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An Approach for Assessing Publication
Bias Prior to Performing a Meta-Analysis

Keith B. G. Dear and Colin B. Begg

Abstract. A semi-parametric method is developed for assessing publica-
tion bias prior to performing a meta-analysis. Summary estimates for
the individual studies in the meta-analysis are assumed to have known
distributional form. Selective publication is modeled using a nonparamet-
ric weight function, defined on the two-sided p-value scale. The shape of
the estimated weight function provides visual evidence of the presence
of bias, if it exists, and observed trends may be tested using rank
order statistics or likelihood ratio tests. The method is intended as an
exploratory technique prior to embarking on a standard meta-analysis.
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1. INTRODUCTION

A problem confronting any investigator who per-
forms a meta-analysis is the risk that the collection of
studies to be analyzed has been assembled via a biased
sampling mechanism. A prominent concern in this re-
gard is the risk of publication bias if the source of
studies is the published literature. The evidence that
publication bias is often a serious problem is based
on the intuition of investigators who are involved in
biomedical and social research, as well as on a variety
of empirical studies, for example, White (1982); Glass,
McGraw and Smith (1981); Coursol and Wagner (1986);
Sterling (1959); Berlin, Begg and Louis (1989); Simes
(1986); Dickersin and Meinert (1990) and Easterbrook
et al. (1991). These studies, and the issue of publication
bias in general, have been recently reviewed in Begg
and Berlin (1988).

In the context of an individual meta-analysis one
is interested in whether publication bias could have
influenced the results. There are some informal tech-
niques which can shed light on this issue. One ap-
proach, designed to determine retrospectively whether
a statistically significant effect could be entirely due
to the effect of selective publication, is to convert the
p-values to z-scores, and calculate an average z-score
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including z-scores of zero for a hypothetical number of
unpublished studies (Rosenthal, 1978). If the number
of unpublished studies required to change a significant
conclusion to a nonsignificant one is large, then we can
be confident that the conclusion is not a false positive.
Another approach is to plot the estimated effects
against sample size, the so-called funnel plot (Light
and Pillemer, 1984). If publication bias is present it
should be a function of sample size, and thus will be
reflected in the shape of the plot.

A more formal approach is to formulate the problem
in the framework of a selection model, using weighted
distributions (Patil and Rao, 1977), where the weight
function is proportional to the probability that a study
is published, as a function of a characteristic of the
study which influences the decision to publish. Previ-
ous work on this model has been based on the assump-
tion that the p-value is the factor that determines the

. chances of publication. Hedges (1984) has studied the

implications of the extreme model in which it is as-
sumed that studies which are significant at the 5%
level are all published, and Iyengar and Greenhouse
(1988) have modified this approach to incorporate para-
metric weight functions for the chances of the nonsig-
nificant studies being published. In both of these
papers it was assumed that the estimated effects had
a normal distribution, a reasonable assumption for
most applications unless the sample sizes in the studies
are small.

A problem with the parametric weight functions
of Iyengar and Greenhouse (1988), and the indicator
weight function of Hedges (1984), is their monoton-
icity, in addition to their lack of flexibility for accom-
modating different shapes of selection functions. In
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practice we have little intuition, a priori, regarding the
nature of the selection mechanism. Common sense,
and the various empirical studies referenced earlier,
suggest that a monotonic function which is at its maxi-
mum when the p-value is small may be a reasonable
model in many cases. However, in some circumstances
there may be prejudice in favor of the null hypothesis
(Kotelchuk, 1974). So in general it is desirable that we
should not predefine the shape of the weight function
in any way, but rather should permit the data to dictate
this.

Our goal in this paper is to develop an approach
which achieves this objective, by allowing the shape
of the weight function to vary in as unconstrained a
manner as possible. In so doing we can develop a more
convincing test of the presence of publication bias prior
to embarking on a more conventional meta-analysis.
Although semi-parametric models of weighted distribu-
tions have been previously studied (Vardi, 1985), these
have focused on nonparametric estimation of the out-
come distribution, rather than on nonparametric esti-
mation of the weight function.

