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Linear Dependencies Represented

by Chain Graphs

D. R. Cox and Nanny Wermuth

Abstract. Various special linear structures connected with covariance
matrices are reviewed and graphical methods for their representation
introduced, involving in particular two different kinds of edge between
the nodes representing the component variables. The distinction between
decomposable and nondecomposable structures is emphasized. Empirical
examples are described for the main possibilities with four component

variables.
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1. INTRODUCTION

This paper has three broad objectives. The first is to
illustrate the rich variety of special forms of association
and dependence that can arise even with as few as
three or four variables. The second is to show the
" value of graphical representation in clarifying these
dependencies; for this we introduce graphs with two
different kinds of edge and some further features which
are also new. The third objective is to show the impor-
tance in interpretation of the distinction between de-
composable and nondecomposable models.

A series of examples will be used in illustration,
partly to show that many of the special structures do
indeed arise in applications and partly to show in out-
line the implications for interpretation, although refer-
ence to the subject matter literature is necessary for
a full account. Most of the examples arise from recent
investigations at University of Mainz. For purposes of
exposition we have chosen examples with at most four
variables; that is, we have simplified by omitting men-
tion of variables which analysis had shown to have no
bearing on the points at issue.

We confine the discussion to those problems with
essentially linear structure in which the interrelation-
ships are adequately captured by the covariance matrix
of the variables. Of course in applications, checks for
nonlinearities and outliers are required, and these have
been done for all examples whenever we had access to
the raw data.

D. R. Cox is Warden, Nuffield College, Oxford OX1
INF, United Kingdom. Nanny Wermuth is Professor,
Psychologisches Institut, Johannes Gutenberg-Uni-
versitit Mainz, Postfach 3980, D-55099 Mainz, Ger-
many.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to |

204

The need to discuss special structures arises partly
because the relations of marginal independence and
conditional independence expressed thereby are often
of substantive interest and partly because in a satu-
rated model with p component variables, that is, one
in which the covariance matrix is unrestricted other
than to being positive definite, there are 1/2p(p — 1)
correlations, and reduction of dimensionality may be
desirable to avoid a superabundance of parameters.

There are strong connections with, in particular, the
long history of work in path analysis in genetics, in
simultaneous equations in econometrics and linear
structural models in psychometrics and with the body
of recent work applying graph-theoretic ideas to the
study of systems of conditional independencies arising
especially in the study of expert systems.

In Section 2 we review some general properties of
linear regression systems as related to the covariance
matrix of the variables and stress the distinction be-
tween multivariate regression and block regression and
between decomposable and nondecomposable struc-
tures. In Section 3 we introduce the main conventions
useful in a graph-theoretic representation of the inde-
pendency relations that may hold; in Section 4 we
discuss relations with previous work, and in Section 5
we give a series of empirical examples for four vari-
ables. The paper concludes in Section 6 with some general
discussion. The emphasis throughout is on the struc-
ture and interpretation of the various models rather
than on the procedures for fitting.

2. SOME PROPERTIES OF COVARIANCE MATRICES

It is convenient to set out some properties of systems
of linear least squares regressions derivable from a
covariance matrix. These are full regression equations
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in a multivariate normal distribution. There is through-
out the usual interplay between relatively weak second-
order properties of least squares regression and the
strong properties derivable from an assumption of mul-
tivariate normality, such as that zero correlation or
zero partial correlation implies independence or condi-
tional independence.

We consider first the p X 1 vector Y = (Y3,..., Y,)T
with mean E(Y) = u. We denote the positive definite
covariance matrix by cov(Y) = L, and its inverse, the
concentration matrix, therefore by L™'; the diagonal
elements of L are the variances (o;;), those of L' are
the precisions (o). The off-diagonal elements of L are
the covariances (o), those of Y ! are the concentrations
(6Y). A marginal correlation p; is expressible via ele-
ments of the covariance matrix, in a way similar to
that in which a partial correlation, p;;, given all of the
remaining variables k2 = {1, . . ., p}\{i, j}, is expressible
via elements of the concentration matrix:

-1/ -1/2

2 ‘o v a2
pi = ai(guay) , pix = —a¥(a"d?)

This implies in particular that in the usual notation
(Dawid, 1979a) for independence,

Yi AL Yj, if and only if Gij = 0,
Y: 1L Y;| Y, ifandonlyifo? =0,

where as above & = {1,...,p}\{i j}.

To study regression models, we partition Y into Y,
and Y3, p. X 1 and p, X 1, respectively, p. + p» = p,
and call the two parts response and explanatory vari-
ables. Let the covariance matrix and the concentration
matrix be conformally partitioned:

aa ab
vs-(- B F)

. bb .

then the covariance matrix X, of the explanatory vari-
ables and correspondingly their concentration matrix
L, = Lt = pbb — (£9T(£*9) 15 do not contain pa-
rameters needed to specify a standard regression model
of Y, on Y;. Instead, their observed counterparts are
taken as fixed or indeed sometimes are fixed by sam-
pling design.

* We now distinguish between a multivariate regres-
sion and a block regression. To simplify the notation
we shall without essential loss of generality take often
E(Y) = 0. We describe the distinct parameters in the
two types of regression models, that is, the two ways
of parametrizing the conditional distribution of Y,
given Y,. For a multivariate regression of Y, on Y,
that is, for Y, = I, Y, + & with E(&,) = 0, E(e,Y?) = 0,
the regression equation parameters IT,; and the resid-
ual variance var(g,) can be written in a matrix as
(Xoups ap), where

2) Halb = Zabe-bl’ N
var(€a) = 2pap = 2iaa = Dab Db Do

In a saturated multivariate regression (2) each compo-
nent of Y, is regressed separately on the full set of
components Y.

On the other hand in a saturated block regression
each component of Y, is regressed not only on Y,
but also on all remaining components of Y,. Then the
regression equation parameters are instead propor-
tional to the elements of the matrix (X%, £*) (Wermuth,
1992). The reason is that the expected value of a compo-
nent Y; of Y, given all remaining variables of Y can be
obtained by taking expectations in

(3) Y, + S, = w,

where E(w,) = 0, var(w,) = L* and dividing the ith
equation by the concentration ¢%. Equation (3) is de-
rived from a block triangular decomposition of the
concentration matrix, X! = ATT 1A, where

aa, — ab
A=<Im (7% >
0 Iy

T !'= <2 99b.a> ,
0 2

as the first p, equations of (T'!A(Y — E(Y)) = w. The
residuals w have zero mean and covariance matrix 7.

