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Abstracts of Lectures Presented at the
Statistics Seminar, MIT, 1942-1943

EDITOR’S INTRODUCTION

A series of lectures held at the Massachusetts
Institute of Technology’s Department of Economics
and Social Science in 1942-1943 on statistics in-
cluded a galaxy of leading figures in statistics and
related fields from that time and since. The major-
ity of them still survive. Three are Nobel laureates:
Trygve Haavelmo, Lawrence Klein and Paul
Samuelson. Doubtless, others have similar stature,
~ but were omitted from consideration by the Nobel
rules that exclude mathematical fields. Two gradu-
ate students, Lawrence Klein and Joseph Ullman,
seeing the importance of this burgeoning new
statistics subject, particularly in wartime, and this
scientific community, organized these lectures and

provided the brief outlines included here. It is en-
tirely possible that this seminar had its own influ-

ence on the thinking of the lecturers and thereby

affected their own careers; for example, Haavelmo’s
Nobel Prize was based on the work presented at

- MIT.

The Statistics Seminar,

Lawrence Klein

The graduate program in economics at MIT was
introduced in the academic year 1941-1942. I, with
other aspiring economists, joined the program in

’ September 1942, the second entering class. Fresh
from UC Berkeley, where I had studied with Jerzy
Neyman’s group in statistics at the same time that
I was first investigating mathematical economics, I
was naturally attracted to specialization in econo-
metrics at MIT, where Paul Samuelson and Harold
Freeman were responsible for that branch of
economics. ' .

- - The statement of purpose of the Econometric So-
ciety, formed in 1929, is that it supports the ad-
vancement of economics through its relationship to
statistics and mathematics. At MIT, in 1942, math-
ematical statistics was taught and researched pri-
marily in the mathematics department, while
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These lectures were brought to our attention by
Steve Stigler, one of the Statistical Science editors.
Lawrence Klein has returned 48 years after orga-
nizing the conference, participating in editing this
collection and in keeping contact with the surviv-
ing contributors. He writes on his reminiscences of
the conference, to introduce the collection. After
the abstracts, Paul Samuelson, still very active at
MIT, provides his reminiscences.

MIT, 1942 - 1943

economics (and possibly other subjects) combined
their own strengths in statistics, oriented toward
the substantive discipline, with general mathe-
matical statistics coming from the mathematics
department.

Joseph Ullman, now of the mathematics faculty
at the University of Michigan, and I, together with
some of the other graduate students in economics,

 felt the need for extra knowledge about mathemati-
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cal statistics. Ullman and I, with modest support
from our department, organized a seminar series in
statistics. We combined expository and pedagogical
contributions with some presentations that were
based on original research.

Naturally, we drew upon people in the Cam-
bridge area who were working in the field of math-
ematical statistics but went as far as New York or
Washington to round out the roster of speakers.
Ullman and I kept notes of the lectures and checked
our summaries with the invited speakers for the
purpose of preparing an annual report. An informal
report of the final version was circulated to those
who might be interested in our activities.
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The seminar continued in the next academic year,
but lacked the enthusiasm of 1942-1943, as many
of the participants drifted away, mainly to war-
related activities. It was a surprise to me, almost
50 years later, to learn that there was an interest
in reprinting our summaries.

The list of seminar speakers contains an impres-
sive array of well-known scholars, whose presen-
tations speak for themselves, even though the
summaries are quite brief. Dirk Struik and
Richard von Mises spoke on foundations of proba-
bility concepts; Kenneth Arnold and Albert Bowker
talked about problems that they were occupied with
as members of the statistics group in the MIT
Mathematics Department; Harold Freeman and
Paul Samuelson represented statistical analysis
from the side of the MIT Economics Department;
Harold Hotelling and Abraham Wald of Columbia
University were invited as outstanding pioneers in
the introduction of mathematical and statistical
methods in economics; and E. B. Wilson brought
wisdom from one of a great many fields that he had
mastered. He was a truly broad-based scholar in
the classical mold, and taught a stimulating course
in mathematical economics at Harvard that I and
other graduate students from MIT attended.

From the viewpoint of econometrics, which was a
motivating force behind the creation of the seminar
series, there is at least one paper that deserves
special attention, as it is an early exposition (not
the first, however) of research that directly led to
the awarding of a prize in economic sciences in
memory of Alfred Nobel. Trygve Haavelmo’s lec-
ture, summarized in our report, presented to the
seminar his recently published ideas on the
simultaneous-equations approach in econometrics.
His lecture was based on his celebrated paper “The
Statistical Implications of a System of Simultane-
ous Equations.” This paper was published in
Econometrica (vol. 11, January 1943, pages 1-12).

One year later, when I completed my Ph.D. at MIT,.

I went to work on issues generated by Haavelmo, at
the Cowles Commission for Research in Economics
at the University of Chicago.

