects, so that one can have a complete
range of desired model-objects that perform major,
“prepackaged” statistical computations. It is also
possible to define new graphical-objects that imple-
ment new dynamic graphics ideas. Both of these
ways of extending Lisp-Stat are possible since the
Lisp code for the supplied model-objects and graphi-
cal-objects are provided in the software, and since
the descriptions of them in the book serve well as
examples of how to define new objects. Thus, as I
mentioned above, my students and I have been
able to construct new model-objects and graphical-
objects even though we had no prior experience
with Lisp. The same should also be true for data-

_ objects, but for reasons noted above their extension

is more difficult. Note, finally, that the entire C
source code of Lisp-Stat (which is, after all, a C
program) is provided and can serve as a basis of
further extensions.

9. FREE

The Lisp-Stat software is available at no expense
by simply down-loading the Lisp-Stat source code
from a server at the University of Minnesota’s
Statistics department. This code is then compiled
and will run on any UNIX workstation under X-
Window, or on Suns under SunView. Macintosh,
Microsoft Windows and Amiga executables are also
available for free from the server. There are no
restrictions on copying the software and making it



352 LISP-STAT: BOOK REVIEWS

available, free-of-charge, to others. There is, in
essence, no support provided, other than an effort
by Tierney to fix bugs, and minimal on-line help.
This, of course, is a mixed blessing, but since the
quality of the software is very high, and since there
are few bugs, there seems to be little need for
support.

The book, of course, is not free, though it is
reasonably priced. I have already described all of
the chapters in the book, emphasizing that the
book is especially strong on dynamic graphics. The
book is useful as Lisp-Stat documentation, provid-
ing a tutorial and examples of using and extending
the system. The book is also a good introduction to
functional and object-oriented programming, as
used in statistics, and to Lisp.

10. CONCLUSION

Lisp-Stat is the most important, exciting and
promising development in computational and
graphical statistics in recent years. It provides a
foundation on which computational statisticians can
build a statistical system offering all types of statis-
tical and data analysis tools—from basic to ad-
vanced—to all types of users—from novices to so-
phisticates. As it stands, Lisp-Stat is not (and does
not claim to be) a statistical system that provides a
wide range of analysis tools for a wide range of
users. However, with the proper extensions, Lisp-
Stat could become the standard by which other
systems are judged. In sum, Lisp-Stat is the statis-
tical environment ‘“for the best of us,” not ‘“for the
rest of us”’ —yet.

Comment: Two Functional Programming
Environments for Statistics — Lisp-Stat and S

David J. Lubinsky

1. GENEALOGY

There is a German saying, ‘“Tell me where you
come from and I will tell you who you are,” and
this is perhaps even more true for the two statisti-
cal environments that are the subject of this re-
view. They are both the products of many ancestors
and each reflects its heritage. Both Lisp-Stat (Lg;
the idea of this notation is that Lisp-Stat is a Lisp
system specialized for statistics) and S are descend-
ants in the line of interactive, interpretive systems,
starting with APL and Lisp; L also draws inspira-
tion from S, Smalltalk .and dynamic graphics
systems (Cleveland and McGill, 1988). The two
systems are both interpretive programming envi-
ronments using functional languages. They each
"have vectorized arithmetic operations and support
a wide set of statistical primitives. In addition each
has strong support for graphical display of data.

In the family of statistical and computing sys-
tems, Lg and S are very close, and as in all fami-
lies, there is a natural rivalry, but also a natural
affinity between them. S is the older brother, more
mature and more complete. Whereas Lg is faster,
incorporates many new ideas in graphics and ob-

David J.‘Lubinsky is a member of the technical staff
at AT&T Bell Laboratories, Room 25524, Craw-
fords Center Road, Holmdel, New Jersey 07733.

ject-oriented programming, but still has a long way
to go before it can compete with S in all areas.

They are both designed to be used for more than
canned analyses of data. Each allows users to com-
bine standard analyses in nonstandard and flexible
ways and, more importantly, to implement and
experiment on new techniques.

The rest of this section introduces each system
by presenting the same function coded in each
language and discusses the general areas of ap-
plication in which each system is stronger. The
following section is a more detailed comparison of
languages and primitives in each system. This is
followed by a comparison of performance of the
systems, and the last section discusses the their
documentation.

1.1 A Running Example

To help make the similarities and differences
more concrete, Figure 1 shows how one would im-
plement a running smoother using S and Lg. Each
function takes two required arguments, x and y,
and returns a set of smoothed values at equally
spaced points along the range of the x’s. They also
take two optional arguments, the function to be
used to find local values of the smooth, and the
number of points in the returned smooth. Two obvi-
ous examples of local smoothing functions would
be the mean (the default) and the median. These