For a block regression, the resulting coefficient of
variable Y in the ith equation is minus a partial regres-
sion coefficient given all remaining variables of Y, that
is, given all remaining response and explanatory vari-
ables. On the other hand, in a multivariate regression
the coefficient of Y; in the ith equation is a partial
regression coefficient given all remaining variables of
Y,, that is, given all remaining explanatory variables.
To express this distinction more formally, we write a
partial regression coefficient g, for {1,...,p}=
a U b ={{ij},d, g} in terms of elements of the condi-
tional covariance matrix of (Y;, Y;) given Y; and of
elements of the concentration matrix of (Y;, Y}), having
marginalized over Y,, as

(4)

= Oy O
ﬂl].d Gjia Oii«g'

Note that in the case of a block regression g is empty

and d is the set of all remaining variables of Y, that

is, d = (a U b)\{i,j}, while in the case of a multivariate

regression d = b\{j}, and g = a\{i}. Note further that

(5) Y: Il Y;|Ys ifandonlyif By = 0.

To judge the relative strength of the dependence of a
response on several explanatory variables, it is some-
times useful to compare the standardized regression
coefficients, that is, fa = Bja0fai .

One of the major distinctions between multivariate
regression and block regression lies in the meaning of
the relation between two components Y; and Y}, both
within Y,, and in the meaning of the relation of a
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component Y; from Y, to a component Y; from Y,. To
describe this in detail it is useful to recall how a partial
regression coefficient relates to a partial correlation

coefficient
Oiid a-jj.g
Bija = Pij.d1f === pij.d4’Tg-
Gjid a*

Thus, in a block regression, that is, where d =
(@Ub)\{i, j}, the relation between Y; from Y, and Y; is
measured essentially by the partial correlation given
all remaining variables of Y, no matter whether Y; is
from Y, or it is from Y,. By contrast in a multivariate
regression, that is, where d = b\{j}, the measure of the
relation of Y; from Y, to Y; from Y, is proportional to
the partial correlation given the variables in Y, other
than Y;; the correlation between Y; and Y; both within
Y, is given all variables in Y,. Thus, a larger set of
variables is considered simultaneously in block regres-
sion if compared with the corresponding multivariate
regression. Written in matrix notation their parame-
ters are related by

© I=—(E"Z" T
(7) Zab = - (Zmb)_lnalb’ ZM = (Doas)

Some of the special models we shall consider corre-
spond to specifying some elements of regression equa-
tions to be zero, that is, to structures that appear
simplified if compared with the saturated model. The
choice between block regression and multivariate re-
gression is then largely determined by the research
questions and by a decision as to which of the two
parametrizations permits a simpler description of the
relations. For instance; in each of Examples 1, 2 and
7 of the empirical examples of Section 5 we can think
of two variables as joint responses, Y, = (Y, X)?, and
of two variables as explanatory, Y, = (V, W)”. A sim-
plifying description is possible with block regression
but not with multivariate regression in Example 1, while
a simpler structure results with multivariate regres-
sion than with block regression in Examples 2 and 7.

If not only the conditional distribution of Y, given
Y, is of interest, but the marginal relations among
component variables within Y, as well, we are led to a
simple type of regression chain model: we specify the
joint density via

™

-1

fav = fapfo

and make a choice for f,, among a multivariate and a
block regression. .

A specification of the joint distribution of Y,, Y, by
a saturated multivariate regression chain model has
(X.a6> [ap) as parameters for the conditional distribu-
tion of Y, given Y, and X, for the marginal distribution
of Y,. With a saturated block regression chain model
the parameters are the regression coefficients obtained

as described above from (X%, %) and the concentration
matrix I**° = L;\.

Considering, for instance, a multivariate regression
chain model instead of a multivariate regression model
can lead to a simpler structure. This is the case in
Example 7 but not in Example 2 of Section 5 since the
explanatory variables can be taken to be marginally
uncorrelated in the former but not in the latter.

In the next more complex regression chain model
the joint density of three (vector) variables Y,, Y, and
Y. is specified via

fabc = falbcfblcfcy

that is, via a regression of Y, on Y, and Y., a regression
of Y, on Y. and the marginal distribution of Y.. This
would be an adequate approach if the components of
Y, are the response variables of primary interest hav-
ing Y, and Y, as potential explanatory variables, if Y,
plays the role of an intermediate variable containing
potentially explanatory components for Y, and possi-
ble responses to Y. and, finally, if Y. consists of explan-
atory variables whose joint distribution is to be analyzed.
A particularly important family of regression chains
are the univariate recursive regressions in which, for
a given ordering of the components of ¥ = (Y,...,
Y,)?, we define the model via the regression of Y, on
Yi41,...,Ypfor r=1,...,q; ¢ < p—1. An indepen-
dence hypothesis is said to be decomposable if it speci-
fies one or more of the regression coefficients in such
a system to be zero. Early descriptions of univariate
recursive regressions have been given by Wright (1921,
1923) with an emphasis on applications in genetics and
by Tinbergen (1937) for the study of business cycles.
By contrast a nondecomposable independence hy-
pothesis consists of a set of & independence relations
for k distinct variable pairs that cannot, in its entirety,
be reexpressed in terms of vanishing coefficients in the
above form: that is, no ordering of the variables would
produce a decomposable independence hypothesis with
the same implications from the same distributional

- assumption. The following arguments apply provided

that there are no so-called forbidden states, that is,
states of zero probability (Dawid, 1979a).

For instance, for a trivariate normal distribution of
Y, Z, X the hypothesis Y Il X|Z and X 1l Z|Y
corresponds to zero concentrations for pairs (Y, X) and
(X, Z) and it implies X | (Y, Z). This hypothesis can
be reexpressed by Y 1| X |Z and X || Z correspond-
ing to By.. = B:- = 0 in a univariate recursive system
for (Y, X, Z)". Thus the hypothesis is decomposable
even though initially not expressed in that form. On
the other hand, no ordering of the variables would
permit us to specify the hypothesis Y |l X and
Z 1l U as zero restrictions in a univariate recursive
regression system. Thus the hypothesis is nondecom-
posable. Further examples for nondecomposable hy-
potheses are discussed in Section 5.
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They arise in applications with four or more vari-
ables, as we shall see below, but suffer from a number
of disadvantages both in terms of the difficulty of
fitting, but more importantly, in terms of indirectness
of interpretation. The need for such models was noted
by Haavelmo (1943) who pointed out substantive re-
search questions about relations which form a system
of equations to be fulfilled simultaneously, but which
are not a system of univariate recursive regressions.
His subject matter example is as follows: consumption
in an economy per year depends on total income, invest-
ment per year depends on consumption and total in-
come is the sum of consumption and investment. A
slightly simplified version of Haavelmo’s argument for
the simultaneous treatment of equations is given in
Section 4. As a consequence of his results, the class of
linear structural equations was developed to study
simultaneous relations. It is mainly discussed in econo-
metrics (Goldberger, 1964), in psychometrics (Jore-
skog, 1973) and in sociology (Duncan, 1969); it includes
univariate recursive regression systems and multivari-
ate regressions as a subclass but, in general, a zero
coefficient in a structural equation does not correspond
to an independence relation. More generally the graphi-
cal representations to be introduced in Section 3 are
equivalent to those used in path analysis and in discus-
sions of structural equations only in rather special
cases. We deal with this important point further in
Section 4.

