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structure that may be obscured by even small
amounts of noise). Smith (1991) has discussed the
problem of dimension estimation for systems with
this type of observational noise.

A different type of noise results when the system
under evolution undergoes perturbations due to
some external force or change. The perturbations
are then propagated through the system. This also
describes the situation of rounding error in numeri-
cal simulations of chaotic systems; the original
rounding error is repeatedly magnified by the
“stretching” behavior of the map and the computed
numerical trajectory [called a pseudo-orbit by Ham-
mel et al. (1988)] diverges far from the true path.
Hammel, Yorke and Grebogi pointed out that often
pseudo-orbits are in fact true orbits corresponding
to different initial conditions, but even in the er-
godic case, this is not necessarily reassuring. The
dyadic map T'(x) = 2 x (mod 1) on the unit interval
is ergodic and chaotic with the uniform distribution
as invariant measure. However, all orbits of this

map quickly iterate to zero on the computer. These
are true orbits of the system; unfortunately, they
correspond to initial conditions (dyadic rationals)
that are attracted to the fixed point at zero and do
not exhibit “typical” system behavior. Thus, in
numerical simulations, it is not always easy to
determine whether observed behavior is “real” or
an artifact of the simulation procedure.

Corless (1991) has looked at the related problem
of approximating solutions to differential equations
by numerical methods (here again the computed
solution may not resemble the intended system; see
Hockett, 1990 and Corless, Essex and Nerenberg,
1991) and has proposed an ‘“‘operational” definition
of chaos. He suggests that a system should be
considered chaotic if all ‘“nearby” solutions are
chaotic (regardless of the actual properties of the
system itself). The reasoning here is that perturba-
tions will cause any physical system to be pushed
into neighboring states and these should be the
real objects of study.

Comment: Inference and Prediction in the
Presence of Uncertainty and Determinism
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1. INTRODUCTION

The discovery of nonlinear determinism and chaos
in physical systems, the study of these phenom-
ena by physicists and mathematicians and their
consideration by investigators in a wide array of
disciplines have been ably surveyed from the
perspective of statistics and probability in these
two articles. The authors have indicated clearly
that the contributions and relevance of statistical
science are still unresolved, and some basic ques-
tions are open. Because chaotic dynamics generate
realizations that can be characterized as purely
random, what is role of stochastic modeling? If
observed deterministic nonlinear processes always
interact with stochastic processes, then are the con-
ventional tools of statistical inference any less ade-
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quate here than elsewhere? The resolution of these
issues will take time, and these surveys will con-
tribute to this process by having brought the statis-
tically relevant aspects of nonlinear determinism
and chaos to a wider audience.

Independent of how these questions are an-

'swered, the models discussed bring to the practical

level latent questions about the implications of de-
terminism for the fundamental role that random-
ness seems to play in so much of statistics. Berliner
has discussed these matters in the final section of
his contribution. I have found deterministic models
an enlightening vehicle for taking up these ques-
tions on a practical level, and in these brief re-
marks I will provide a few illustrations. The next
section provides an approach to inference and pre-
diction in the nonstochastic world of the models
these authors have discussed. The likelihood func-
tion is presented for two simple models in Section
3, and the construction of predictive densities (for
the past, as well as the future) is illustrated in
Section 4.
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2. LIKELIHOOD FUNCTION AND PREDICTIVE
DENSITIES

We address a deterministic system evolving in
discrete time,

x,=f(x,_;0) (t=1,2,...)
and the implied iterates
x,=f"(x,_,;0) (t=n+1,n+2,...)

defined recursively as fU = f, f™ = f{ f*~ D] for
n=2,3,.... The functional form of f is known,
but the initial condition x,, or the parameter 6, or
both, are unknown; in all that follows, we shall
take both to be unknown, and the specialization to
other cases will be obvious. Both are vectors of
finite order. The process {x,} is not observed di-
rectly. Rather, the deterministic function d, =
m(x,) is recorded for ¢ = 1,2... T. The function m
is a partitioning of the phase space into a finite set
of regimes D, as assumed in symbolic dynamics
(Destexhe, 1990). This formulation is sufficiently
general to include missing observations, symbols
depending only on a subvector of x, and a wide
variety of other problems that can arise in data
records; but, it explicitly rules out the possibility of
stochastic measurement error that is taken up in
Geweke (1989).

