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Comment

Jeffrey S. Rosenthal

The papers by Geyer and Gelman-Rubin discuss the
question of whether one long run or several shorter
runs are preferable when using Markov chain Monte
Carlo (MCMC). We feel that there are good arguments
on both sides. We agree with Gelman-Rubin that multi-
ple runs allow for more effective use of diffuse, well-
chosen starting distributions. Furthermore, they can
help identify situations (Section 4.8) where a Markov
chain happens to get “stuck” in a low-probability region
for too long. On the other hand, they require throwing
away more initial samples to allow for multiple “burn-in
periods.” Furthermore, we share Geyer’s concern (Sec-
tion 4) about the difficulty of obtaining useful starting
distributions in the first place. The debate will continue
to rage, as these pages show. We merely wish to ob-
serve that spectacular successes have been achieved
with each strategy.

Each of these papers presents useful methods for
monitoring convergence of estimates to their correct
values. We appreciate Geyer’s careful discussion (Sec-
tion 3) about estimating the variance of a function /,,
using a version (Section 2) of the central limit theorem
(CLT). (Unfortunately, Geyer does not appear to have
considered the rate of convergence of this CLT; in other
words, how long does the MCMC have to be run before
the given normal approximation is valid?) We also
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Comment

Bruce Schmeiser

Estimating high-dimensional volumes is analogous
to estimating steady-state performance of computer,
communications or manufacturing systems. The issues
now attracting wide attention in the statistics commu-
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appreciate the methods described by Gelman-Rubin
(Section 2) for estimating convergence by using multi-
ple runs with an overdispersed starting distribution
and then monitoring the “potential scale reduction.”
However, despite the authors’ admirable efforts to pre-
sent their methods straightforwardly and directly, each
method still seems to involve certain “heuristics,” such
as difficult choices about weight functions and band-
widths (Geyer, Section 3) or “simply discarding” certain
undesirable sequences (Gelman-Rubin, Section 4.8). In
general, we feel that MCMC can be used with greater
confidence if it is more automated and requires less

“poking around.”
We agree with Geyer (Section 5) that “guarantees
can only come from theoretical calculations. . . .” In

this spirit, in Rosenthal (1991, 1991a), ideas related
to Harris Recurrence are used to get specific, sharp
theoretical bounds on time to convergence for MCMC
for certain specific models, including (1991) the Gibbs
sampler applied to a standard variance components
model (where the required run length is shown to in-
crease only logarithmically with increasing numbers of
parameters). These bounds allow an MCMC to be run
for a prespecified number of iterations, without any
need for difficult or controversial monitoring tech-
niques. Similarly, in Diaconis and Hanlon (1992), a
Metropolis algorithm on the set of permutations is
explicitly diagonalized, giving results on convergence
rate. We feel that further theoretical results such as
these could provide solid, quantitative bases for run-
ning MCMCs, thereby eliminating some of the diffi-
culties and heuristics that are often encountered.

nity —alleviating initial bias, estimating precision and
improving point-estimator quality —are long-standing
problems in the operations-research literature. Based
on the operations-research community’s decades-old,
continuing debate of one long replication versus many
shorter replications, I doubt that the statistics commu-
nity will soon reach a consensus. Having little hope of
aiding a consensus, I only briefly discuss the number of
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replications before listing several points and references
that I hope are new to some readers.

I enjoyed both papers, but my general preference
remains unchanged: Use a single long replication, ex-
cept in special cases such as parallel computing or
when stratified or antithetic initial states happen to be
easy to determine. This preference for a single repli-
cation is due to its robustness to analyst lack of so-
phistication or time. Fifteen years ago substantial
background, insight and effort were required for simu-
lation and for statistics practitioners to analyze com-
plex problems. Commercial software has blossomed in
- both fields, allowing relatively naive practitioners to
expect something good to happen when they give their
problem to the computer. Similarly, one day we will
expect software to evaluate posterior distributions
with little practitioner insight. The single long replica-
tion makes negligible the initial bias, thereby alleviat-
ing the difficult initial-data-deletion problem.

Glynn and Heidelberger (1992) and Kelton (1989)
are recent additions to the extensive literature that
discusses initial deletion of warm-up data and choice
of initial states.

Glynn (1987), Whitt (1990) and Damerdji (1991) dis-
cuss the choice of number of replications, the extreme
cases being a single long run and many short runs.

Smith (1984) discusses Monte Carlo sampling from
doubly stochastic Markov chains. The motivation is
the need to identify nonredundant constraints in math-
ematical programming. The methods can be used to
sample from a density by sampling uniformly within
the region defined by the density and the zero plane.
The Hit-and-Run sampler (Belisle, Romeijn and Smith
1992) is a generalization to nonuniform distributions.

Since essentially all point estimators are asymptoti-
cally normal, sampling error is well summarized by
point-estimator standard error. The method of nonover-
lapping adjacent batch means (NBM) is extended to
overlapping batch means (OBM) in Meketon and

Schmeiser (1984). OBMs are highly dependent, which .

is acceptable since batches are sufficiently large not
when the batch means are essentially independent but

Comment

Luke Tierney

Both papers make some interesting contributions to
the discussion of issues related to Markov chain Monte
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(loosely) when each batch subsumes the autocorrelation
structure.

Except for end effects, OBM is the Bartlett-window
spectral estimator with lag-window length equal to the
batch size. Therefore, OBM has the same bias but only
two-thirds the variance of NBM. Both NBM and OBM
estimator are easily computed in O(n) time; therefore
OBM dominates NBM for Markov chain sampling.

For NBM, OBM and some other estimators based on
batching, the mse-optimal batch size is asymptotically
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where ¢}, and ¢, are the estimator’s bias and variance
constants, respectively, and y; / y, is the center of grav-
ity of the absolute values of the autocorrelation lags.
For OBM ¢, = 1 and ¢, = 4/3. Geyer’s Theorem 3.1
helps to estimate the autocorrelation center of gravity,
which is problem dependent, but the goal is to estimate
optimal batch size without estimating individual auto-
correlations.

An advantage of batch-means methods is that they
extend directly to point estimators that are not means.
Schmeiser, Avramidis and Hashem (1990) discuss
sufficient assumptions and provide a code for overlap-
ping batch variances and overlapping batch quantiles.

Nelson (1989) quantifies the additional number of
batches needed when estimating optimal weights for
control variates.

For random-number and random-variate generation,
see Fishman and Moore (1986) and Devroye (1986),
respectively.

Glasserman (1991) discusses single-replication meth-
ods for estimating derivatives of performance mea-
sures with respect to system design parameters. Could
similar methods be used to estimate the change, for
example, in the posterior mean caused by a unit change
in the prior mean?

A variety of other simulation-experiment issues are
discussed in Schmeiser (1990).

Carlo. Geyer’s variance estimates that take advantage
of the Markov chain structure appear to be particularly
promising and worthy of further investigation. As
these methods require a reversible chain, they are not
directly applicable to the fixed scan Gibbs sampler.
But several simple devices are available for making
Gibbs samplers reversible, including random scans,



