Statistical Science
1993, Vol. 8, No. 1, 70-75

Randomly Wired Multistage Networks

Bruce M. Maggs

Abstract. Randomly wired multistage networks have recently been
shown to outperform traditional multistage networks in three respects.
First, they have fast deterministic packet-switching and circuit-switching
algorithms for routing permutations. Second, they are nonblocking, and
there are on-line algorithms for establishing new connections in them,
even if many requests for connections are made simultaneously. Finally,
and perhaps most importantly, they are highly fault tolerant.

Key words and phrases: Fault tolerant network, multistage network,
nonblocking network, randomly wired network, routing algorithms.

1. INTRODUCTION

Networks derived from hypercubes form the archi-
tectural basis of many parallel computers, including
machines such as the BBN Butterfly, the Connection
Machine, the IBM RP3 and GF11, the iPSC and the
NCUBE. The butterfly, in particular, is quite popular
and has been demonstrated to perform reasonably well
in practice. An example of an N-input butterfly (N = 8)
with depth log N = 3 is shown in Figure 1. The nodes in
this graph represent switches, and the edges represent
wires. Messages are typically sent from the switches
on level 0, called the inputs, to those on level log N,
called the outputs.

The message-routing algorithm for a butterfly is
quite simple. Each message simply follows the unique
path of length log N from its source input to its destina-
tion output. One problem with this algorithm (and
hence the network) is that if some switch or edge along
the unique path from input i to output j (say) becomes
congested or fails, then communication between input
i and output j will be disrupted.

1.1 Dilated Butterflies

Because message congestion is a common occurrence
in real networks, the wires in butterfly networks are
'typically dilated, so that each wire is replaced by a
channel consisting of two or more wires. In a d-dilated
butterfly, each channel consists of d wires. Because it
is harder to congest a channel than it is to congest a
single wire in a butterflly, dilated butterflies are better
routing networks than simple butterflies (e.g., Koch,
1988; Kruskal and Snir, 1983; Rettberg et al., 1990).

Bruce M. Maggs is a Research Scientist at NEC Re-
search Institute, 4 Independence Way, Princeton, New

Jersey 08540.

Y
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&)z

70

1.2 Delta Networks

Butterfly and dilated butterfly networks belong to a
larger class of networks called delta networks (e.g.,
Kruskal and Snir, 1986). The switches on each level of
a delta network can be partitioned into blocks. All of
the switches on level 0 belong to the same block. On
level 1, there are two blocks, one consisting of the
switches that are in the upper N/2 rows and the other
consisting of the switches that are in the lower N/2
rows. In general, the switches in a block B of size M
on level / have neighbors in two blocks, B, and B;, on
level I + 1. The upper block, B,, contains the switches
on level [+ 1 that are in the same rows as the upper
M]2 switches of B. The lower block, B;, consists of the
switches that are in the same rows as the lower M/2
switches of B. The edges from B to B, are called
the “up-edges,” and those from B to B; are called the
“down-edges.” The three blocks, B, B, and B;, and the
edges between them are collectively called a splitter.
The switches in B are called the splitter inputs, and
those in B, and B; are called the splitter outputs.

In a delta network, each input and output is con-
nected by a single logical (up-down) path through the
blocks of the network. For example, Figure 2 shows
the logical path from any input to output 011. In a
butterfly, this logical path specifies a unique path
through the network, since only one up-edge and one
down-edge emanate from each switch. In general, how-
ever, each switch may have several up- and down-edges,
say d of each, and each step of the logical path can be
taken on any one of d edges.