A representation in terms of univariate recursive
regressions combines several advantages. First, and
most importantly, it describes a stepwise process by
which the observations could have been generated and
in this sense may prove the basis for developing poten-
tial causal explanations. Secopd, each parameter in
the system has a well-understood meaning since it is a
regression coefficient: that is, it gives for unstandard-
ized variables the amount by which the response is
expected to change if the explanatory variable is in-
creased by one unit and all other variables in the
equation are kept constant. As a consequence, it is
also known how to interpret each additional zero re-
striction: in the case of jointly normal variables, each
added restriction introduces a further conditional inde-
pendence, and it is known how parameters are modified
if variables are left out of a system (Wermuth, 1989).
Third, general results are available for interpreting
structures, that is, for reading all implied independen-
cies directly off a corresponding graph (Pearl, 1988;
Lauritzen et al., 1990) and for deciding from the graphs
of two distinct models whether they are equivalent
(Frydenberg, 1990a). Fourth, an algorithm exists (Pearl
and Verma, 1991; Verma and Pearl, 1992) which de-
cides for arbitrary probability distributions and an
almost arbitrary list of conditional independence state-
ments whether the list defines a univariate recursive
system; if it does, a corresponding directed acyclic

graph is drawn. Fifth, the analysis of the whole associa-
tion structure can be achieved with the help of a se-
quence of separate univariate linear regression analyses
(Wold, 1954).

The word causal is used in a number of different
senses in the literature; for a review see Cox (1992).
Glymour et al. (1987) and Pearl (1988) have developed
valuable procedures for finding relatively simple struc-
tures of conditional independencies which they define
to be causal. We prefer to restrict the word to situa-
tions where there is some understanding of an underly-
ing process. From this perspective it is unrealistic to
think that causality could be established from a single
empirical study or even from a number of studies of
similar form. We aim, however, by introducing appro-
priate subject matter considerations into the empirical
analysis, to produce descriptions and summaries of the
data which point toward possible explanations and
which in some cases of univariate recursive systems
could be consistent with a causal explanation.

3. SOME GRAPHICAL REPRESENTATIONS

With only three component variables, the number of
possible special independency models is fairly small
but with four and more components there is a quite
rich and potentially confusing variety of special cases
to be considered. Graphical representation helps clarify
the various possibilities, and it is convenient to intro-
duce the key ideas and conventions in terms of three
variables.

A systematic account of graphical methods by Whit-
taker (1990) emphasizes undirected graphs, that is,
systems in which all variables are treated on an equal
footing. Here we use largely directed graphs to empha-
size relations of response and dependence; it is fruitful
also to allow two different kinds of edge between the
nodes of a graph and to introduce some additional
special features.

First we introduce, where appropriate, a distinction
between the response variables of primary interest,
one or more levels of intermediate response variables,
and explanatory variables, all in general with several
component variables. The distinction between variable
types is usually introduced on a priori subject matter
considerations, for example via the temporal ordering
of the variables. Sometimes, however, there are several
such provisional interpretations and some may be sug-
gested by the data under analysis. The distinction
between variable types is expressed in the graphs via
(c) below.

The following conventions have been used in con-
structing the graphs in this paper and are illustrated in
their simplest form in Figures 1-3 for three variables:

(a) each continuous variable is denoted by a node, a
circle;
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Fic 1. Six distributionally equivalent ways of specifying a satu-
rated model for three variables. (a) Joint distribution of Y, X, V
with three substantial concentrations: (b) joint distribution of
Y, X, V with three substantial covariances; (c) multivariate regres-
sion chain model with regressions of Y on V and of X on V and
with correlated errors; (d) block regression chain model with
regressions of Y on X, V and of X on Y, V; (e) univariate regression
of Y on X, V and joint distribution of X, V; (f) univariate recursive
regression system with Y as response to X, V; X as intermediate
response to V. For instance, graph (e) with double lines round
the right-hand box would represent the standard linear model for
regression of Y on fixed explanatory variables X, V.
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(b) there is at most one connecting line between each
pair of nodes, an edge;

(c) variables are graphed in boxes so that variables
in one box are considered conditionally on all boxes to
the right (in line with the notation P(A | B) for the
probability of A given B) so that the response variables
of primary interest are in the left-hand box and its
explanatory variables are in boxes to the right;

(d) if full lines are used as edges, each variable is
considered conditionally on other variables in the same
box (as well as those to the right), whereas if dashed
lines are used variables are considered ignoring other
response variables in the same box, that is, marginally
with respect to response variables in the same box;

(e) the absence of an edge means that the corre-
sponding variable pair is conditionally independent,
the conditioning set being as specified in (d);

(f) variables in the same box are to be regarded

\ T
o‘\“ l,'o ~ (x:/o x ~ 5 , DX ~ VO:
vy T | v o x

o=
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Fic. 2. Four distributionally equivalent ways of specifying
Y 1l X | V; (a) covariance selection model for Y, X, V having
parameters py: * 0, poy # 0, and pys, = 0; (b) univariate re-
cursive regression model with By.: # 0, Byxv =0, Bux # 0; ()
block regression chain model with Y, V as joint responses to X
and with independent parameters py.x # 0, Byzv = 0, Bozy # O;
(d) two independent regressions of Y on V and of X on V with
By # 0, Brw # 0, pyzy = 0.

@ ®) © @

Fic. 3. Four distributionally equivalent ways of specifying
Y | X; (a) linear structure in covariances with py, * 0, pz # 0,
Py = 0; (b) univariate recursive regression model with ..y # 0,
Buyz # 0, Byx = 0; (c) multivariate regression chain model with
Pyz # 0, Bux # 0, By = 0; (d) multiple regression of V on two
independent regressors Y, X, with oy # 0, Bozy # 0, pyx = 0.

in a symmetrical way, for instance as both response
variables, and connected by undirected edges (lines
without arrowheads, for correlations), whereas rela-
tions between variables in different boxes are shown
by directed edges (arrows, for regression coefficients)
such that an arrow points from the explanatory vari-
able to the response;

(g) graphs drawn with boxes represent substantive
research hypotheses (Wermuth and Lauritzen, 1990)
in which the presence of an edge means that the corre-
sponding partial correlation is large enough to be of
substantive importance. This corresponds to the notion
that the model being represented is the simplest appro-
priate one in the sense that relations considered to be
unimportant are not part of the model; graphs obtained
by removing the boxes represent statistical models in
which a connecting edge places no such constraint on the
correlation, that is, it could also be a zero correlation;

(h) a row of unstacked boxes implies an ordered
sequence of (joint) responses and (joint) intermediate
responses, each together with their explanatory vari-
ables. Boxes are stacked if no order is to be implied,
in order to indicate independence of several (joint)
variables conditionally on all boxes to the right;

(i) if the right-hand box has two lines around it, then
the relations among variables in this box are regarded
as fixed at their observed levels; this is to indicate a
regression model instead of a regression chain model,
the latter containing parameters also for those compo-
nents which are exclusively explanatory.