The subsequent paper in this volume by Hedges
(1992) is similar in intent to our approach, and similar
in practice in many respects also. The distinction is
that Hedges chooses to pre-specify the regions of the
p-value scale within which the weight function is as-
sumed to be constant. The points of demarkation are
selected to be those critical values commonly used in
practice, such as 0.05, 0.01, 0.001, etc. The rationale is
that because of the historical interpretive significance
that these numbers have imparted, there is a reason-
able expectation that they may reflect real points of
discontinuity in the weight function. In practice this
will lead typically to a weight function with fewer
“steps,” and as a result Hedges’ method is probably
more robust but less flexible than the method we de-
velop in this article.

2. A SEMI-PARAMETRIC SELECTION MODEL

The basic idea of modeling selection bias is to define
a function of a chosen aspect of a trial’s outcome (a
“weight function”) which gives the probability that the
trial is published. There are several outcomes which
might be chosen, including the observed treatment
effect, denoted by y, the absolute value of y or the
corresponding one- or two-sided p-values.

In this article we have chosen the p-value scale
as the dimension which influences publication bias.
Throughout we use two-sided p-values, although the
methodology can be adapted easily to the one-sided
setting. That is, once a study is completed, the proba-
bility that it will be published is determined by the
‘two-sided p-value. In the event that all the studies in
the meta-analysis had the same sample size, this would

be equivalent to assuming that the probability of publi-
cation is determined by the absolute treatment effect.
A similar equivalence exists between one-sided p-values
and unadjusted treatment effects.

If statistical significance increases the chances of
publication, as we would generally expect if selective
publication was occurring, then the observed (pub-
lished) treatment effect sizes of the smaller studies will
be increasingly extreme as the sample size decreases.
Therefore if we were to construct the classical funnel-
plot of sample size versus effect size we would observe
a deficit of studies in the center of the plot (if selection
depends on two-sided p-values) or a deficit among the
negative small studies (if selection depends on one-
sided p-values), as indicated by Light and Pillemer
(1984). That is, our assumption that selective publica-
tion is determined by the p-value is consistent with
the premise underlying the funnel-graph, although in
practice selective publication may be influenced both
by the observed p-value and by the magnitude of the
observed effect, as well as by other features of study
design and the scientific milieu at the time the study
is completed (Berlin, Begg and Louis, 1989a).

Formalizing these ideas, we assume that there are n
independent observed studies with normally distrib-
uted observed treatment differences y;, i = 1, .. ., n,
where E(y;) = 0 and var(y;) = v? = u? + o, where u?
is the known sampling variance in the ith study (largely
determined by the sample size in the ith study), and
¢? is a random effects component of variance represent-
ing the degree of heterogeneity present in the source
population of effects. If we believe that the treatment
effects are homogeneous we can constrain o? to be zero.

We assume that the weight function, the probability
that the study is published given the data, is a left-
continuous step-function, operating on the scale of
p-values, with discontinuities at alternate individual
observed values of p. The assumption of left-continuity
turns out to be of little consequence. Since the estima-
tion of such a function using each observed p-value

" separately leads to nonidentifiability, we have arbi-

trarily grouped them in batches of two, after ordering
them. The theory is easily altered to accommodate any
grouping that leaves enough degrees of freedom to
estimate 6 and o2

If the ordered p-values, ranked from the largest (pi)
to the smallest (p,), are denoted pi, ps, . . ., s, then the
weight function is:

wy, if 1=p>pg,

wj if py-2=p>py,

if Pr1 > p >0 (nodd) ,
p.=p>0 (neven)

w(p) =

We,

where the number of weights, &, is 1 + int(n/2).
Thus w; covers the interval from p = 1 down to but
not including ps; w, covers the interval from p, down
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to but not including ps, and so on until w, covers the
interval from p,—; down to zero or p, down to zero,
depending on whether n is odd or even, respectively.

In the scale of y, the outcome scale, the weight
function depends on the individual study, since the
sampling variances are different between studies. For
the ith study, the weight function is

wy, ifo >|y| = —ud pw-22),
w,(y) = Wi, if — u,-<I>‘1(p2,~/2) > Iyl = _ui(p—l(p2j—2/2)y
wi, if —u,-<I>_1(p2/2) > Iyl = O,

where &(-) is the standard normal distribution function.
The weighted likelihood function is constructed as
follows:

L(8, 0% {w3) = [I Priy:|ith study published)
=1

(1) _ 11 iy 6, aPwily))
i=1 AA6, o2, {w}})

where A(6, o2, (w}) = |__ fily; 6, )wiy)dy, and f(-) is
the density function of y;. Since w(y) is piecewise con-
stant, we can write
k
Ai = Z H, ;jWj
j=1
where

Hyf6, o) = f Fy: 6, o)y

ywily)=wj

The H;js are the probabilities of study i yielding an
outcome whose significance level is such as to cause
the study to be published with relative probability w;.
See the Appendix for details.