1.3 Multibutterflies

A d-dilated butterfly can be thought of as d butter-
flies that are merged together by merging switches
that have the same row and level numbers. Upfal (1989)
has proposed a more general way to merge butterfly
networks. The idea is to permute the order of the

Statistical Science. RIKOIS ®

WWW.jstor.org

RANDOMLY WIRED MULTISTAGE NETWORKS 71

001

010

011
row

100

101

110

111

Fi1c. 1. An 8-input butterfly network. Reprinted, with permis-
sion, from Arora, Leighton and Maggs (1990). Copyright © 1990
by ACM Press.

switches within each block before merging the net-
works. Thus, given two N-input butterflies G; and G»
and a collection of permutations [[= (7o, 71, . . . ,
Togn), Where m; : [0, N/2! — 1] = [0, N/2! — 1], a 2-but-
terfly is formed by first permuting all of the switches
in each block on level ! according to 7, for 0 < [<
log N and then merging switches with the same row
and level numbers. The result, as shown in Figure 3,
is an N-input graph with depth log N in which each
switch has four input edges and four output edges. Of
the four output edges at a switch, two are up-edges,
and two are down-edges (with one up-edge and one
down-edge coming from each butterfly). Multibutter-
flies (i.e., d-butterflies) are composed from d butterflies
in a similar fashion using d — 1 sets of permutations,
o, ..., II%Y, resulting in a depth log N network
with 2d X 2d switches.

1.4 Expansion

Dilated butterflies have remained the network of
choice for many parallel machines. Recent work, how-

F16.2. Thelogical path from any input to output 011. Reprinted,
with permission, from Lisinski, Leighton and Maggs (1990).
Copyright © 1990 by IEEE.

N7/
%%

”\ G ' ~/ \ ol v
o 1,“ 3
‘) v v

LR \\0/ o
7/ \\' REI
.(“

Fi1G. 3. An 8-input 2-butterfly network. Reprinted, with permis-
sion, from Leighton and Maggs (1989). Copyright © 1989 by
IEEE.

ever, suggests that this may be about to change. In
fact, it now appears as though randomly wired multi-
butterfly networks (i.e., multibutterfly networks where
the permutations [TV, . . ., [[~ are chosen at random)
are superior to dilated butterflies for many message-
routing applications. The crucial property that these
networks possess is known as expansion. In particular,
an M-input splitter is said to have (a, 8)-expansion if
any set of & < aM inputs is connected to at least gk
up-outputs and gk down-outputs, where 8> 1, af <1/2
and a¢ and B are fixed constants. Figure 4 shows a
splitter with expansion (a,). Splitters with expansion
B> 1 are known to exist for any d = 3, and they can
be constructed deterministically in polynomial time
(e.g., Kahale, 1991; Lubotzky, Phillips and Sarnak,
1988; Upfal, 1989), but randomized wirings typically
provide the best possible expansion. In fact, the expan-
sion B of a randomly wired splitter will be close to
d — 1 with probability close to 1, provided that « is a
sufficiently small constant. [For a discussion of the
tradeoffs between a and g in randomly wired splitters,
see Leighton, Leiserson and Klugerman (1991) and
Upfal (1989).] Furthermore, the constructions in sec-

" tions 3 through 5 require 8 > d/2, but, at present, there

Bk

%
kSaMQ

Bk

u

Fi6. 4. An M-input splitter with expansion property (a, p). Re-
printed, with permission, from Arora, Leighton and Maggs (1990).
Copyright © 1990 by ACM Press.

72 B. M. MAGGS

are no known deterministic algorithms for constructing
splitters with this much expansion in polynomial time.

Splitters with expansion are good for routing be-
cause one must block Sk splitter outputs in order to
block % splitter inputs. In classic networks such as the
butterfly, the reverse is true: it is possible to block 2%
inputs by blocking only % outputs. When this effect is
compounded over several levels, the effect is dramatic.
In classic networks such as the butterfly, a single
fault can block 2’ switches [levels back, whereas in a
multibutterfly it takes g faults to block a single switch
1 levels back. Splitters with expansion can be con-
structed deterministically, but, for d = 3, randomized
wirings typically provide the best possible expansion.