In the present paper we use only graphs with edges
of one type, that is, either all full lines or all dashed
lines. It would be possible to have mixture of the two
types of edge in the same graph, for example provided
that all the edges within one block are of the same
type and all the edges directed at a particular block
are of the same type.

In a sense the distinction between full and dashed
edges serves a double purpose. The distinction between
full and dashed arrows from one box to another deter-
mines the different conditioning sets used in the vari-
ous regression equations under consideration. The
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distinction between full and dashed lines within a box
specifies whether it is the concentration or the covari-
ance matrix of the residuals that is the focus of interest.
In this sense the nature of the edges corresponds to
the parameters of interest.

The joint distribution of all variables is in the present
context specified by the vector of means and the covari-
ance or the concentration matrix. However any such
given matrix may correspond to a number of models
with quite different interpretations in the light of the
distinction between types of variable as response, inter-
mediate response or explanatory variable. A complete
graph, that is, one in which all edges are present,
represents a saturated model, that is, in the present
context a model without any specified independence
relations.

To stress the distinction between the multivariate
regression and block regression contained in Figure 1,
we write the corresponding equations explicitly. The
multivariate regression equations implied by Figure 1c
are

EY|V=y) My = ﬁyv(v — ),
EX| V=0 == Bulv —w),
with
112
COV(Ey.uy Exp) = Pyx.v (ayy.vaxx.v)
By contrast the block regression equations implied by
Figure 1d are

EY|X=x,V=v)—u
= ﬂyx.v(x - .Ux) + ﬂyv.x(v - ﬂu),
EX|Y=y,V=v)—pu,

= ﬁxy.v(y - luy) + ﬂxv.y(v - /lv),
with
1/2 1/2
:Byx.u = pyx.v(ayy.v / axx.v) yﬂxy.u = pyx,.,(axx.,, / G'yy.,,) ,

COV(Sy,xv, Sx,yv) = _pyx.u(ayy.xvaxx.yv) )

where the conditional variance of the variable given
all remaining variables is the reciprocal value of a
precision, for example, gy,., = 1/0*”. Relations be-
tween the sets of parameters in the two types of regres-
sions are given by Equations (6) and (7).

4. RELATIONS WITH PREVIOUS WORK

We illustrate the distinction between the graphical
chain models of the present paper and structural equa-
tion models via two examples. Suppose first that X
and Y are standardized to mean zero and variance one
and denote their correlation coefficient by p. Then

Y=pX+¢, X=pY +e,

where (¢,, ;) are residuals from linear regression equa-

tions. That is, the coefficients p in these equations
have an interpretation as regression coefficients. Direct
calculation shows that

cov(gy, &) = cov(Y — pX, X — pY) = —p(1 — p?),

which is nonzero unless p = 0. That is, the two regres-
sion equations imply correlated residuals except for
degenerate cases.

On the other hand, if we were to adopt

Y—pX=¢, X—pY=c¢,

as structural equations with uncorrelated residuals,
then another direct calculation shows that the regres-
sion of Y on X is

_EYX) _ var(e) +var(e)
E(X? var(e,) + p?var(e,) P

E(Y|X =ux)

which is not px, again unless p = 0. That is, the coeffi-
cients in these structural equations do not have an
interpretation as regression coefficients, as was noted by
Haavelmo (1943).

To make the related point that missing edges in the
graphical representation of linear structural equations
(Van de Geer, 1971) do not in general have the indepen-
dency interpretation of chain graphs, consider the fol-
lowing two structural equations

Y+ p.X + . V=c¢g,
VoY + X + W = &,

illustrated in Figure 4. For correlated errors (e, &),
a count of parameters shows that this represents a
saturated model; that is, it allows an arbitrary covari-
ance matrix for (Y, X,V,W)’. That is, in particular, the
missing edges between V and X, and between W and
Y do not imply independencies, conditional or uncondi-
tional. For some further discussion of possibilities for
interpreting the parameters in this model see Wermuth
(1992) and Goldberger (1992). For linear structural
equations in general, the interpretation of equation pa-

F16. 4. Graphical representation of two structural equations in
which the missing edges for (V, X) and (W, Y) do not correspond
to independencies and do not restrict the covariance matrix for
(Y, X, W, V"
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rameters, be they present or missing, has to be derived
from scratch for each model considered.

However, an interpretation in terms of independenc-
ies is available also for structural equations, whenever
such a model is distributionally equivalent to one of
the chain graph models, that is, if the same joint
distribution holds for the two types of models, possibly
specified in two distinct ways, and the parameter vec-
tors of the two models are in one-to-one correspon-
dence.

Three classes or families of models can be identified
to have this property. These are models that have a
representation by a chain graph which is:

[1] acovariance graph, that is, a single box graph in
which all present edges are undirected dashed
lines, as in Figures 1b and 3a;

[2] amultivariate regression graph, that is, a two-box
graph in which all present edges are dashed, being
lines within and arrows between boxes, as in
Figures 1c and 3c and in which the right-hand
box has two lines around it, the distribution of
its components being fixed.

[8] a univariate recursive regression graph, that is,
a graph of ¢ + 1 boxes, g of them with a single
response variable and the right-hand box with
p — q additional explanatory variables, as in Fig-
ures 1f, 2b and 3b. In addition the right-hand
box has two lines around it to indicate that only
the conditional distribution of Y3,...,Y, given
the remaining variables is the model of interest.

The conventions (a) to (i) for constructing chain
graphs imply for univariate recursive regression graphs
that arrows have the same interpretation no matter
whether they are all dashed or whether they are all
full arrows. That is whenever there are no proper joint
responses in a model then dashed and full edge arrows
are interpreted in the same way.

To distinguish better between dashed and full-edge
graphs when their interpretation differs we suggest
speaking further of:

[4] aconcentration graph, that is, a single box graph

in which all edges are undirected full lines, as in
. Figures la and 2a;

[5] ablock regression graph, that is, a two-box graph
in which all present edges are full, being lines
within and arrows between boxes, as in Figures
1d and 2c and in which the right-hand box has
two lines around it.