It is computationally convenient to maximize the
likelihood for (6, 0?) and {w;} separately. The MLE for
{w;} given (6, ¢2) is obtained as follows. From (1), the
log likelihood _# is

k n k
(2) L = Z)\] IOg w;j + Z <10gﬁ(yi; 0, 02) - lOg ZH,‘jw])
j=1 i=1 j=1
where M =1L, N=2(=2,..,k—1;N=1ifnis
even, 2 if n is odd.

Therefore

9.7 : .

(3) Wj——= )\j - Z (ij,‘j/A,'), J= 1, ooy k
dw; i=1

and
2 n

w,2 9 {= —)\j + Z(ijij/A,-)Z, ] = 1, ..oy k.

wj i=1

The fact that log w; is not multiplied by 2, in equa-
tion (2), is entirely due to the arbitrary indexing of the
inequalities defining the weight function. This leads to
MLE'’s that will be biased. To see this, consider that
for given 6 and o? the estimate of a weight will depend

on the number of studies falling within its range com-
pared with what would be expected given the width of
that range. As defined, most of the weights span two
intervals and are applied to two studies in the likeli-
hood function. When n is even, w, is applied to only one
study and spans only one interval. But w;, although
applied only to the study which generated p,, still is
defined to span two intervals, from p = 1 to p = p;
and from p = p; to p = p,. This will cause w; to be
estimated with negative bias, since it will appear that
too few studies were published with p-values in that
range. Alternatively, consider that the estimating
equations (3) are conceptually like score equations in
which the \/s play the role of the random variables.
Then Hj;/A; is the conditional probability that study i
is associated with weight j, and the sum of these terms
is the expected value of \;. For j = 1, the equation has
expectation zero only for \; = 2. In reality, however,
it is the H;/’s that are random, while the \/s are deter-
mined as part of the model formulation.

That this bias in w; is important can be shown by
comparing the results from the left- and right-con-
tinuous models. We found, in analyzing the 17 real
data sets discussed below, that the estimates of 6
differed considerably between the two models, with the
estimate from the left-continuous model being consis-
tently closer to zero than the estimate from the right-
continuous model. This suggests that a downward bias
in the estimated weight close to p = 1 (the left-
continuous model) biases § toward zero, while con-
versely a similar bias in the estimated weight at p =
0 (in the right-continuous model) results in a positive
bias in |#|. We therefore modified the likelihood by
setting \; = 2. With this modification, the estimates
from the two models are identical when n is odd and
very close when n is even (in which case the steps of
the weight function are located differently in the two
models).

It is important to clarify that this procedure will
always lead to a set of estimates of {w;}, the largest of
which will be 1. However, the actual selection probabili-
ties will typically all be less than 1, since some selective
publication may occur for all p-values. Therefore, the
procedure estimates only the relative weights. To esti-
mate the absolute weight function would require infor-
mation on the p-values of the unpublished studies. In
addition to providing a useful visual display of the
relative weight function for the purpose of identifying
publication bias, the estimated relative weights can be
used to test formally for bias, using either a rank
correlation test (e.g., Kendall’s Tau) or a likelihood ratio
test comparing the fitted model with the sub-model
in which the weights are all constrained to be equal
such as the method-of-moments model of DerSimonian
and Laird (1986), or restricted maximum-likelihood
(REML), in which the equations of DerSimonian and
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Laird are iterated to convergence. However, a likeli-
hood ratio test is likely to be considerably less powerful
for detecting monotonic trends in the weight function.