1.5 History

Randomly wired multistage networks have been dis-
covered several times. Bassalygo and Pinsker (1974)
used random multibutterfly-like networks to construct
the first nonblocking network with size of O(V log N)
and depth of O(log N). Fahlman (1980) proposed a
related randomly wired network called the Hashnet.
More recently, Upfal (1989) coined the term multibut-
terfly and provided a simple deterministic algorithm
for routing any permutation of N messages in O(log
N) steps on an N-input multibutterfly network. [In
fact, Upfal’s algorithm can be pipelined to route log N
permutations in O(log N) steps.] Leighton and Maggs
(1989) proved that a randomly wired multibutterfly is
an efficient routing network even when many of the
switches are faulty. Later, Arora, Leighton and Maggs
(1990) developed a circuit-switching algorithm for the
multi-Bene$ network and showed that it can be used
to establish connections in a nonblocking fashion. Most
recently, DeHon, Knight and Minsky (1991) designed
a 64-processor switching network using a randomly
wired delta network for processor-to-memory communi-
cations.

1.6 Outline

The remainder of this article is organized as follows.
Section 2 describes Upfal’s algorithm for packet switch-
ing on multibutterfly networks. Next, Section 3 presents
a multibutterfly algorithm for circuit switching. Sec-
tion 4 describes a strategy for tolerating faults. Finally,
Section 5 sketches an algorithm for establishing con-
nections in a randomly wired nonblocking network.

2. PACKET SWITCHING

In a one-to-one packet-routing problem, each input
sends a packet to a distinct output. The goal of the
routing algorithm is to deliver the packets to their
destinations as quickly as possible, subject to the con-
straint that at each time step each edge can transmit
at most one packet. There may also be restrictions on

the number of packets that can be queued at any one
switch.

Upfal (1989) proved that an N-input d-butterfly with
expansion (a,f) can solve any one-to-one packet-
routing problem in O(log N) steps using a simple
greedy algorithm. Moreover, he showed that by using
pipelining, O(log N) problems can also be routed in
O(log N) steps. The result is important because the
only other known deterministic on-line linear-hardware
O(log N)-step packet-routing algorithm (Leighton, 1985)
requires the use of the AKS sorting circuit (Ajtai,
Komlés and Szemeredi, 1983), which is more compli-
cated and has larger constant factors.

Upfal’s algorithm starts by partitioning the packets
into “waves” so that at most one packet in each wave
is destined for any set of L contiguous outputs. One
way to do this is to group packets into the same
wave if they are in the same permutation and their
destinations are congruent modulo L. If there are P
permutations to be routed, this results in the formation
of at most PL waves. In general, we will set L =
1/(2a), because then we will be guaranteed that at
most M/(2L) = aM packets in any wave will ever pass
through the up- (or down-) edges of any M-input splitter
of the multibutterfly (for any M). This will allow us to
apply the (a, B) expansion property to the set of inputs
of any splitter occupied by the packets of a single wave
at any time (e.g., if & inputs of a splitter contain packets
of a single wave that want to traverse up-edges, then
these inputs are connected to at least Sk up-outputs).
This is because packets going through the M/2 up (or
M]/2 down) splitter outputs can only be destined for
the descendant set of M/2 contiguous multibutterfly
outputs.

The routing of the packets proceeds in stages, each
stage consisting of an even and odd phase, and each
phase consisting of 2d steps. In even phases, packets
are sent from even levels to the next (odd) level, and
in odd phases, packets are sent from the odd levels to
the next (even) level. The edges connecting levels are

- colored in 2d colors so that each node is incident to

one edge of each color. In each phase, we process the
colors in sequence, one step per color. For each color,
we move a packet forward along an edge with that
color if there is a packet in the switch at the tail of the
edge that wants to go in that direction (up or down)
and if there is no packet in the switch at the head of
the edge. Alternatively, if there is a packet in the
switch at the head of the edge and if it is in a later
wave than the packet at the tail of the edge, then the
two packets are swapped, so that the packet in the
earlier wave moves forward. Note that every switch
processes and/or contains at most one packet at any
step.