Let the function J(-,-) be defined on D x D,
with J(a,b) =1, if a = b and J(a, b) = 0 other-
wise. Then, the likelihood function for the un-
known initial condition x, and parameter 6, given
the data set {d;, d,,...,dy) is

L(xl,o | dl’ d'2, “ ey dT)
T
= Lol Fe ()] 4.

The likelihood function takes on only two values, 0
and 1. If L(x,,0) =0 for all x, and 6, then the
model is inappropriate regardless of the prior. If
L(x,,0) =1 for some values of x; and 6, then
posterior and predictive densities may be con-
structed. Let II(x,,0) be a prior cdf for x, and 4.
(We return, in Section 4, to aspects of the construc-
tion of coherent priors specific to chaotic models.)
Let g(x,) be a function of x,, whose expected value
under the posterior is of interest. Then,

E(g(x,)|dy, dy, ..., dpsTI)
=//g[f“‘”(xl;-e)]L(xl,())dl'I(xl,o)
(t=1,2,...).

Posterior- cdf’s and pdf’s may be constructed by
letting g(-) rotate within the appropriate set of
indicator functions. The predictive density for fu-

ture recorded values is

P(d) = [ [ Hm[re0(x0,0)], )}

-L(%,,0) dI(x,,0)
(t=T+1,T+2,...).

Consistent with Berliner’s discussion, we see that
the principles of Bayesian inference are not changed
in any important way by the complete absence of
any stochastic terms in the model. Rather, models
of this kind bring to the fore subjective uncertainty
rather than random variables as the generator of
the problems addressed in statistical inference and
prediction. To make these points more concrete, we
next take up the construction of the likelihood
function and predictive pdf’s in two simple models.
These applications show that the procedures just
outlined can be made practicable, and they also
uncover some unusual likelihood functions.

3. THE LIKELIHOOD FUNCTION: EXAMPLES

To illustrate the construction of the likelihood
function, consider two specific maps. The first is a
tent map,

x,=a(l -2|x,_, - 0.5]),

with parameter value a = o* = 0.8 and initial con-
dition x, = 0.35. This is not quite the same as the
tent or hut map described in the foregoing article
by Chatterjee and Yilmaz; both are special cases of
the tent maps discussed by Jackson (1989, Section
4.2). This map generates chaotic behavior for a e
(0.5, 1.], with basin of attraction [2 (1 — «), o] (Ott,
1981). The second map is logistic,

Xy = axt-—l(l - xt—l)’

with parameter value o = o* = 4.0 and initial con-
dition x; = 0.35. The behavior of this process is
described in the foregoing article by Berliner (Sec-

" tion 2.1) and Chatterjee and Yilmaz (Section 1.1).

Each process is recorded using three symbols, d, =
3[x,] + 1. For each process, {x,} is indicated for
t=1,...,21, in Table 1, and the corresponding
{d,} is indicated in the column headed ‘“Symbol
A.”

The likelihood function corresponding to the tent
map is displayed in Figures 1 and 2. The shaded
areas correspond to the value 1, the unshaded areas
to the value 0. Because the points x; and 1 — x;
each generate the same {x,,¢> 1}, and because
the recorded symbol for x, is consistent with values
of x, in the interval (1/3, 2/3) that is centered on
the point 0.5, the likelihood function is symmetric
in x,. It immediately follows that x; cannot be
consistently estimated. The figures also reflect the



96

Generated series and associated symbols

S. CHATTERJEE, M. R. YILMAZ AND L. M. BERLINER

TaABLE 1

Symbol Symbol

Symbol Symbol

t x, A B x, A B
1 0.350000 2 3 0.350000 2 2
2 0.560000 2 4 0910000 3 5
3 0.704000 3 5  0.327600 1 2
4 0473600 2 3 0881113 3 5
5 0.757760 3 5 0419012 2 3
6 0.387584 2 3 0973763 3 5
7 0.620134 2 4 0.102192 1 1
8 0.607785 2 4 0366996 2 2
9 0.627544 2 4 0929240 3 5
10 0.595929 2 4 0263011 2 2
11 0.646513 2 4 0775345 3 4
12 0.565580 2 4 0696740 3 4
13 0.695073 3 5 0845174 3 5
14 0487884 2 3 0523421 2 3
15 0.780614 3 5  0.997806 3 5
16 0.351018 2 3 0008757 1 1
17 0.561629 2 4 0.034722 1 1
18 0.701394 3 5 0134065 1 1
19 0477770 2 3 0464367 2 3
20 0.764432 3 5  0.994921 3 5
21 0.376909 2 3 0020213 1 1