3. COMPUTATIONAL ISSUES

The model discussed in the previous section requires
optimization of a considerable number of parameters.
As well as the estimated mean treatment difference 6
and the between-studies variance component o2, there
are roughly n/2 “weight” parameters for a meta-analysis
of n studies. We fitted the model using nested itera-
tions, optimizing the weights iteratively for each pair
of values of 6 and ¢® before recomputing the derivatives
of the log-likelihood with respect to 6 and ¢°

For iterative estimation of o it is necessary to per-
form Newton-Raphson steps in log ¢% This is because
as o° approaches zero in cases where the maximum
log-likelihood is at zero, the second derivative with
respect to o is often positive. This causes the iterative
steps to move away from, rather than towards, zero.
Using instead log o? ensures that the second derivative
is negative (for sufficiently large negative log o%, so
that the iterative steps move in the correct direction.
The derivatives used in the program were calculated
in terms of o2, then transformed numerically.

The procedure presented here is intended primarily
as a means of informally exploring the degree of publi-
cation bias which may have operated in the selection
of studies contributing to a meta-analysis. Inference
about 6 and o2 should be considered secondary at this
stage. However, if desired, approximate standard er-
rors for § and o> can be obtained numerically, by in-
verting the 2 X 2 matrix of second derivatives of the
profile log-likelihood for these parameters, at the local
MLE for {w;}. These estimated standard errors were
found generally to be only slightly larger than those
obtained from unweighted models. However, the use
of the profile log-likelihood for this purpose will usually
lead to underestimation of the standard error, since
the variation in the estimate of {w;} is not fully accom-
modated.

One effect of setting A\; = 2 to obtain score equations
of approximately zero mean is that the implied modi-
fied likelihood function is no longer scale-invariant in
the weights. If we set wj = aw;, j = 1...k, then we
find -~ ({w?}) = 2 ({w}) + log(a), so that the likelihood
increases indefinitely as the weights increase together.
This conflicts with the definition of the weights as
being relative probabilities of publication, which would
imply that their estimates can be identified only apart
from an arbitrary scale factor. By imposing the natural
constraint that w; < 1, a unique solution to the esti-
mating equations is achieved. Relative to the MLE,
this solution tends to have more uniform weights,
corresponding to relatively conservative assessment of

the degree of selection bias. This method of estimation
has the added benefit of avoiding the computational
problem of numerical underflow in the A; when, as
occasionally happens, all but one of the weights have
MLE’s of zero.

Although the w; are certainly not mathematically
independent, making Newton-Raphson steps in each
separately, rather than treating them as a vector and
computing the inverse Hessian, proved acceptably
quick in practice. The correctness of the solutions was
checked by confirming that small perturbations of each
w; from its estimate reduced the likelihood, and by
comparing the final estimates of § and o? with contour
plots of the profile likelihood of these parameters, max-
imizing with respect to the weights. In all cases the
contour plots showed clearly a maximum at the esti-
mated value.

4. SIMULATIONS AND EXAMPLES

Since the intended use of the method involves a
graphical display of the estimated weight function, a
small simulation study was performed to illustrate the
patterns to be expected with and without the presence
of publication bias. We limited the simulations to three
generated data sets for each configuration listed below
so the results only provide a guide to what we might
expect, rather than a complete study of the operating
characteristics of the method.

Two underlying probability models were used to gen-
erate the p-values, prior to selective publication. Each
model is based on the assumption that there is no
heterogeneity. The uniform distribution was used to
generate p-values under the null hypothesis of no asso-
ciation, that is, § = 0. For meta-analyses with a true
nonzero effect we used # = 1, with a common standard-
ized sampling variance, that is, u; = 1, Vi, and gener-
ated the p-values using the density function:

£1p) = 1 {expl—6%/2 — 68~ (pI2]
+ exp[—6%2+ 681 (p/2)]}

This is the density that is generated by a test of the
hypothesis that § = 0, when o> = 0 and u; = 1. Note
that by assuming a common sampling variance we are
eliminating the impact of sample size on bias. Therefore
we are dealing with a configuration in which the funnel
graph would have no discriminatory power.

To simulate selective publication we first used the
selection function w(p) = exp(—4p®), which is an arbi-
trary but plausible function representing a moderate
degree of preferential selection for studies with smaller
p-values. This function is displayed in Figure 1 using
a solid curve. The probability of publication is very
high for p-values of 0.2 or less (e.g., 0.97 at p = 0.2)
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Fic. 1. Underlying selection functions. Solid curve: w(p) =
exp(—4p®); dashed curve: w(p) = exp(—4p'°).

but starts to fall dramatically beyond p = 0.3. This
function was used to induce biased samples for each
of the preceding models, that is, § = 0 and 6 = 1. There
are, therefore, four configurations of interest, denoted
a-d in Figure 2 and Table 1. These are (a) no effect
(0 = 0) and no selection bias; (b) no effect (6 = 0)
with selection bias; (c) treatment effect (# = 1) and no
selection bias; and (d) treatment effect (# = 1) with
selection bias.