The following theorem summarizes the performance
of Upfal’'s algorithm.

RANDOMLY WIRED MULTISTAGE NETWORKS 73

TueoreM 1 (Leighton and Maggs, 1989; Upfal,
1989). On an N-input multibutterfly with expansion
(o, B), Upfal’s algorithm routes P permutations in
O(P + log N) steps.

3. CIRCUIT SWITCHING

In a one-to-one circuit-switching problem, each input
wishes to establish a connection (path) to a distinct
output. The connections must not intersect at any
switch or edge. The goal of the circuit-switching algo-
rithm is to find the connections as quickly as possible.

Arora, Leighton and Maggs (1990) present an O(log
N)-bit-step algorithm for circuit switching on multibut-
terfly networks. The only previously known O(log N)-
bit-step algorithms for circuit switching relied on the
AKS sorting circuit (Ajtai, Komlés and Szermeredi,
1983) or used randomness on the hypercube (Aiello et
al., 1990). [Recently, Leighton and Plaxton (1990) have
developed an O(log N)-bit-step randomized sorting al-
gorithm for the butterfly.]

3.1 Unique Neighbors

The circuit-switching algorithm requires the splitters
in the multibutterfly to have a special unique neighbor
property. An M-input splitter is said to have the (a, d)
unique neighbor property if in every subset X of & <
aM inputs, there are dk nodes in X that have an
up-output neighbor that is not adjacent to any other
node in X, and there are Jk nodes in X that have a
down-output neighbor that is not adjacent to any other
node in X. It is relatively easy to prove (see Arora,
Leighton and Maggs, 1990) that any splitter with (a, §)
expansion has the (a,d) unique neighbor property,
where 6 = 2f/d — 1, provided that 8> d/2. Randomly
wired multibutterflies are known to have expansion
(a, B), where > d/2 (Leighton and Maggs, 1989; Upfal,
1989). Explicit constructions of such splitters are not
known, however.

3.2 The Algorithm

In order for the algorithm to succeed, the number of
paths passing through each M-input. splitter must be
at most aM. Thus, in an N-input network, we make
connections between the N/L inputs and outputs only
in rows that are multiples of L, where L is some fixed
constant greater than 1/2a.

There is a simple algorithm for extending paths from
one level to the next in an M-input splitter with the
(a, d) unique neighbor property. The basic idea is that
those paths at switches with unique neighbors can be
extended without worrying about blocking any of the
other paths. Paths are extended by repeating steps of
the following type. First, every unextended path sends
out a proposal to his neighbors among the splitter
outputs in the desired direction (up or down). Next,

every output that receives precisely one proposal sends
back its acceptance to that proposal. Finally, every
unextended path that receives an acceptance advances
to one of its accepting outputs. In each step, the frac-
tion of unextended paths drops by a factor of (1 —).
Thus, after O(log M) phases, all of the paths are ex-
tended. By applying this algorithm one level at a time,
it is possible to establish paths from the inputs to the
outputs of an N-input multibutterfly with the (a, d)
unique neighbor property in O(log? N) bit-steps.

A more sophisticated algorithm is needed to con-
struct the paths in O(log N) bit-steps. Given a set of
paths that need to be extended at an M-input splitter,
the algorithm does not wait O(log M) time for every
path to be extended before it begins the extension at
the next level. Instead, it executes path extension steps
until the number of unextended paths falls to some
fraction p of its original value, where p is a fixed
constant that depends on d. Then the path-extension
process can start at the next level. The danger is that
the paths left behind may find themselves blocked by
the time they reach the next level. To ensure that this
does not happen, stalled paths send out “placeholders”
to all of their neighbors at the next level, and hence-
forth the neighbors with placeholders participate in
path extension at the next level, as if they were paths.
Of course, the neighbors holding placeholders must in
general extend in both the upper and the lower output
portions of the splitter, because they do not yet know
which path will ultimately use them. Notice that a
placeholder not only reserves a spot that may be used
by a path at a future time but also helps to chart out
the path by continuing to extend ahead.