The lecture of Will Feller can also be seen as an
exposition of ideas that later came to fuller fruition
in his very successful book An Introduction to
Probability Theory and Its Applications (Wiley, New
York, 1950).

Norbert Weiner’s lecture was, as ever, stimulat-
ing and perhaps was a prelude to his interests in
economics, time series analysis and automatic con-
trol developed at greater length in his provocative
book on Cybernetics (MIT, Cambridge, Mass., 1948).
In that book, he used the Ergodic Theorem in both
statistical mechanics and time series analysis with

information theory. His main thrust in Cybernetics
was not directly related to economics, but he felt
that the ideas generated by the subject of cybernet-
ics would have important economic implications.

The lectures in the seminar series were all given
in the spirit of supplementation of our regular aca-
demic program, not always as new contributions or
findings, but as explanations of various topics or
fields of mathematical statistics. In that respect,
they were very successful and brought many emi-
nent scholars into our midst. Nearly one half of the
authors are now deceased. Although it seems to be
surprising that this record is being re-examined, it
is gratifying to those still living to learn that it
remains of interest after all these years.

From the authors who are still living, the editor
of this review has received thoughtful remarks
about the seminar. Kenneth Arnold has even im-
proved the statement of the summary of his
lecture. Albert Bowker has responded with some
remarks about his interests at the time with
Latin Squares, as well as the state of statistics
in Cambridge at the time of the seminar. Harold
Freeman and Trygve Haavelmo both commented in
correspondence on some of the great and unusual
personalities who spoke to the seminar. Among
others, they both referred to Norbert Wiener.

Paul Samuelson’s reminiscences provide more de-
tailed insight into the fundamental contributions of
the well-known personalities who favored us with
their thoughts on very academic subjects in war-
time Cambridge.
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FOREWORD

The following are abstracts of a series of lectures
sponsored by the Department of Economics and
Social Science at the Massachusetts Institute of
Technology. We have written these abstracts on
the basis of notes taken at the seminars, although
in some cases the speakers have chosen to write
their own abstracts or modify those which we have
written.

We wish to thank the several speakers for their
generous contribution of time and effort in order to
appear before the seminar group. We are also
grateful to Mrs. E. Clemence for handling the
preparation of the manuscript.

Lawrence R. Klein
dJoseph L. Ullman

SPHERICAL PROBABILITY

Dr. Kenneth J. Arnold
© MIT

Most of distribution theory is confined to a flat
space or to abstract space. The theory in a flat
space usually depends on the metric of the space.
The only system really free of this limitation is the
Edgeworth system, in which the metric is deter-
mined on the basis of the probability distribution.

The normal curve has many properties by which
it can be characterized. All of these properties
depend on the metric of the flat space. We shall
take two of these characterizations and see what
happens when they are applied to a circular one-
dimensional space and to a spherical two-
dimensional space.!

One characterization of the normal curve is that
it is the Green’s function of the equation of heat

! Dr. Arnold suggests the following change (April 24, 1991): We
shall take two of these characterizations, which have been ap-
plied to a circular one-dimensional space, and see what happens
when they are applied to a spherical two-dimensional space.
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the Jacobian Theta function. As might be expected,
the same result can be obtained by wrapping the
normal curve around the circle and adding densi-
ties.
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It is interesting to note that if we introduce © as
the origin of deviations and write
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© and ¢ are the angular and radial coordinates of
the center of gravity of the distribution. This distri-
bution has been discussed by Wintner and Zernike.

Another characterization of the normal curve is
to say it is the curve for which the arithmetic mean
of the observations gives in a certain sense the best
measure of central tendency. To be specific, the
normal curve is the function y(x, m) that satisfies

the equation

dlog y(x, m)
am

=0
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)

for all sets of x’s for which m is the arithmetic
mean, that is, for all for which

3 (5= m) = 0.

This equation can be modified for the circle to read
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yields the function
k cos (6 —©)

27ly(k)

where Iy(k) is the zeroth order Bessel function of
imaginary argument. It is not surprising that the
maximum likelihood estimates for © and % are
expressible in terms of the center of gravity of the
observed points. © is the angular coordinate of the
center of gravity, and the equation for the determi-
nation of & is

¢(0,@) =

I,(k)

where I,(k) and I,(k) are the zeroth and first-order
Bessel functions, respectively. This distribution has
been discussed by von Mises.

Applying these ideas to the sphere, the Green’s
function of

d d d
dx dx  dt
is
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where

x = cos § cos © + sin 0 sin® cos (¢ — P).

The center of gravity gives estimates of ¢, © and .
The von Mises process applied to the sphere gives
the function

k
— _ Lkx
v0.0) = s ¢

where x is as before. The maximum likelihood
estimates of © and ® are the angular coordinates
of the center of gravity and the radial coordinate a
gives the equation for %,

tnh & !
a=ctnhk - —.