In each simulation a p-value was generated from the
chosen model and then entered into the meta-analysis
on the basis of a biased-coin randomization, the proba-
bility of entry being determined by the weight from
Figure 1 corresponding to the sampled p-value. In
configurations (a) and (c), since no studies were re-
jected, the meta-analysis comprised the first 25 studies
generated. In configurations (b) and (d) the sampling
was continued until 25 studies were actually selected
for the meta-analysis. Three meta-analyses were gener-
ated for each configuration, and the results are summa-
rized in Table 1.

Configuration (a) corresponds to sampling of p-values
from a uniform distribution with no bias. Therefore the
expected mean p-value is 0.50, and the expectation of
# is 0.0. The simulated values of these quantities are
as one would expect, and the rank correlation tests for
publication bias are all nonsignificant. The correspond-
ing graphs of the estimated weight functions are dis-
played in Figure 2a. The graphs provide visual confir-
mation of the lack of bias, demonstrating a seemingly
random configuration of estimated weights.

Configuration (b) provides examples of biased sam-

pling when there is no underlying treatment effect. The
sampled p-values are on average substantially less than
0.5, reflecting the biased selection, but the estimation
of 9 seems to adjust the effects appropriately. The
estimated weight functions in Figure 2b appear to
display observable trends in the first and third simula-
tions, both of which are statistically significant.

Corresponding simulations for the model in which
there is a substantial treatment effect are displayed in
Figures 2¢ and 2d and summarized in Table 1. None of
the tests for bias show any evidence of bias. This is
not surprising when we consider the fact that the
presence of a strong treatment effect leads to a natural
preponderance of relatively small p-values, mostly less
than p = 0.30. However, Figure 1 shows that the
selection function is relatively flat in this region so
that the force of selectivity is relatively small in this
configuration. This is confirmed by’the fact that rela-
tively few of the trials which were generated were
rejected (third column of Table 1). Another way of
expressing this is to say that, in general, if there is a
strong treatment effect most of the resulting p-values
from individual studies will be small, and these will
mostly tend to be published if the weight function is
uniformly high for small p-values.

To clarify this issue we repeated the simulations for
the treatment effect of # = 1, this time using a weight
function with a more pronounced selection effect in the
region of p-values generated by this model. This was
generated using the selection function exp(—4p'?), rep-
resented by the dashed line in Figure 1. The results
are summarized in the last section of Table 1, and
graphed in Figure 2e. These simulations indicate that
the model has the capacity to distinguish the effects
of selective publication from the effect of a strong
underlying treatment effect, in circumstances where
selective publication has a strong effect on the number
of studies published.

As a further test of the method we have analyzed the
results of 17 published meta-analyses. This includes a

" meta-analysis of 10 studies comparing experimental

with traditional education on creativity which was orig-
inally reanalyzed by Iyengar and Greenhouse (1988)
using their parametric weight function, and 16 meta-
analyses of medical interventions which are described
and analyzed using conventional methods in Berlin et
al. (1989). It is probably reasonable to assume that
these latter studies are representative of typical meta-
analyses in the medical literature, with respect to the
numbers of component studies, etc. However, it is
likely that meta-analyses in the social sciences will
typically have more component studies.

The results are summarized in Table 2. The number
of component studies ranges from 8 to 26, so that our
simulations are on the high end of this range. We found
that the test for publication bias was statistically sig-
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TaBLE 1
Summary of simulated meta-analyses