In order to prevent placeholders from multiplying
too rapidly and clogging the system—because if the
fraction of inputs of a splitter that are trying to extend
rises above a, the path-extension algorithm ceases to
work—we need to ensure that as stalled paths get
extended, they send cancellation signals to the place-
holding nodes ahead of them to tell them they are

‘not needed anymore. When a placeholding node gets

cancellations from all the nodes that had requested it
to hold their place, it ceases its attempts to extend. It
also sends cancellations to any nodes ahead of it that
may be holding a place for it.

The O(log N)-bit-step algorithm alternates between
two types of phases. First, path-extension steps are
executed until the fraction of unextended paths in each
splitter drops by a factor of p. In this phase, each path
is restricted to extending forward by at most one level.
We refer to the first wave of paths and placeholders to
arrive at a level as the wavefront. The wavefront moves
forward by one level during each phase. If a path or
placeholder in the wavefront is not extended, then at
the end of the phase it sends placeholders to all of
its neighbors. In the second phase, cancellations are

74 B. M. MAGGS

passed through the network. They travel a distance of
C, where C is some fixed constant that depends on p
and d.

The performance of the circuit-switching algorithm
is summarized in the theorem below.

THEOREM 2 (Arora, Leighton and Maggs, 1990). On
an N-input multibutterfly with expansion (a,pf), B>
dl2, the algorithm solves any one-to-one circuit-
switching problem in O(log N) bit-steps.

4. FAULT TOLERANCE

Leighton and Maggs (1989) showed that multibutter-
fly networks are highly fault tolerant. In particular,
they proved that no matter how an adversary chooses
k switches to fail, there will be at least N — O(k) inputs
and N — O(k) outputs between which permutations can
be routed in O(log N) steps. Note that this is the
best that could be hoped for in general, because the
adversary can choose to make Q(k) inputs and Q(k)
outputs faulty. Thus, the multibutterfly is the first
bounded-degree network known to be able to sustain
large numbers of faults with minimal degradation in
performance.

The strategy for tolerating faults consists of two
stages: erasure of outputs and fault propagation.

Each splitter in the multibutterfly is examined in
the erasure stage. If more than an ¢ fraction of the
splitter inputs are faulty, where & = 2a(f’ — 1) and
B = B — |d/2], then the splitter, as well as all descen-
dant switches and outputs, is erased from the network.
The erasure of an M-input splitter causes the removal
of M multibutterfly outputs and accounts for at least
eM faults. Hence, at-most k/e = K/2a(f' — 1) = O(k)
multibutterfly outputs are removed by this process.

Next, working from level log N back to level 0, each
switch is examined in the fault propagation stage to
see if at least half of its upper outputs lead to faulty
switches that have not been erased or if at least half
of its lower outputs lead to faulty switches that have
not been erased. If so, then the switch is declared
faulty (but not erased). It is not difficult to prove
"(Leighton and Maggs, 1989) that” at most k/(f' — 1)
additional switches are declared faulty at each level by
this process. Hence, at most O(k) multibutterfly inputs
will be faulty (declared or otherwise).

We now erase all the remaining faulty switches. This
leaves a network with N — O(k) inputs and N — O(k)
outputs. Moreover, every input in every splitter is
linked to [d/27] functioning upper outputs (if the
descendant multibutterfly outputs exist) and [d/27]
functioning lower outputs (if the corresponding multi-
butterfly outputs exist). Hence every splitter has an
(a, f') expansion property. Thus, we can apply Theo-
rems 1 and 2 with § replaced by £’ to show that the net-
work can solve packet-switching and circuit-switching

problems on the working inputs and outputs in O(log
N) steps.