Similar distributions are obtained for axes of a

circle or sphere rather than points on its circumfer-
" ence or surface.?

For the heat flow solution, two point distribu-
tions are added. For the center of gravity solution
on the circle
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2 Dr. Arnold suggests the following change (April 24, 1991):
Similar distributions are obtained for cases in which points
appear in pairs located at opposite ends of a diameter of a circle
or sphere.

and on the sphere
k
0’ = kx,
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where again
x = cos 0 cos © + sin § sin © cos (¢ — ®).

For the sphere, & is found from the center of grav-
ity of an appropriate hemisphere by the equation

e 1
-1 k¢

ENUMERATION OF LATIN SQUARES

Albert H. Bowker
MIT

Associate with an n x n Latin Square a set of
transformations T, T,,...,7T, such that T,
changes 1, 2,...,n into the ith row. If T,
Ty, ..., T, is a Latin Square, ST,, ST,, ..., ST, is
also a Latin Square where S is any element of the
permutation group on n letters.

If T, = I (the identity transformation), the Latin
Square is standard, and this property is preserved
under transformations of the nature ST;S™!. T, is
the generating element, and the number of such
elements was given by Cayley. 7

Consider two standard Latin Squares with gener-
ating elements T, and T,, distinct and conjugate.
It was proved that T, and T, generate the same
number of Latin Squares. Hence to enumerate Latin
Squares it is necessary to consider one example of
each conjugate set of generating elements, and enu-
merate the total number of possibilities in each
case by trial and by assisting theorems.

The method of Norton and Fisher and Yates is
one of classification by leading diagonal and seems
to result in more types and subsequent exhaustive
trials. For Graeco-Latin Squares, we have the prob-
lem of existence as well as the problem of enumera-
tion. Stevens’ proof of the existence of Graeco-Latin
Squares on side p” (where p is a prime number)
was discussed.

STOCHASTIC PROCESSES

Prof. Will Feller
Brown University

A stochastic process is any process whose evolu-
tion we are able to follow and predict in terms of
probability. The necessity of a theory of stochastic
processes is made clear by the abundance of non-
sensical results attained by analyzing data without
considering the causal process accounting for the
data.

This is especially true in correlation analysis.
The correlation of z (= ax + by) with x will yield
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any results between —1 and 1 according to the
values of @ and b alone, even if the variables x and
Y are causally unrelated. The fitting of the logistic
law of growth to data leads to weird predictions,
when it is not first shown that the law of growth
dy/dt = ay — by® (upon which the logistic law is
based), is valid for the complete process.

The mathematical theory of stochastic processes
is based upon the concept of chance variable. A
chance variable can assume any one of a set of
values, each of which has an assigned probability.
A stochastic process is measured by a number reg-
istered, say, at discrete times. Each measurement
is a chance variable, y(¢), and the stochastic proc-
ess is the sequence of chance variables {y(®},
(¢ usually assuming the integral values from zero
to infinity).

If the probability relations of any y(m),..., y(n)
are the same as those of y(m + 1),... , y(n + 1),
the process is said to be stationary, or temporally
homogeneous. The next most simple type of connec-
tion is that of a Markoff process, in which the
probability distribution of y(¢ + 1), calculated un-
der the assumption that all previous y(i) have been
assigned values, depends only on the value as-
signed to the immediately preceding value y(¢t).

When y(¢) runs through all values, and the in-
crements of y(¢): y(¢ + h) — y(t) over nonoverlap-
ping time intervals are mutually independent, the
sequence { y(i)} is called a differential process. The
Poisson process is a useful illustration, although it
is more usually derived as a limiting form of the
binomial law.

Let y,(¢) be the probability that n events occur
by time ¢. The probability of an event occurring in
a time interval A will be Ak (that is to say, it is
independent of ¢). It follows that y.(t+ h) =
Y01 = NR] + y,_1(£)Nh + O(h). This gives rise to
Yu(t) = Ay, _1(t) — Ny, (t) when we take the limit as
h = 0. A solution to this equation is
e M(\t)"
() =
the Poisson law. :

An advantage of this approach is that it lends
itself quite automatically to important generaliza-
tions.

Let us consider the distributions of events arising
from different universes of relative weights f,
25+ -+, With N A, \yh, ... the probability that an
event arising from the appropriate universe occurs
in a time interval A. It can be shown that the
number of events that will be observed by time ¢ is

given by R
oo e—)\t()\t)
/ Y v,
0 n!

where U is the function associating A\, and f,.

b

The inverse problem of discovering the stochastic
process that will give rise to any given law presents
difficulties. An alternative set of assumptions, due
to Polya, was shown to lead to the same generalized
Poisson process as above, so that, from the final law
alone, the corresponding assumptions could not be
distinguished. According to Polya, the distribution
indicates a ‘“‘contagion” of probabilities. The fact
that the other interpretation implies independent
events shows the dangers of applied statistics and
leads to the general conclusion that a purely phe-
nomenological approach is impossible in statistics.