Number of Test for
trials Mean of A publication

Configuration Simulation generated p-values 6 (2 s.e)) bias
(a) No effect (#=0) 1 25 0.43 0.07 (+0.40) p=0.15
No biased selection 2 25 0.48 —0.10 (£0.34) p = 0.27
3 25 0.44 —0.06 (+0.37) p = 0.10
(b) No effect (6=0) 1 42 0.24 0.16 (+0.30) p = 0.02
Moderately biased 2 53 0.30 —0.24 (£0.34) p = 0.20
selection [exp(—4p?)] 3 44 0.33 —0.14 (£0.34) p = 0.02
(¢) Underlying effect (6=1) 1 25 0.30 1.24 (£0.83) p = 0.55
No biased selection 2 25 0.34 2.29 (£0.96) p=0.93
3 25 0.36 1.14 (£0.64) p = 0.62
(d) Underlying effect (6=1) 1 37 0.18 1.87 (+0.12) p = 0.89
Moderately biased 2 35 0.22 0.63 (+0.43) p=0.18
selection [exp(—4p?)] 3 31 0.23 1.24 (£0.72) p=0.21
(e) Underlying effect (6=1) 1 51 0.21 0.59 (£0.38) p = 0.01
Strongly biased 2 49 0.19 0.67 (£0.40) p = 0.04
selection [exp(—4p™)] 3 56 0.14 0.91 (+0.51) p = 0.06

nificant at the 5% level in two of the 17 studies, with
a p-value of 0.09 in one of the remaining studies. Inter-
estingly, the data set of Iyengar and Greenhouse (1988)
was part of one of the two significant studies. The
estimated weight function for this study is plotted in
Figure 3, and a marked trend is evident even though
. there are only five separate categories in the histogram.
This plot is fairly typical in that the high spikes can be
very “thin,” relative to portions of the weight function
which are correspondingly “fat.” Since the value of the

TABLE 2
Summary of examples of meta-analyses

Number Test for
of  Mean of publication
Study trials p-values b (£2s.e) bias
Iyengar and 10 0.23 0.14 (£0.32) p = 0.02
Greenhouse
(1988)
Berlin et al.
(1989) .
1 26 0.54 —0.009 (£0.14) p=0.96
2 15 0.47 0.003 (£0.016) p = 0.77
3 11 0.41 —0.015(£0.014) p =0.13
4 10 0.34 —0.018 (£0.040) p = 0.09
5 8 0.08 —0.21 (£0.30) p=0.77
6 14 0.53 —0.008 (£0.020) p = 0.81
7 16 0.55 —0.004 (£0.010) p = 0.77
8 15 0.38 —0.019 (£0.034) p =0.19
9 15 0.09 —0.40 (+0.15) p=0.34
10 17 0.47 —0.08 (£0.05) p = 0.96
11 25 0.26 0.10 (£0.07) p = 0.05
12 11 0.17 0.16 (£0.14) p=0.23
13 12 0.28 —0.09 (£0.21) p=0.15
14 12 0.36 —0.10 (+0.08) p =0.62
15 10 0.41 —0.10 (£0.07) p = 0.50
16 20 0.056 —0.43 (£0.15) p = 0.56

plots is as a visual display rather than a formal analy-
sis, the presentation could be altered to highlight the
trends in the histogram more clearly. In Figure 4 the
scale of the data is adjusted to provide equally spaced
intervals. The disadvantage of this plot is that one
must carefully study the horizontal axis to determine
the ranges of p-values represented by the columns.

5. DISCUSSION

We have developed a technique for characterizing
the nature of publication bias in a meta-analysis, by
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F1a. 3. Estimated weight function for I'yengar and Greenhouse
(1988) data.
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Fic. 4. Estimated weight function for I'yengar and Greenhouse
(1988) data, equally spaced intervals.

using a semi-parametric weighted distribution model.
The model is based on the premise that publication
bias, if it exists, is primarily determined by the ob-
served p-value. That is, the analysis uses the p-value
scale as the metric upon which the weight function is
defined. The method could be adapted to alternative
metrics, such as the outcome scale, for example, if it
were felt that the observed effect, rather than the
p-value, was the primary determinant of bias. In princi-
ple the method could also be generalized to adjust for
nonoutcome predictors of bias, such as the sample sizes
of the component studies, etc., but this seems likely to
be unsuitably complex for the small meta-analyses that
are commonplace in medical research.