5. NONBLOCKING NETWORKS

In a nonblocking network, inputs are connected to
outputs with node-disjoint paths, as they were in Sec-
tion 3. The inputs, however, are not all required to
make their requests for connections at the same time.
Inputs may wait to make their requests and may later
break connections and request new ones. The main
invariant obeyed by a nonblocking network is that any
unused input-output pair can be connected by a path
through unused switches, no matter what paths have
previously been established. The 6-terminal graph
shown in Figure 5 is an example of a nonblocking
network. In particular, if Bob is talking to Alice and
Ted is talking to Carol, then Pat can still call Vanna.

The existence of a bounded-degree strict-sense non-
blocking network with size O(N log N) and depth O(log
N) was first proved by Bassalygo and Pinsker (1974).
Unfortunately, there has not been much progress on
the problem of setting the switches so as to realize
the connection paths since then. Until recently, no
algorithm was known that could cope with simultane-
ous requests for connections in any O(N log N)-size
nonblocking network.

Arora, Leighton and Maggs (1990) discovered an
O(N log N)-switch nonblocking network for which each
path connection can be made on-line in O(log N) bit-
steps. The algorithms work even if many calls are
made at once—every call still gets through in O(log N)
bit-steps, no matter what calls were made previously
and no matter what calls are currently active, provided
that no two inputs try to access the same output at
the same time.

The nonblocking network is called a multi-Benes
network. A multi-Bene§ network is constructed by
combining expanders and the Bene§ network in much
the same way that expanders and butterflies are com-
bined to form a multibutterfly. As shown in Figure 6,

Fic. 5. A nonblocking network with 3 inputs and 3 outputs.
Reprinted, with permission, from Arora, Leighton and Maggs
(1990). Copyright © 1990 by ACM Press.

RANDOMLY WIRED MULTISTAGE NETWORKS 75

A‘: AT
_ 2 \‘\\ I/. .\\'/, ' :0‘
\\:::"’A\\‘:J‘.

G O

.\v v \v vl,\'
\01 l/‘o QDR AN \01.?

\\' v«'»
A‘\ AI gg

SN .
75 \V SR o<

FiG. 6. An 8-input 2-multi-Benes network.

a multi-Benes network is essentially a reversed multi-
butterfly followed by a multibutterfly.

As in the circuit-switching algorithm, the network
must be light loaded by some fixed constant factor L,
where L > 1/2a. Since the other inputs and outputs are
not used, the first and last log. L levels of the network
can be removed, and the N/L inputs and outputs can
each be connected directly to their L descendants and
ancestors on levels log; L and 2 log, N — log; L, respec-
tively.

The basic idea is to treat the switches through which

paths have already been established as if they were
faulty and to apply the fault propagation techniques
from Section 4 to the network. In particular, we define
a node to be “busy” if there is a path currently routing
through it, and we recursively define a node to be
“blocked” according to the following rule. Working
backward from level 2 log, N — log: L — 1 to level log,
N, a switch is declared blocked if more than 28 —d — 1
of its up (or down) neighbors on level / + 1 are busy
or blocked. From level logs N — 1 to level log; L, a
switch is declared blocked if more than 48 — d — 2 of
its 2d neighbors on level / + 1 are busy or blocked. A
switch that is neither busy nor blocked is said to be
“working.”
* Two important properties can be ‘proved about the
network switches. First, for > 2d/3 + 2/3 and L >
1/2a(38 — 2d — 2), at most a 2a fraction of the switches
in any block are declared to be blocked. Thus, all of
the unused inputs are working. As a consequence, no
matter what paths have already been established, any
unused input can reach any unused output. Second,
for B> d/2, the network of Working switches has a
(a,1/d) unique neighbor property. As a consequence,
the circuit-switching algorithm from Section 3 can be
used to establish new paths, even if many requests for
connections are made simultaneously.