When trying to discover the stochastic process
giving rise to a distribution law, for example the
Pareto law of distribution of income, alternative
processes may be discovered, and the appropriate
one can then be selected by specific economic laws.

BAYES’ THEOREM AND TESTING
HYPOTHESES

Prof. H. A. Freeman
MIT

Industrial sampling inspection may sometimes
be regarded as a problem in estimation. If, from an
infinite lot of unknown fraction defective X, a sam-
ple of size n containing m defectives is drawn,
Bayes’ Theorem gives

foa(x)xm(1-x)" " dx
Jo m(x)x™(1-x)" "dx’

(1) Ple=x<bd)=

where 7(x) is the a priori probability of x.

Inspection can also be regarded as a problem in
the testing of hypotheses. If we test the hypothesis
x = u with alternative hypotheses x > u, then, at
least for large n, the best critical region R is given
by

r=g-1
2) R=1- % "Cru’(1-u)""",
r=0

where g, the allowable number of defectives, is
fixed by the size of R. Poisson’s integral form for
(2) is

(3) R

n! 1o n—g
= CEEEr] /u x8 (1 -x)""%dx.

While R is demonstrably the best critical region
for each hypothesis in the band 0 < x < & (alterna-
tives x > u), we take it to be best for the entire
band-hypothesis 0 < x < u (alternative x > u).
Now for the many = (x) that can be represented by
power series, (1) and (3) are easily compared by
repeated use of

T(j+ k)

L(j+1,k) = I(j, k)mx

(1-2)",
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and it is at once apparent that for known 7(x) the
two procedures, estimation and hypothesis-testing,
will yield strikingly different results.

SOME PROBLEMS OF STATISTICAL
INFERENCE ARISING IN ECONOMETRICS

Trygve Haavelmo
The Norwegian Shipping and
Trade Mission

An example of an econometric problem is the
following: Let u, be consumption in period ¢, v,
investment, r, income; and let us consider the fol-
lowing model:

t=1,2,...,N.
u, = a given constant,

u,=ar,+ 8+ x,,

v, = 'Y(ut - ut—l) + Yo
u,+v,=r,,

where x, and y, are certain random variables. A
method that has been widely used but that may
lead to erroneous results is to estimate the parame-
ters a, § and vy from each equation separately by
the method of least squares without taking account
of the interrelationships involved. Such a proce-
dure need not lead to an unbiased estimate. The
proper way to determine the parameters is to esti-
mate them as parameters of a joint probability
distribution. Assume as known the joint distribu-
tion (density function) of the 2 N random variables
X1, Xoy.v.s Xn5 Y15 Yos- .., ¥y- Let this assumed
distribution be represented by p(x,, x,,..
Y1» Y2>-- -5 ¥n). Then the joint distribution of u,,
Ug,...,Upn; Uy, Ug,..., Uy can be derived from p.

Let this distribution be p; = p,(uy, uy,..., uy;
V1 Vg,...,Ux). Then p; =[1 - (1 + y)al¥p. One
can then, under certain conditions, use the method
of maximum likelihood to estimate «, 8 and v as
parameters of p,.

Another type of problem that may arise from the
same example is one of testing of an hypothesis.
Suppose, for example, that one wanted to test the

~7xN;

hypothesis that «, 8 and vy are all positive. Select °

first Q, the class of all a priori admissible hypothe-
ses p;, and then subclass of Q, call it w, which
includes the restriction that «, 8 and vy are all
positive. By using the Neyman-Pearson theory of
testing of hypotheses, we can derive rules for ac-
cepting or rejecting the hypothesis, H,, that p,cw.

SOME UNSOLVED PROBLEMS OF
STATISTICAL THEORY

Prof. Harold Hotelling
Columbia University

The first class of problems has to do with the
foundations of the theory. The Neyman-Pearson
idea of a power function opens the door to such
problems. In a large class of problems we already

know uniformly most powerful tests. In case the
power function depends upon a second parameter,
it is sometimes possible to incorporate an estimate
of the “nuisance” parameter in a new statistic and
arrive at a uniformly most powerful test. Some
problems involving nuisance parameters are those
of contingency tables and of the testing of signifi-
cance of the difference between the means of two
samples when the variances need not be the same.
Fisher and Yates have dealt with the former prob-
lem by the use of the subpopulation of tables with
the same marginal totals.

A second class of problems comes under the head-
ing of statistical decisions. This is not the mere
acceptance or rejection of an hypothesis. For exam-
ple, when the null hypothesis is rejected, the ques-
tion arises as to what hypothesis is actually
accepted. In the use of analysis of variance, one
wants to know more than that two yields, say, are
significantly different. But rather it is desired to
choose the best of a variety of yields. A case of
much interest is that of the choice of the degree of a
curve that is to be fitted to data by the method of
least squares.