Tent map, a* = .8, X;* = .35
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fact that {(x,,0): L(x.,0|d, dy,..., dp) =1} 2
{(x,,0): L(x,0| dy,dy,. .., dp,,) =1} for all s>
0. Figure 1 demonstrates two of the bifurcations of
the likelihood function that are characteristic of
this map and symbolic representation, the first oc-
curring between T = 2 and T = 3, and the second
between T = 9 and T = 10. Figure 2 illustrates the
behavior of the left lobe of the likelihood function
as sample size increase from 7 = 10 to T' = 18. All
that is apparent in these figures is a steady shrink-
ing in the size of two detached regions of positive
likelihood. However, this is an artifact of the plot-
ting algorithm, which shows insufficient detail. A
further magnification, not presented here, reveals
that the two lobes shown at T = 18 are each com-
prised of two disjoint, parallel strands.

The likelihood function corresponding to the lo-
gistic map is displayed in Figures 3 and 4. Sym-
metry about x, = 0.5 occurs again for the same
reason, and bifurcation occurs at least twice, once
between T' = 6 and T = 7, and once between T = 10
and T = 11. However, no evidence of further bifur-
cation with increasing sample size turns up. Rather,
the three strands persist for values of « close to

Tent map, a* = .8, X;* =
5 observations
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Fic. 1. Likelihood surface, tent map: 2,5, 7 and 10 observations.
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Fic. 2. Likelihood surface, tent map: 10, 12, 15 and 18 observations.

4.0, at least through sample size T = 21. The simi-
larity of this likelihood surface, and that for the
tent map, to the phase space for various chaotic
maps is apparent. To explore the depth of this
connection fully is beyond the scope of these com-
ments, however.

4. THE PREDICTIVE DENSITY: EXAMPLES

No matter how great the sample size, uncer-
tainty remains about { x,}, both within and beyond
the sample, and there will be uncertainty about
{d,} for t sufficiently larger than T. The general
procedures of Section 2 for Bayesian inference may
be applied to express this uncertainty, using an
appropriate family of priors and simple numerical
integration. We present results here using a refer-
ence prior dIl(«) that places a uniform distribution
on the parameter «, over the interval [0, 1] in the
case of the tent map and over the interval [0, 4] in
the case of the logistic map. Conditional on dIl(«),
the prior dIl(x,|c«) is taken to be the ergodic
distribution for { x,}, given «. More elaborate refer-

ence priors for o would also be interesting, espe-
cially for the logistic map in light of the sensitivity
of properties of the trajectory to values of a as
described by Berliner in Section 2.1.1.

This reference prior is easy to implement in an
effective (if crude) scheme for numerical integra-

" tion. Draws are made from each lattice of a grid of

points on the spaces for o« and the x,. For the tent
map, a ranges from 0 to 1 and the grid is 20,000 by
10,000, and for the logistic map o« ranges from 0 to
4 and the grid is 20,000 by 20,000. In both cases,
the space for x, is the unit interval. For each grid
point, the map is iterated 20 times. The motivating
idea behind this procedure is that, for a given value
of «, the 10,000 or 20,000 values at the twentieth
iterate produce an approximation to the density
dII(x, | @) just described. The approximation would
become exact if the 20 iterations were increased
without limit; but, for an increase not too far be-
yond 20, the approximation of the true iterated
mapping by double precision arithmetic breaks
down (Geweke, 1989). I conjecture that the quality
is better for nonperiodic mappings (the tent map
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Fic. 3. Likelihood surface, logistic map: 2,5, 7 and 10 observations.