REFERENCES

AieLro, W., LEicuTON, T., MAGGS, B. and NEwMAN, M. (1990).
Fast algorithms for bit-serial routing on a hypercube. In
Proceedings of the 1990 ACM Symposium on Parallel Algo-
rithms and Architectures 55-64. ACM Press, New York.

Asral, M., KomL6s, J. and Szemerebi, E. (1983). Sorting in
¢ log n parallel steps. Combinatorica 3 1-19.

ARoRA, S., LeigaToNn, T. and Maggs, B. (1990). On-line algo-
rithms for path selection in a non-blocking network. In Pro-
ceedings of the 22nd Annual ACM Symposium on Theory of
Computing 149-158. ACM Press, New York.

BassaLyGo, L. A. and Pinsker, M. S. (1974). Complexity of
optimum nonblocking switching network without reconnec-
tions. Problems Inform. Transmission 9 64-66.

DEHon, A., KnigaT, T. F. Jr. and Minsky, H. (1991). Fault-
tolerant design for multistage routing networks. In Proceed-
ings of the International Symposium on Shared Memory
Multiprocessing 60-71. Information Processing Society of
Japan.

FanLman, S. E. (1980). The Hashnet interconnection scheme.
Technical Report CMU-CS-80-125, Dept. Computer Science,
Carnegie Mellon Univ.

KaHALE, N. (1991). Better expansion for Ramanujan graphs. In
Proceedings of the 32nd Annual Symposium on Foundations
of Computer Science 398-404. IEEE Computer Society
Press, Los Alamitos, CA.

KocH, R. R. (1988). Increasing the size of a network by a constant
factor can increase performance by more than a constant
factor. In Proceedings of the 29th Annual Symposium on
Foundations of Computer Science 221-230. IEEE Computer
Society Press, Los Alamitos, CA.

KruskaL, C. P. and Snir, M. (1983). The performance of multistage
interconnection networks for multiprocessors. IEEE Trans.
Comput. C-32 1091-1098.

KruskaL, C. P. and SNir, M. (1986). A unified theory of intercon-
nection network structure. Theoret. Comput. Sci. 48 75-94.

LeicuTon, F. T. (1985). Tight bounds on the complexity of paral-
lel sorting. IEEE Trans. Comput. C-34 344-354.

LeicuroN, T., LeisersoN, C. L. and KLucermaN, M. (1991).
Theory of parallel and VLSI computation. Research Seminar
Series Report MIT/LCS/RSS 10, Lab. Computer Science,
MIT.

LeicuToN, T., and Magas, B. (1989). Expanders might be practi-
cal: Fast algorithms for routing around faults in multibutter-
flies. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science 384-389. IEEE Computer
Society Press, Los Alamitos, CA.

* LeiguroNn, T. and PraxToNn, G. (1990). A (fairly) simple circuit

that (usually) sorts. In Proceedings of the 31st Annual Sym-
posium on Foundations of Computer Science 264-274. IEEE
Computer Society Press, Los Alamitos, CA.

Lisinski, D., LEiguton, T. and Macas, B. (1990). Empirical
evaluation of randomly wired multistage networks. In Pro-
ceedings of the 1990 International Conference on Computer
Design 380-385. IEEE Computer Society Press, Los Ala-
mitos, CA.

LuBoTzKY, A., PHILLIPS, R. and SArNAK, P. (1988). Ramanujan
graphs. Combinatorica 8 261-277.

RETTBERG, R. D., CRowTHER, W. R., CARVEY, P. P. and ToMLIN-
soN, R. S. (1990). The monarch parallel processor hardware
design. Computer 23 18-30.

UrraL, E. (1989). An O(log N) deterministic packet routing
scheme. In Proceedings of the 21st Annual ACM Symposium
on Theory of Computing 241-250. ACM Press, New York.