Then, a multivariate regression chain graph can be
viewed as a combination of a (sequence of) graph(s)
[2] with [1] and a block regression chain graph as a
combination of a (sequence of) graph(s) [5] with [4].
More general chain graphs with both types of edges

result as further combinations of these four building
blocks.

Univariate recursive regression graphs are essen-
tially identical to the directed acyclic graphs used in
work on expert systems (Pearl, 1988). One of the latter
results from one of the former by replacing the com-
plete undirected graph of the explanatory variables by
an acyclic orientation, that is, by a univariate recursive
regression graph in arbitrary order of the nodes and
by discarding all boxes.

To investigate distributional equivalence it is helpful
to use the notion of a skeleton graph introduced by
Verma and Pearl (1992). A skeleton graph is obtained
from our Figures by removing boxes and arrows and
ignoring the type of edge. For instance, the skeleton
graphs in Figures 2a to 2d are all the same. If the
skeletons differ then the corresponding models cannot
be equivalent. But if the skeletons are the same, then
the graphs may still imply different independencies, as
in Figures 2 and 3.

Distributional equivalence to a model of univariate
recursive regressions is closely tied to our notion of a
nondecomposable independence hypothesis. We speak
of a decomposable model if it is distributionally equiva-
lent to a model of univariate recursive regressions
and of a nondecomposable model otherwise. Thus, all
saturated chain models for linear relations considered
in this paper are decomposable, since they all specify
the same joint distribution (Figure 1). A nonsaturated
model is decomposable if and only if it contains not
even one nondecomposable independence hypothesis.
In complex cases, such a model may contain large
sections that are decomposable and in analysis and
interpretation account can be taken of that.

This notion of a decomposable model coincides with
the notion of a decomposable graph when this graph
has undirected full edges, that is, when it is a concentra-
tion graph. For variables with a joint normal distri-
bution a concentration graph specifies a covariance
selection model (Dempster, 1972). Such a model is de-
composable if and only if the concentration graph is
triangulated, that is, if it does not contain a chordless
n-cycle for n = 4 (Wermuth, 1980; Speed and Kiiveri,
1986). A sequence of nodes (ay, . . ., a,) is said to form
a chordless n-cycle in a chain graph if only consecutive
nodes and the endpoints of the sequence are connected
by edges and a chordless cycle in a sequence of four
or more variables characterizes a nondecomposable in-
dependence hypothesis in concentrations. An example
is Form (i) for (Y, X, V, W) discussed in Section 5. A
special well-studied example of a decomposable covari-
ance selection model is represented by a chordless
n-chain in concentrations, that is, sequence of nodes
(ai, . ..,a,) for which only consecutive nodes of the
sequence are connected by edges. This is a Markov
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i

F1G.5. Block regression chain model (a) and covariance selection
model (b) both specifying the nondecomposable hypothesis (i):
YU WX, V)and X 1l V|(Y, W).

® ®)

chain model. An example is Form (vi) for (Y, X, V, W)
discussed in Section 5.

Figures 1-3 show that not only full-edge but also
dashed-edge chain graph models can be decomposable,
that is, distributionally equivalent to a model of univar-
iate recursive regressions. We characterize situations
in which this is not possible for four variables in the
next section.

5. SOME EMPIRICAL EXAMPLES

We now introduce eight special kinds of indepen-
dence hypothesis for four variables, together with their
associated graphs, and illustrate most of them via
empirical examples. All involve two or more indepen-
dency conditions. The special structures we shall con-
sider are as follows, the first three and the last two
being nondecomposable:

(i) YU W|(X,V)andX Il V|(Y,W),

(see Figures 5a and 5b) called the chordless four-cycle
in concentrations and which correspond to the van-
ishing of two elements in the concentration matrix,
and hence to a special case of the covariance selection
models (Dempster, 1972). It can also be viewed as a
chordless four-cycle in a block regression chain model
with joint responses Y, X and joint explanatory vari-
ables V, W. Next we consider

(i) YU W|VandX 1L V| W,

called a chordless four-cycle in a multivariate regres-
sion chain model (see Figure 6a) and which contains
regressions of Y and X on V and W, being a special
case of the seemingly unrelated regressions of Zellner
(1962);

Y Q= ov Y Q-on-ee- ov

X Octectodw X O-nmnmeee ow

® ' ®

Fi1c. 6. Multivariate regression chain model (a) specifying the
nondecomposable hypothesis (i) Y 1l W|Vand X Il V|W
and a linear in covariances structure (b) specifying the
nondecomposable hypothesis (iii): Y 1l Wand X 11 V.

] . Cx
o o x N0 vy
@ ®)

Fic. 7. Univariate recursive regressions (a) specifying (iv):
Y1l W|(X, V)and X Il V| W and independent multiple re-
gressions with independent explanatory variables (b) specifying
VYU X|(V,Wand V1 W

(iii) YU WandX Il V,

called the chordless four-cycle in correlations (see Fig-
ure 6b), a special case of covariance matrices with
linear structure (Anderson, 1973).

These may be contrasted with a decomposable model
based on a recursive sequence of univariate regressions
with Y as response to X,V,W, with X as response to
V,W and with V as response to W and having restric-
tions on the same two variable pairs (see Figure 7a)

(iv) Y1 W|(X,V)and X 1l V| W.

Four further cases, the first two decomposable, the
last two not, are

v) YU X|(V,WandV 1L W,

two independent regressions of Y and X on two inde-
pendent regressors V and W (see Figure 7b);

(vi) YL (V,W)| Xand X Il W |V,

called a chordless four-chain in concentrations or a
Markov chain (see Figures 8a and 8b), that is, a
chordless four-chain in a system of univariate recursive
regressions again with Y as response to X,V,W, with
X as response to V,W and with V as response to W
and having response Y and explanatory variable W as
chain endpoints;

(vii) Y1l WandX Il VandV L W,

-called a chordless four-chain in covariances (see Figures

9a and 9b) or a chordless four-chain in a multivariate
regression chain model with Y, X as joint responses
and having explanatory variables V,W as chain end-
points;

o<

X
)
S

O

@ ®)

Fic.8. Univariate recursive regressions (a) and covariance selec-
tion model both specifying the decomposable hypothesis (vi):
YU (V,W)|Xand X Il W|V.
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Fic. 9. Multivariate regression chain model (a) and a linear in
covariances structure (b) both specifying the nondecomposable
hypothesis (vii: Y ]| Wand X Il Vand V || W.