The method is complementary to the traditional ap-
proach of using a “funnel graph” to identify publication
bias. The funnel-graph approach is based on the prem-
ise that bias will be identified in the relation of effect
size to sample size, in that there will be a noticeable
decrement in specific regions of this graph in the pres-
ence of bias, noticeably among nonsignificant, or nega-
tive small studies. This phenomenon would be a direct
consequence of a selection mechanism in which the
probability of publication is a function of the observed
p-value. Therefore, the weight function approach advo-
cated in this article will identify patterns of bias that
are reflected in the funnel graph. It represents a more
formal methodology for identifying publication bias.
An important difference between the methods is that
the weight function approach is determined by the
“pattern” of observed p-values relative to their expecta-
tion under a normal sampling model. As such the
method is, in principle, sensitive to publication bias
even when the sample sizes in the component studies

are very similar, a situation in which the funnel graph
has no value.

The method has various unverifiable methodological
assumptions. We assume that the summary outcome
in each study is normally distributed, an assumption
that seems reasonable if the sample sizes in the compo-
nent studies are not too small. We have used likelihood
theory to obtain the parameter estimates, but their
asymptotic sampling properties are likely to be inaccu-
rate if the number of studies in the meta-analysis is
small. Individual estimates of the weights will always
be deficient in this respect if we choose to group the
outcomes in two’s, although in a large meta-analysis it
may be preferable to employ a coarser grouping.

In fact, the methodology proposed by Hedges (1992)
employs a weight function model in which the points
of demarkation separating regions of p-values with
constant weight are assumed to be known in advance,
and are chosen to reflect likely points of discontinuity
such as commonly used critical values. Clearly the
number of intervals could be chosen to be as large or
as small as is convenient, but one would have to know
in advance that each interval contains at least one
observed p-value in the sample. Research is clearly
needed in assessing and comparing the operating char-
acteristics of these two methods. However, our intu-
ition suggests that the Hedges model will be more
suitable for meta-analyses with substantial numbers
of component studies, while our method will be neces-
sary for small meta-analyses.

Finally, we must emphasize that this is an explor-
atory technique. In general, as a result of the risks of
sampling bias and study heterogeneity, meta-analysis
must be viewed as a methodology with limited accu-
racy, and interpreted accordingly. Our method for as-
sessing publication bias, while developed using formal
statistical theory, is really intended as an informal tool,
to assist in establishing whether there is evidence that
the sampling of studies precludes the reliability of
performing a standard meta-analysis.

As a result we have focused in this article on the use
of the weight function to identify bias, rather than to
correct it. However, there is no theoretical obstacle to
using the MLE’s for 6 and o® from the resulting model
as corrected estimates of the mean study effect and
the heterogeneity of the effects, with standard errors
of the parameters derived from the information matrix.
Our feeling is that if, in practice, the analysis identifies
strong evidence of bias, one should be skeptical about
the reliability of using the meta-analytic approach for
making inferences about the parameters. In other
words, we envisage the method as a preliminary ana-
lytic tool, which can clear the way for a conventional
meta-analysis if there is no evidence of bias. However,
if bias is identified one should be very cautious about
using the model to correct it. Rather, attention should
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be focused on the causes of bias, perhaps by initiating
a search for missing studies.

APPENDIX
We have

Hy6, o) = f Fily: 6, Ady.

ywly)=wj
Taking po = 1 and pz = 0 provides
Hyj = F{ui® (pyj-2/2)) — Filus®™'(p/2))
+ Fi(—w® 7 (py/2)) — F—ud Y (psi-2/2))

or
Hy=3 ("3’21'-2'“1"“21‘—2 = ”) — <Mﬂ—_”>
U; v;

+ & <M“_ZI;Q> — % <ly2j—2lui/u2,-—z - 0)
U; v;

= P(a;) — B(by) + Dlcy) — B(dy).

To obtain estimates of § and ¢* we use the following
derivatives:

n 2
L ZL[—l + (——U_ 0) +R(Fi)}

i

24 S L1+ RF)+RYG)

i

n _ 2
%L _ 3 1 {2 - 4<3£v_0> + R(D,) — 3R(F) + RZ(Fi)]

0L s L {2<~y—_—’1> — R(G) + RIE) + R(F:)R(G»}

Rix) = D= X

E]k:le Hij

and
G = dlay) — d(by) + lcy) — dldyy)
F; = ayolay) — byplby) + cydley) — dydldy)
E; = akdlay) — bid(by) + cidlcy) — dioldy)
Dy = ajdlay) — bie(by) + cholcy) — dioldy).
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