Recently there have been solutions of many prob-
lems in the design of experiments, and many new
problems. Sequential experiments offer great possi-
bilities since experiments can often be made more
efficient when arranged in stages. Indian statisti-
cians have done some good work in experimental
design by taking into account both the efficiency
desired and the cost involved in organizing a cen-
sus of the jute crop. Experiments for the purpose of
determining the maximum or minimum of a func-
tion, or a point of inflection, offer an important and
fascinating new field of study. Here a limited num-
ber of sets of values of the independent variables
are to be chosen for experimentation. The experi-
ments yield the corresponding values of the depend-
ent variable, with errors.

Last there are the numerical problems. Computa-
tional methods have become a topic of growing
importance. Modern multivariate analysis calls for
the solution of large systems of equations in which
great accuracy is desired, and this clearly calls for
the construction of efficient methods of calculation.
Techniques based on the theory of matrices have a
place here. Iterative methods have been found in
this way that converge relatively fast, and yield
definite and useful limits of error.

NEYMAN’S SMOOTH TEST FOR
GOODNESS OF FIT

Lawrence R. Klein
MIT

The basic paper by Neyman on the smooth test,
being published in a not easily accessible journal,
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should be brought to the attention of all statisti-
cians who are not familiar with this work.

The chi-square test of Pearson for goodness of fit
is not powerful in guarding against smooth alterna-
tives and may well lead to the committing of errors
of the second kind. The smooth test, or the y? test,
is designed especially to be powerful against smooth
alternatives. The hypothesis, H,, that is to be tested
is that the random variable x is distributed accord-
ing to the law P(x|H,), where H, completely
specifies the distribution function. By the trans-
formation

y= [l H)

we can test the hypothesis, &, that y is distributed ,

in the following manner:
p(ylhy) =1, for0<y<1,
p(y|hy) =0, for all other y.

Testing the hypothesis A, is shown to be equiva-
lent to testing H,. The alternative hypothesis, or
the smooth alternatives are given by

p(y|01’02’ L 70k) = CeZ{Lloi’ri(y),

where
— 2 i
T(y) = @i+ any + auy® + +a;y.

The polynomials w;(y) are orthonormal in the in-
terval (0, 1). The hypothesis A, is among the alter-
natives, for it is

01=02=_03= et =0k=0‘

An unbiased critical region of type C is chosen so
as to satisfy the following criteria.

(1) The power function must have first and sec-
ond derivatives with respect to the 6,.

(2) The power function at the point representing
hy shall have the value ¢, where 0 < ¢ < 1.

(3) The first derivatives of the power function at
the point 6, = 6, = -+ = 6, = 0 shall vanish.

(4) The mixed second-order partial derivatives
shall vanish at the point corresponding to 4.

(5) All other second-order partial derivatives (i.e.,
not mixed) shall have a common value at 6, =
6,= - =6, =0, and furthermore this common
value shall be greater than or equal to that for any
other region satisfying the other criteria.

For large values of n (the number of observations
in the sample), the conditions for the unbiased
critical region of type C are satisfied by the in-
equality ‘

k
TR SO

where
1 n
u; = 7—;1—12:1 Wi(yj‘)
and y_(k) is determined by
# z t*=2/2,-t gy — o
I'(k/2) vZ/2
Recently various short-cut methods in the actual
calculations have simplified the application of this
test.
GRAM-CHARLIER SERIES

Prof. Paul A. Samuelson
MIT

Two classes of series can be considered. Type A is
F(x) ~ age(x) + a¢/(x) + -+ +a,¢7(x) + -,
where
o(x) = e .
Type B is
F(x) ~ ag¥(x) + a;a¢(x) + a, 4% (x)
+ o ta, AY(x) + o,

where

—X 0

e "X

Ay(x) =¢(x) —¢¥(x-1) and y(n)=

n!

A method of fitting a frequency function can be
given when the parent function ¢(x) satisfies only
a few requirements, namely, that all moments exist
and that ¢(x) have very high contact and deriva-
tives of every order.

/ ¢(x)x* dx must exist for all integer k.

lim ¢*(x)x* =0 for all integer k.

x— + 00
If we define
0 n

Lig(a)] = [ o),

then it is easily shown that the following property
holds:

L,[¢(%)] = {Ln—rlw(k)](—l) , whenn=r,
0, when n < r.
By applying the operator L, to each side of

n

F(x) = X a0*(x),

k=0

and making use of the above property, a set of
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equations to determine the a’s can be obtained:
ay = Lo[ F( x)]

— a, = L[ F(x)] - agLy[ ()]

0= LIF()] - T (~)'Lo[o(2)].