and the logistic map for certain values of « as
discussed by Berliner) than for periodic ones, but I
have not examined this question systematically.
Beginning from the twentieth iterate, a sequence
{x4, ..., xp} and the corresponding sequence
{dy,...,dr} are constructed, and the likelihood
function is evaluated. If the likelihood function
is 1, thep the values {x,,..., x;} are retained,
and values {x;,q,..., %7, ,} beyond the sample
are, generated, as are the corresponding
{dri1s--.,dp,s}. This procedure was applied for
the tent and logistic maps described in the previous
section, taking the first 10 observations presented
in Table 1 as the sample in each case. The mea-
surement process was different than the one de-
scribed in Section 3 that underlies Figures 1
through 4. For the tent map, d, = m(x,) = [6x,] +
1, and for the logistic map d, = [5x,] + 1. Because
the basin of attraction is (0.32, 0.8) in the former
case and (0,1) in the latter, the range of {d,}
consists of five values in both cases. For the tent
map, the likelihood function was nonzero for 51,508

points, and for the logistic map it was nonzero for
28,149. Predictive probabilities for {d,;,..., dg}
are provided in Table 2, and predictive densities for
{%4,..., x99} are plotted in Figure 5 for the tent
map and in Figure 6 for the logistic map.

The plotted predictive densities reflect the gen-

“eral and well understood tendency for increased

certainty about earlier time periods inherent in
chaotic maps (Geweke, 1989). However, there are
notable local exceptions to this tendency within the
sample that result from the discontinuity of the
function m(-). For example, the density of x4 is
more concentrated than that of x5 in the tent map,
and in the case of the logistic map, the predictive
density of x4 is more concentrated than that of any
earlier x,. For the tent map, the dispersion of the
predictive density increases monotonically for ¢ >
11, essentially reaching the ergodic distribution by
t = 15. The dispersion in the out-of-sample predic-
tive density for the logistic distribution also in-
creases with ¢, but variations from period-to-period
are much greater and persist through ¢ = 20.
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Logistic map, a* = 4.0, X,* = .35
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Fic. 4. Likelihood surface, logistic map: 10, 12, 14 and 17 observations.
TABLE 2
Predictive probabilities for d, = j
Tent map Logistic map
t j= 1 2 3 4 5 6 1 2 3 4 5
11 0.000 0.000 0.000 0.643 0.357 0.000 0.000 0.000 0.000 0.342 0.659
12 0.000 0.000 0.264 0.492 0.244 0.000 0.005 0.258 0.358 0.300 0.080
13 0.000 0.000 0.185 0.369 0.441 0.005 0.324 0.195 0.156 0.162 0.164
14 0.000 0.043 0.349 0.317 0.288 0.003 0.324 0.195 0.156 0.162 0.164
15 0.000 0.026 0.244 0.408 0.321 0.002 0.068 0.198 0.198 0.195 0.341
16 0.000 0.021 0.263 0.406 0.306 0.004 0.143 0.142 0.109 0.135 0.471
17 0.000 0.029 0.242 0.418 0.307 0.003 0.180 0.263 0.153 0.157 0.246
18 0.000 0.026 0.249 0.416 0.307 0.002 0.108 0.144 0.155 0.182 0.411
19 0.000 0.024 0.249 0.408 0.316 0.003 0.145 0.166 0.188 0.149 0.352
20 0.000 0.027 0.254 0.404 0.312 0.003 0.144 0.180 0.153 0.149 0.374

5. CONCLUSIONS

These simple examples show that Bayesian infer-
ence expresses subjective uncertainty in a deter-
ministic world in the same way that it does in a
stochastic world. Even the operational details differ
in no important respects. On the other hand, as

Berliner suggested would be the case in his article,
there is not much for the frequentist to do here. In
a stochastic world, ignoring subjective uncertainty
often leads to an expression of the problem that is
irrelevant, but to do so here would assume away
the whole problem. That is why the comparison is
so stark. As deterministic models (exhibiting chaos
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Fic. 6. Logistic map, predictive density.

or not) become more refined, the importance and
relevance of Bayesian inference to decision making
will become ever clearer. The development of prac-
tical tools in this environment should be a source of
rich, rewarding challenges to Bayesian statistics

for some time.
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