(viii) YU W|(X,V)yand X Il V|(Y,W)
and V 1l W;

called a chordless four-chain in a block regression chain
model with Y, X as joint responses and having explana-
tory variables V,W as chain endpoints. The correspond-
ing chain graph has the same shape as the graph in
Figure 9a, but dashed lines and arrows are replaced
by full lines and arrows.

For our present purpose we give for each empirical
example correlations and standardized concentrations
showing these as the lower and upper triangle, respec-
tively, such as in Table 1. This allows direct detection
of linear marginal independencies between pairs of vari-
ables, as shown by very small marginal correlations,
that is, standardized covariances, and linear condi-
tional independencies between pairs of variables given
all remaining variables, as shown by very small partial
correlations, that is, standardized concentrations.

For a formal analysis, consistency of data with a
particular structure would be examined via a likelihood
ratio test or its equivalent, typically comparing a maxi-
mum likelihood fit of the constrained model with that
of a saturated model. For the present purposes, how-
ever, it is enough to rely on informal comparisons of
marginal correlations, partial correlations or standard-
ized regression coefficients, although such dimen-
sionless measures are not in general appropriate for
comparing different studies.

Example 1 [Table 1, Figure 5, Form (i)]. Emotions
as dispositions or traits of a person and emotions as
states, that is, as evoked by particular situations, are
notions central to research on stress and on strategies

to cope with stressful events. Questionnaires with
which the state-trait versions of the emotions anxiety
and anger are measured have been developed by Spiel-
berger et al. (1970, 1983). We obtained data for 684
female college students from C. Spielberger on the
variables Y, state anxiety; X, state anger; V, trait
anxiety and W, trait anger; summaries are displayed
in Table 1.

The upper corner of Table 1 shows close agreement
with the Form (i): Y 1l W|(X,V)and X Il V |(Y,W),
see also Figures 5a and 5b. This nondecomposable
model has the simple interpretation that prediction of
either state variable is not further improved by adding
the other trait variable to the remaining two explana-
tory variables but it does not directly suggest a step-
wise process by which the data might have been
generated.

Example 2 [Table 2, Figure 6a, Form (ii)]. From a
study of the status and reactions of patients awaiting
a particular kind of operation (Slangen, Kleeman and
Krohne, 1992) we obtained as basic information for 44
female patients: Y, the ratio of systolic to diastolic
blood pressure; X, the diastolic blood pressure; both
measured in logarithmic scale; V, body mass, that is,
weight relative to height, and W, age. Table 2 shows
substantial correlations except for a small marginal
correlation of pair (Y,W) and a small partial correlation
of pair (X,V). These are not to be directly interpreted
if —as appears reasonable—each of the blood pressure
variables is regarded as a potential response to body
mass and age. Instead, the standardized regression
coefficients in a saturated multivariate regression of
Y, X on V,W display possible independencies of in-
terest. They show close agreement with Form (ii):
Y Il W|Vand X |l V| W, see also Figure 6a, with
standardized regression coefficients

Brows Byus _ (0.486 0.040
xv.w Ezw.v 0.037 _0.275

and from Table 2 correlated errors since gy, = —0.566.

- This nondecomposable model gives as interpretation

that diastolic blood pressure increases just with age

: TaBLE 1
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half) means
and standard deviations for n = 684 students

Y X | %4 w
Variable State anx State ang Trait anx Trait ang

Y: = State anxiety 1 0.45 0.47 -0.04
X: = State anger ! 0.61 1 0.03 0.32
V: = Trait anxiety 0.62 0.47 1 0.32
W: = Trait anger 0.39 0.50 0.49 1

Mean 18.87 15.23 21.20 23.42
Standard deviation 6.10 6.70 5.68 6.57

Data for Example 1 to Form (i): Y Il W |(X,V)and X _|I V | (Y,W) and to Figures 5a and 5b.
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TABLE 2
Observed marginal correlations (lower half), observed partial correlations given all remaining variables (upper half), means and
: standard deviations for n = 44 patients

Y X \%4 w
Variable Lratio bp Lsyst. bp Body mass Age
Y: = Log (syst/diast) bp 1 —0.566 —0.241 0.300
X: = Log diastolic bp —0.544 1 —0.107 0.491
V: = Body mass —0.253 0.336 1 0.572
W: = Age —0.131 0.510 0.608 1
Mean 0.453 4.29 0.379 29.52
Standard deviation 0.091 0.13 0.060 10.59

Data for Example 2 to Form (ii): Y |l W | Vand X 1l V| W and to Figure 6a.

after controlling for an increase in body mass and that
the ratio of systolic to diastolic blood pressure is higher
the lower the body mass for persons of the same age.
But again, the model does not directly suggest a step-
wise process by which the data could have been gener-
ated.

Example 3 [Table 3, Figure 6b, Form (iii)]. In a study
of strategies to cope with stressful events Kohlmann
(1990) collected data for 72 students replying to a
German and an American questionnaire. They are both
intended to capture two similar strategies: Y, cognitive
avoidance and V, blunting are thought of as strategies
to reduce emotional arousal and X, vigilance and W,
monitoring as strategies to reduce insecurity. The data
in Table 3 agree well with Form (iii); Y ||l W and
X 1l V, see also Figure 6b, but not with (i) because in
this case the marginal correlations but not the partial
correlations are small.

It is plausible to see strong positive correlations
between both pairs of similar strategies, a moderate
negative correlation between each set of competing
strategies measured one way and no correlation be-
tween a strategy measured with one questionnaire and
the competing strategy measured with the other ques-
tionnaire. However, this structure again cannot be
reexpressed with zero regression coefficients in any
system of recursive univariate regressions; that is, it
does not have a direct explanation as a process by
which the data could have been generated.

Pairs of forms from the above special cases (i) to (iv)
are mutually exclusive whenever the correlations of all
variable pairs other than the two constrained pairs
(Y, W) and (X, V) are substantial although with limited
data it is of course possible that several different simpli-
fied structures are consistent with the data. An excep-
tion where two different sets of the above conditions
may hold simultaneously is provided by (i) and (iii);
that is, a chordless four-cycle in concentrations and in
correlations can occur together if a very special struc-
ture is present, that is if the marginal correlations in
the population satisfy orthogonalities such as

Pyw =0, pr =0,
(8) PyoPvw + Pyzprw = 0,
PyoPyx + Powpzw = 0.

The next set of data is an example of this special case.