The method of Charlier was to determine a poly-
nomial S,(x) such that

/°° S;(x)¢/(x)dx =0

except when i = j, and then the integral is to be
equal to unity. For the Type A distribution the
suitable polynomials are the Hermite polynomials.
The a’s are determined from the formula

a, = / S, (x)F(x) dx.
Another method that makes use of the moment
generating function can be used. Define

M(a:e) = /m e**p(x) dx.

— 0o

The following property holds:
Mla:o*(x)] = (~1)*a*M[a: o(=)],

F(x) ~ 3 aei(x),

i=0

M[a: F(x)] = Mla: 5 ai<pi(x)],

i=0

M[a:F(x)]ﬂ = Zn:O aiM[a3¢i(x)]’

i=

M[a: F(x)] = M[a:go(x)]{izz:o (—l)iaiozi},

. n
M[a. F(x)] -y (——l)laiai.
Mla:o(x)] =0
~ Corresponding results can be derived for the gen-
eralization of the Type B discrete case where dif-
ferences, sums and factorial moment-generating
functions take the place of derivatives, integrals
and moment-generating functions.

THE FOUNDATIONS OF THE THEORY OF
PROBABILITIES

Prof. Dirk J. Struik
MIT

Two main difficulties at the foundations of the
theory of probability are the definition of equally
likely events, and the relations between the laws of
causal natural science and the laws of statistical
regularity.

The first problem arises in the purely formal
theory of probability, which is essentially a theory
of measure. According to which events are defined
as equally likely (in a continuous case, which vari-
ables are defined as independent), different solu-
tions are obtained to the same problem, and each is
correct relative to the corresponding definition.

This arbitrariness is removed when experimental
facts are considered, since the material (or social)
events are subjected to laws that may determine
the cases (events or variables) that are equally
likely. The heuristic principle of insufficient rea-
son, which has proved useful in determining equally
likely cases in some problems, should be replaced
by the principle of cogent reasoning, which deter-
mines the conditions different cases have to satisfy
in order to be equally likely. In problems dealing
with rigid bodies, for example, the dynamics of
rigid bodies should supply us with a principle for
determining equally likely cases.

Buffon’s “needle problem” is a classical example
that illustrates this shift of emphasis. In a plane
parallel lines are drawn at a distance d. A line
segment of length [ < d is placed in an arbitrary
way on the plane. What is the probability that the
line segment will intersect one of the parallel lines?
The answer is indeterminate, depending on the
variables introduced to determine the position of
the line with respect to the parallel line. But if we
state the problem as the ‘““needle problem,” in which
a needle is thrown on a table, by a consideration of
the dynamical laws that govern the movement of
the needle, we are able to discriminate between
equally likely cases. The most general conclusions
concerning probabilities that can be deduced from
laws governing a dynamical system are embodied
in ergodic theorems.

We can draw the conclusion that a probability
problem has a definite sense only if the dynamics
governing the system under discussion are known.
“Dynamics” is used in the general sense of a well-
defined set of causes that may be analyzed, and
even brought into the form of a dynamics similar to
Newtonian dynamics.

Thus the “dynamics” of a mortality table is the
basic set of causes that accounts for the statistical
stability. Although there is a particular causal se-
quence that leads to each death, there is a more
general type of causality behind the mortality, and
it is this in which an insurance company is really
interested. The proof lies in the care with which
they classify the general causes of death, as pneu-
monia, heart attack, ete. This indicates that there
are certain general levels of causality that influ-
ence statistical regularity. It is important, in this
respect, to notice that statistical consideration of
phenomena is not a substitute for the investigation
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of the unique causal determination of each event,
but is rather the investigation of a different, and
complementary, aspect of nature. Without causal-
ity there is no statistics, but statistics can give us
no more than a statistical form of causality.

We must warn against thinking that statistics is
a ‘“result” of causality, which is after all no more
than the eighteenth-century idea that probability is
subjective and only due to our ignorance. There is
an interplay of statistical regularity and causality,
the exact forms of which must be investigated in
each field anew.

THE PROBABILITY OF OCCUPANCY

Dr. Richard von Mises
Harvard University

In a group of 60 persons, three individuals had
their birthdays on the same day. Is this a rare
event? The correct answer to this problem is not
simply a statement of the probability of getting one
triply occupied day, but rather the expected num-
ber of triply occupied days. This example is illus-
trative of the problem of occupancy. Classically,
one studied the distribution of n,, n,, ..., ny where
n, is the number of persons on the tth place. The
new problem is to characterize the placement by
the probability p{x,, x,..., x,}, where x, is the
number of places occupied by s persons each,

ste) = a2)1-3) (5]

In the above example:
E(x,) = 309.60,

E(x,) = 51.03,
E(x,) = 4.14,
E(x3) = 0.22.

In physical problems, the question arises as to
what values of x; (i=1,2,...,k) fulfilling the
conditions

xo+x1+'°'+x'K=n
x1+2x2+"'+KxK=K

make P{x,, x,,..., %,} a maximum.

k! n!

’xk} =Fx0!"°

pl{xo, x4, .. | q,°9:" "t gt
X!

where g, = 1/s!. By the usual method of differenti-

ation and use of Stirling’s formula, one could maxi-

mize
’ xk} ’

but there is no reason to believe that the values b;
of x; that will be found in this way will be integers,

p{xg, X1, ..

as they obviously must be. From

P{y07y1’~"’yk}

P{xq, x1,..., %}
xol x,! o0 xy!
- J0tTt TR bgyo—xo) e b;zyk_xk)
Yol vl !

follows in the case of yy=%p; y; =%, +1; y5 =
Xg5.- .5 Yy = % that

P{y,,...
P{x,,..

Thus, if the x; were subject to no condition, x; = [b;]
would be the solution that leads to the maximum

» Vi) _ b,
X} e+ 17

P{xy, xq,..., %}, for this is the point at which
P{y05'~'7yk}
P{xq,...,x,}

changes from less than unity to greater than unity.
The problems of finding the integers that fulfill the
two linear conditions and make P a maximum
leads to the following algebraic question.
Let
§ s = Xs — [bs] ’

k k
R = Zl bs_ 2—:1 [bs]’

k k
S=73 sb,— Y s[b].
s=1 s=1
Then the two Diophantic equations
k
Zl £, =R
and
k
S re, =8
r=1

admit an infinity of solutions. A solution &, is
called a “smallest” solution, if no other solution £
exists where all £; are at least as close to zero as
£¢,. One has to determine the region in which such
“smallest” solutions can fall. The answer is

2
Ixs_ [bs”= |£s| <k—£%ﬂ

If the b; have been computed in the usual way, R
and S are known, and then this inequality for
x; — [b,;] shows how far the correct solution x; may
deviate from [b,].

+k|R|+|S]|.

A PROBLEM IN MULTIVARIATE ANALYSIS

Prof. Abraham Wald
Columbia University

Consider a set of random variables x,,..., x,
with the joint probability density function
f(xq,. .., x,). Suppose that nothing is known about
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f(xy, ..., x,) except that it is a continuous function
of x;,...,x,. A sample of n independent observa-
tions is drawn and the ath observation on x; is
denoted by «x;, (i=1,...,p; a=1,...,n). In
quality control of manufactured products, the prob-
lem of setting tolerance limits for the variates
Xy,..., %, is of importance. This problem can be
formulated as follows: For some given positive val-
ues B < 1 and vy < 1 we need to construct p pairs of
functions L%y, ..., X,,) and My(xqy,. .., %p,) (@
=1,..., p) such that the probability that

M, M,
/ / flty,. . t,)dty - dt, =
L, L

holds is equal to 8. The function L; is called the
lower and M, the upper tolerance limit of «x;.

This problem has been satisfactorily solved by
Wilks in the univariate case, that is, when p = 1.
An important feature of Wilks’ solution is that the
probability distribution of

M,
@, =/L f(#) dt,

does not depend on the unknown density function
f(t,). A natural extension of Wilks’ method leads to
the difficulty that the distribution of

M, M,
Q= [ " [Tt dt o at,
L, L

depends on the unknown density function
f(t;,...,t,). However, by a slight modification of
the construction of tolerance limits the probability
distribution of @, can be made independent of
f(¢,...,t,). The tolerance limits are defined as
follows: Let the observations x;;,..., x;, be ar-
ranged in order of increasing magnitude. Then
L, = x,, and M, = x,,, where r; and s, are some
properly chosen integers. To obtain the tolerance
limits L; and M; (i = 2,..., p), let S be the set of
‘all points q, = (%,,,. .., X,,) for which L; <x;, <
M; (j=1,...,i—1) and arrange the ith coordi-
nates of the points in S in order of increasing
magnitudes. Then L, is equal to the r;th element
and M, is equal to the s;th element of this ordered
sequence.
The probability distribution of @, is given by

F(n+ 1)
S, — r,)I'(n—s,+r,+1)

Qw1 (1 -Q,)" " 7dq,.

p(Qp)de = T(

If 8, v, rp and s, are given, the value of n can be

obtained by solving the equation

1
| P(@,)dq, - 5.
Y

A simple rectangle is not always the most effi-
cient shape of region to use. In the case of strongly
correlated variates this would lead to an unneces-
sarily large area. For this reason the theory is
extended to the general case when the tolerance
region is composed of several small rectangles.

ERGODIC THEORY

Prof. Norbert Wiener
MIT

A basic tool of ergodic theory is Lebesgue meas-
ure. The measure of a set of points on a line was
used as an illustration, and defined. Using the
same illustration, a measure preserving transfor-
mation was introduced. In this case, it is a one-to-
one transformation of the points on an interval into
the same interval, so that the Lebesgue measure is
unchanged.