Example 4 [Table 4, Figures 5b and 6b, Forms (i)
and (iii)]. In a study of effects of working conditions on
the manifestation of hypertension, Weyer and Hodapp
(1979) report the correlations among the four potential
influencing variables displayed in Table 4 for 106
healthy employees. The variables, which are measured
with questionnaires, are Y, nervousness; X, stress at
work; V, satisfaction with work and W, hierarchical
status at work. The observations agree well with both

@)Y UL W (X,V)and X ]l V| (Y,W)(see also Figure

5b) and with (iii): Y 1|l W and X _ll V (see also Figure
6b). There is no immediate interpretation; however, one

TABLE 3
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half),
means and standard deviations for n = 72 students

Y X v w
Variable Cogn. avoid. Vigilance Blunting Monitoring

Y: = Cognitive Avoidance - 1 —0.30 0.49 0.21
X: = Vigilance —-0.20 1 0.21 0.51
V: = Blunting 0.46 0.00 1 —0.25
W: = Monitoring . 0.01 0.47 —0.15 1
Mean 17.49 12.57 3.71 10.40
Standard deviation 6.77 6.39 2.12 3.07

Data for Example 3 to Form (iii): Y 1l W and X |l V and to Figure 6b.
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TABLE 4
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half)
for n = 106 healthy employees

Y X 1% w
Variable Nervous Stress Satisf. Hier. Stat.
Y: = Nervousnous 1 0.33 0.26 0.00
X: = Stress at work 0.34 1 0.06 0.30
V: = Satisfaction with work 0.27 0.04 1 —0.35
W: = Hierarchical status 0.01 0.29 —0.34 1

Data for Example 4 to Forms (i) and (iii) and to Figures 5b and 6b simultaneously.

explanation for this special structure is that a different
combination of the questionnaire items of X, V would
lead to variables X*, V* such that the much simpler
structure (X*, Y) 1l (V*, W) holds (Cox and Wermuth,
1992a). For the special structure (8) both the canonical
correlations and the transformation matrix to obtain
X', V* can be expressed in closed form.

Example 5 [Table 5, Figure Tb, Form (v)]. For an
analysis of aggregate economic data von der Lippe (1977)
computed growth rates for 24 postwar years in Ger-
many for Y, employment; X, capital gains; V, private
consumption and W, exports. The correlation structure
suggests that knowing the change in capital gain does
not help in predicting the change in employment for
given change levels of the demand side, that is, consump-
tion and export (Wermuth, 1979); in addition, changes
in consumption were not correlated with changes in
exports. This implies two independent responses to two
independent explanatory variables or close agreement
to Form (v): Y Il X |(V,W) and V | W; see also
Figure 7b.

Example 6 [Table 6, Figure 8, Form (vi)]. In a condi-
tioning experiment with 48 subjects (Zeiner and Schell,
1971), one purpose was to examine discrimination be-
tween a noxious and an innocuous stimulus in two
periods of a conditioning experiment with Y, a long-
interval discriminatory response (6-10 seconds); X, a
short-interval discriminatory response (1-5 seconds) in
the light of earlier responses: V, the strongest response
in the first interval and W, the response to an innocu-
ous stimulus before the experiment itself; all responses
are measured as skin resistance. The correlations dis-
played in Table 6 suggest (Hodapp and Wermuth, 1983,
p. 384) a Markov structure (vi) in which Y || (VW) | X
and X _|| W |V, see also Figures 8a and 8b, and thus
in which the long-interval discriminatory response de-
pends directly only on the short-interval discriminatory
response; this short-interval response is directly depen-
dent on the strongest response in the short interval
and the latter is well predicted by just the response to
an innocuous stimulus before the experiment.

Example 1 [Table T, Figure 9, Form (vii)]. From an

TABLE 5
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half)
of growth rates for n = 24 postwar years in Germany

Y X 4 w
Variable Employment Capital gain Consumption Export
Y: = Employment 1 .—0.11 0.68 0.55
X: = Capital gain 0.47 1 0.50 0.43
V: = Consumption 0.67 0.55 1 —0.51
W: = Export . 0.44 0.39 0.04 1

Data.for Example 5 to Form (v): Y || X | (V, W) and V _||_ W and to Figure 7b.

TABLE 6
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half)
for n = 48 subjects

Y X 1% w
Variable ) Long Short Strong Innoc
Y: = Long int. discriminatory response 1 0.70 —0.04 ) -0.12
X: = Short int. discriminatory response 0.72 1 0.29 0.14
V: = Strongest short interval response 0.30 0.54 1 0.62
W: = Response to innocuous stimulus 0.19 0.43 0.71 1

Data for Example 6 to Form (vi): Y Il (V,W)| X and X || V | W and to Figures 8a and 8b.
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TABLE 7
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half),
means and standard deviations for n = 39 diabetic patients

Y X |4 w

Variable GHb Knowledge Duration Fatalism
Y: = Glucose control, GHb 1 —0.431 —0.407 —0.262
X: = Knowledge, illness —0.344 1 —0.111 —0.517
V: = Duration, illness —0.404 0.042 1 —0.028
W: = Fatalism, illness —0.071 —0.460 0.060 1
Mean 10.02 33.18 147.05 20.13
Standard deviation 2.07 7.86 92.00 5.75

Data for Example 7 to Form (vii): Y Il V, Y 1l W, and X || V and to Figures 9a and 9b.

investigation of determinants of blood glucose control
(Kohlmann et al., 1991), we have data for 39 diabetic
patients, who had at most 10 years of formal schooling.
The variables considered are Y, a particular metabolic
parameter, the glycosylated hemoglobin GHb; X, a
score for particular knowledge about the illness, V, the
duration of illness in months, and W, a questionnaire
score measuring the patients external attribution to
“chance” of the occurence of events related to the ill-
ness; an attitude called external fatalism. The correla-
tions in Table 7 suggest a structure of the Form (vii),
that is, with Y |l W, X Il V, and V I W, see also
Figures 9a and 9b. One interpretation is that duration
of illness and external fatalism are independent explan-
atory variables in two seemingly independent regres-
sions, where metabolic adjustment is better (low values
of GHb) the longer the duration of the illness, knowl-
edge about the illness is lower the higher the external
fatalism of a person, and after conditioning on duration
and fatalism the metabolic adjustment is still better
the higher the knowledge (fy...o = —0.431).

6. DISCUSSION

There are a number of general issues arising from
the special cases discussed in the previous section,
especially the extension to more than four component
variables and to models with other than only linear
dependencies; for the latter see Cox and Wermuth
(1993). :

Graphs with, in our notation, full edges have an
elegant connection with the theory of Markov random
fields which allows general properties to be deduced.
See Lauritzen (1989) for a survey of these topics and
Isham (1981) for a review of Markov random fields in
a broader context. Graphs with dashed edges, or possi-
bly graphs with mixtures of dashed and full edges, do
not have the same general features, and it is an open
question as to what exactly can be said about them in
generality. .

There are four types of nondecomposable indepen-
dence hypotheses illustrated in Section 4 for four vari-
ables, namely:

(a) Nondecomposable hypotheses in block regression
chain models [Form (i), Example 1, Table 1, Figure 5a
and Form (viii)]. In a block regression chain model the
components, even in the simplest case, are divided
into responses Y, = (Y, X) and explanatory variables
Y, = (V, W) with a full directed arrow unless the corre-
sponding regression coefficient in (3) is zero and a full
undirected line for the explanatory variables unless
they are marginally uncorrelated. For four variables a
nondecomposable independence hypothesis in a block
regression chain model is characterized by a chordless
four-chain in the full edge chain graph, with the two
ends of the sequence being explanatory variables, that
is, for (V,Y,X, W) in our examples. Figure 5a with
Form (i) gives an example of the four-cycle which con-
tains the described four-chain, while Form (viii) leads
to an example of the chordless four-chain;

(b) Nondecomposable hypotheses in concentrations
[Form (i), Example 1, Table 1, Figure 5b]. Models of
zero concentrations, that is, the covariance selection
models of Dempster (1972), differ from block regression
models —from (a)—in treating all variables on an equal
footing, that is, having them in the same box where all
edges are full undirected lines unless the corresponding
variables are partially uncorrelated given the re-
maining component variables. For four variables a
nondecomposable hypotheses in concentrations is

" characterized by a chordless four-cycle in the associ-

ated undirected graph of full edges, that is, in the
concentration graph. Figure 5b with Form (i) gives an
example of a chordless four-cycle in concentrations for
(V,Y, X, W).

(c) Nondecomposable hypotheses in multivariate re-
gression chain models [Form (ii), Example 2, Table 2,
Figure 6a and Form (vii), Example 7, Table 1, Figure
9a). In multivariate regression chain models the compo-
nents are—as for (a)—even in the simplest case divided
into responses Y, = (Y, X) and explanatory variables
Y, = (V, W) with a dashed directed arrow unless the
corresponding regression coefficient in (2) is zero, a
dashed undirected line for the responses unless they are
partially uncorrelated given the explanatory variables,
and a dashed undirected line for the explanatory vari-
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ables unless they are marginally uncorrelated. For four
variables a nondecomposable independence hypothesis
in a multivariate regression chain model is character-
ized by a chordless four-chain in the dashed edge chain
graph with the two ends of the sequence being explana-
tory variables, that is, for (V, Y, X, W) in our examples.
Figure 6a with Form (ii) gives an example of the four-
cycle which contains the described four-chain, while
Figure 9a with Form (vii) gives an example of the
four-chain. Both are seemingly unrelated regressions
(Zellner, 1962) together with a specification for the
distribution of the explanatory variables.

(d) Nondecomposable hypotheses in covariances
[Form (iii), Example 3, Table 3, Figure 6b and Form
(vii), Example 1, Table 1, Figure 9b). Models of zero
covariances, that is, models for hypotheses linear in
covariances (Anderson, 1973), have—as in (b)—a single
block of variables. All edges are dashed undirected
lines unless the corresponding variables are marginally
uncorrelated. For four variables a nondecomposable
independence hypothesis in covariances is character-
ized by a chordless four-chain in the associated undi-
rected graph of dashed edges, that is, in the covariance
graph. Figure 6b with Form (iii) gives an example of
the four-cycle which contains a chordless four-chain,
while Figure 9b with Form (vii) gives an example of
the four-chain.

Models which contain even a single nondecompos-
able independence hypothesis cannot be distribu-
tionally equivalent to a model of univariate recursive
regressions. Our examples illustrate that such nonde-
composable structures arise in a number of different
contexts. There is need to identify them and to find
explanations of how they could have been generated.
Criteria for establishing nondecomposability for more
than four variables are not yet published for general
dashed-edge chain graphs, while for full-edge chain
graphs such criteria were given by Lauritzen and Wer-
muth (1989) and for undirected dashed line graphs by
Pear]l and Wermuth (1993).

We have in this paper concentrated on the kinds
of special structure that can arise, especially on their
specification and interpretation, rather than on the de-
tails of fitting and assessing model adequacy. Under
normal-theory assumptions maximum-likelihood fitting
and testing for nondecomposable models will call for
iterative procedures. A rather general asymptotically
efficient noniterative procedure based on embedding
the model to be fitted in a saturated model is available
(Cox and Wermuth, 1990) either for direct use or as
a starting point for iteration (Jensen, Johansen and
Lauritzen, 1991). Several issues are important for itera-
tive algorithms. Is there a global maximum or are there
several local maxima? Which conditions guarantee the
existence of maximum-likelihood estimates? What are

the convergence properties of an algorithm? Again,
more is known for models represented by full-edged
graphs (Speed and Kiiveri, 1986; Frydenberg and Ed-
wards, 1989; Frydenberg and Lauritzen, 1989; Ed-
wards, 1992) than for models with dashed edge graphs.
Some of the latter may be fitted with algorithms suit-
able for linear structural equations; for a discussion of
different alternatives see Lee, Poon and Bentler (1992).

For mixtures of discrete and continuous variables,
models corresponding to chain graphs with full edges
have been intensively studied (Lauritzen and Wer-
muth, 1989; Lauritzen, 1989; Frydenberg, 1990b; Wer-
muth and Lauritzen, 1990; Cox and Wermuth, 1992b;
Wermuth, 1993), but for models corresponding to chain
graphs with dashed edges or possibly mixtures of
dashed and full edges the extensions to discrete and
mixtures of discrete and continuous variables remain
to be developed.

The issue of model choice in the analysis of data has
too many ramifications to be discussed satisfactorily
in the present paper; some different suitable strategies
for analyses with a moderate number of variables are
discussed in Wermuth and Cox (1992). In general, if
there is sufficient substantive knowledge to give a firm
indication both of the nature of the variables and of the
independencies expected, then model choice consists
largely of testing the adequacy of the proposed model,
in particular in examining the supposedly zero correla-
tions, concentrations and regression coefficients. The
less the guidance from subject matter considerations,
the more tentative will be the conclusions about model
structure, but the broad principles of variable selection
in empirical regression discussed, for example, by Cox
(1968) and Cox and Snell (1974), will apply. In particu-
lar, where a number of different models of roughly
equal complexity give satisfactory fits to the data, all
should be incorporated in the conclusions, unless a
choice can be made on subject matter grounds.

There are many aspects of the study of multiple
dependencies and associations not addressed in the

" present paper. In particular the role of latent or hidden

variables in clarifying the interpretation of relatively
complex structures has not been dealt with, nor has
the related matter of the effect of errors of observations
in possibly distorting dependencies. Finally, we reem-
phasize the point made in Section 3 that a key argu-
ment for aiming for univariate recursive regressions
consistent with subject matter knowledge is that they
suggest a stepwise process by which the data might
have been generated.
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