Probability theories have been based on the ax-
iom that the ratio of successful events to total
events approaches a constant value as the number
of events observed gets very large. On the basis of
the concepts introduced, a simple form of the er-
godic theorem can be formulated. This theorem
makes it possible to replace the assumption that a
limit is approached, by a proof that under certain
general conditions a limit is, in fact, approached.

Consider the point P, one of a set of points on an
interval. Let T'(P) be the coordinate of that point
after a measuring preserving transformation. In
like manner T[T(P)] or T?(P) is the coordinate
after two such transformations. The ergodic theo-
rem states that the proportion of the points P,
T(P), T*(P),...,T"(P),... that falls on any spec-
ified part of the interval approaches a limit as n

. approaches infinity.

Let T be interpreted as transforming P from one
time to another. The sequence P, T(P),
T2(P),... is a time series, say, of prices. The theo-
rem allows us to give a definite value to the proba-
bility that price will be observed in any specified
range, subject to the qualification we will next
consider.

The question arises whether the successive ele-
ments of any given time sequence can be consid-
ered to be the result of repeated applications of a
measure preserving transformation. Perhaps this
condition is fulfilled for meteorological time se-
quences because of the stability of the underlying
forces. For economic time series, however, this con-
dition is often not fulfilled and caution must be
taken in applying the theorem.
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CONTINGENCY TABLES

Prof. E. B. Wilson
Harvard University

In biological and medical experiments many con-
tingency tables arise that cannot be analyzed by
the chi-square test because of low cell frequencies.
A method for treating such cases is presented. Al-
though illustrated with one four-fold universe with
two marginal totals fixed, besides the total number
in the sample, the general principle can be stated
for v cellular universes with not necessarily equal
numbers of cells, and with L totals remaining fixed,
including the v totals of the size of the subsample
from each universe.

Consider now the sample of N from a four-fold
universe having two characters A and B, with
probabilities p; = pap, Py = Pups Ps = pag and
Py = Pog- If n; is the number in a sample of N
having the attribute associated with p;, then the
probability of observing n,, n,, ng, n, is given by

N!

P=— phiplapks n4
n‘n‘n‘n’p1p2p3 4
1702703704+

We restrict our further attention to those tables
that have the following totals fixed: n, + ny = (A),
n,+ n,=(B) and N =n, + ny+ n; + n,, and
also satisfy the condition that the probability of
their occurrence shall not vary from table to table
by virtue of the values of p,, p,, p; and p,.

These conditions are sufficient to determine an
associated universe that represents the appropriate
null hypothesis. It can also be shown that the
probability of an observed table arising from a
universe satisfying the null hypothesis is

1 ! 1
nylnglnglng! nylng!ngln,!’

where the summation is over all samples which
could arise, satisfying the fixed totals.

The rule can now be made that the significance
of a table is to be determined by the sum of the
probabilities of the table and of all other tables no
more probable.

The condition that the probabilities shall not
vary from table to table, and the rule just stated,
will give a test of significance.

Statistical Flowers Caught in Amber

Paul A. Samuelson

Since I remember well the war-time MIT semi-
nars in statistics now being reproduced in abstract
form, I am happy to accept the editors’ invitation to
reminisce about those times.

Chance alone turned up these Abstracts in the
University of Chicago libraries. Although it was
my secretary (and Harold Freeman’s), Eleanor
Prescott Clemence, who typed up these mathemati-
cal abstracts, all of us had forgotten they were ever
compiled. With probability not minute, Harold

" Freeman would have sent a copy of them to our
friend W. Allen Wallis, who with certainty ap-
proaching unity throws away nothing. (The initials
W. A. W. on the manuscript Stephen Stigler stum-
bled upon in the Chicago archives are in the unmis-
takable schoolboy hand of the Honorable W. Allen
Wallis.)

Paul A. Samuelson is Institute Professor Emeritus,
Massachusetts Institute of Technology, E52-383C,
Cambridge, Massachusetts 02139.

Actually, with faculty blessings, this seminar se-
ries was conceived and executed by two graduate
students: Lawrence Klein, who was to become MIT’s
first Ph.D. in Economics and our first home-grown
Nobel Laureate; and Joseph Ullman, then studying
economics but in the course of the war’s windup in
Europe later to be enticed into a career in mathe-
matics by Gabor Szegé. Laurie and Joe both as
introducers of the speakers; Harold Freeman and I
would both cringe and delight in the unpredictable
algebraic felicities of their unrehearsed introduc-
tions. (Sample: when the illustrious Richard von
Mises was to be presented, his many fames as a
pioneer had not run ahead of him; so our student
impresario left it at, “Although I don’t know why,
our speaker is supposed to be a very famous
scholar.”)

It is amazing that, in this epoch after Pearl
Harbor, when faculty was dispersing to various
war-time labs and graduate student bodies were
shrinking to a small core of transients and women,
two active students could still attract without
stipends so brilliant a group of speakers. Most were



