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Can One See «-Stable Variables and
Processes?

Aleksander Janicki and Aleksander Weron

Abstract. In this paper, we demonstrate some properties of a-stable
(stable) random variables and processes. It turns out that with the use
of suitable statistical estimation techniques, computer simulation pro-
cedures and numerical discretization methods it is possible to construct
approximations of stochastic integrals with stable measures as integra-
tors. As a consequence we obtain an effective, general method giving
approximate solutions for a wide class of stochastic differential equa-
tions involving such integrals.

Application of computer graphics provides interesting quantitative and
visual information on those features of stable variates which distinguish

them from their commonly used Gaussian counterparts. It is possible to

demonstrate evolution in time of densities with heavy tails of appropriate
processes, to visualize the effect of jumps of trajectories, etc.

We try to demonstrate that stable variates can be very useful in
stochastic modeling of problems of different kinds, arising in science and
engineering, which often provide better description of real life phenom-
ena than their Gaussian counterparts.

Key words and phrases: Stable distributions, stable processes, stochas-
tic integrals and differential equations with stable integrators, statistical

estimation, stochastic modeling, computer simulation.

1. INTRODUCTION

This section contains an overview of the history of
research on stable random variates, some remarks
on statistical and stochastic modeling and a short
summary of the contents of this paper.

1.1 Historical Overview

Let us start with an historical overview of the
development of investigations and applications of
a-stable random variables and processes. The in-
terested reader looking for documented sources on
this topic is referred to some short notes in Breiman
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(1968 pp. 215, 318) and the recent paper of Fienberg
(1992).

The early problem considered by pioneering
statisticians of the 18th and 19th centuries was
to find the best fit of an equation to a set of ob-
served data points. After some false starts, they

hit upon the method of least squares. Legendre’s .

~ work seemed to be the most influential at the time.
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Laplace elaborated upon it; and finally in a discus-
sion of the distribution of errors, Gauss emphasized
the importance of the normal or Gaussian distribu-
tion. Laplace was a great enthusiast of generating
functions and solved many complicated probability
problems exploiting them. As the theory of Fourier
series and integrals emerged in the early 1800s, he
and Poisson made the next natural step: applying
such representations of probability distributions as
a new natural tool for analysis, thus introducing the
powerful characteristic function method. Laplace
seemed to be especially pleased noticing that the
Gaussian density was its own Fourier transform.

In the early 1850s Cauchy, Laplace’s former stu-
dent, became interested in the theory of errors and
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extended the analysis, generalizing the Gaussian
formula to a new one,

fn(x) = % / oo exp(—ct™) cos(¢x) dt,
0

expressed as a Fourier integral with #¥ replacing ¢2.
He succeeded in evaluating the integral (in the non-
Gaussian case) only for N = 1, thus obtaining the
famous Cauchy law defined by the density

c
fiw) = m(c? +x2)’

It was realized only much later (in 1919, thanks to
Bernstein) that fy is positive-definite; hence it is a
probability density function only when 0 < N < 2.
Replacing N by a real parameter « with values in
(0,21, we find that the integral defining functions
fa =fa(x) is a source of remarkable surprises.

After Cauchy there was a decline in mathemati-
cians’ interest in this subject until 1924 when the
theory of stable distributions originated with Paul
Lévy. When fashion sought the most general con-
ditions for the validity of the central limit theo-
rem, Lévy found simple exceptions to it, namely the
class of a-stable distributions with index of stabil-
ity @ < 2. The ambiguous name stable has been
assigned to these distributions because if X; and X,
are random variables having this distribution, then
X defined by the linear combination ¢X = ¢1X; +co Xy
has a similar distribution with the same index o for
any positive, real values of the constants ¢, ¢; and
cg with ¢® = c{ +c5.

Lévy noted that the Gaussian case (¢ = 2) is
“singular” because for all a € (0,2) all nondegen-
erate densities f,(x) have inverse power tails, that
is, [ (x1>3) fa(x) dx =~ C - X\~ for large ). Since these
distributions have no second moments, the second
moment existence condition for the CLT is violated,
allowing the possibility of unusual results.

" Research concerning stable stochastic processes
and models has been directed toward delineating
the extent to which they share the features of the
Gaussian models and even more significantly to-
ward discovering their own distinguishing and often
surprising features [cf. Weron (1984)]. In the last
ten years many important results concerning char-
acterizations of different properties of these pro-
cesses (and of other subclasses of processes with in-
dependent increments) have been obtained by sev-
eral authors. Of particular importance are the re-
sults concerning representations involving stochas-
tic integrals. A collection of papers edited by Cam-

banis, Samorodnitsky and Taqqu (1991) provides a
review of the state of the art on stable processes
as models for random phenomena. See also Janicki
and Weron (1993).

At the same time, there has been an explosive
growth in the study of physical and economic sys-
tems that can be successfully modeled with the use
of stable distributions and processes. Especially in-
finite moments, elegant scaling properties and the
inherent self-similarity property of stable distribu-
tions are appreciated by physicists. See Section 4
for more details.

1.2 Statistical and Stochastic Modeling

The terms statistical model and stochastic model
may be understood differently and may be ambigu-
ous in some situations. One description of statistical
model is the following [see Clogg (1992)]

What statistical methodology refers to
in most areas today is virtually synony-
mous with statistical modeling. A statis-
tical model can be thought of as an equa-
tion, or set of equations, that (a) links “in-
puts” to “outputs”..., (b) have both fixed
and stochastic components, (c) include ei-
ther a linear or a nonlinear decomposition
between the two types of components, and
(d) purport to explain, summarize or pre-
dict levels of or variability in the “outputs”.

A very interesting discussion on how to model
the progression of cancer, the AIDS epidemic and
other real life phenomena is contained in the chap-
ter “Model building: Speculative data analysis” of a
book by Thompson and Tapia (1990). The main idea
is to derive a stochastic process that describes as
closely as possible an investigated problem. Start-
ing from an appropriate system of axioms one has to
arrive at a formula (a stochastic model) defining this
process, construct it explicitly in some way and ver-
ify its correctness and usefulness. Appealing to one
of the problems they are interested in, Thompson
and Tapia (1990), page 214, say, “If we wish to un-
derstand the mechanism of cancer progression, we
need to conjecture a model and then test it against
a data base.”

Quite often a stochastic model is a synonym
of a stochastic differential equation or of a sys-
tem of stochastic differential equations. Thanks to
It&’s theory of stochastic integration with respect to
Brownian motion, it is commonly understood that
any continuous diffusion process {X(¢); ¢ > 0} with
given drift and diffusion coefficients can be obtained
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as a solution of the stochastic differential equation

t
X =Xo+ / a(s,X(s)) ds
(1.1 0

t
+ / o(s,X(s)) dB(s), t>0,
0

where {B(t); t € [0,00)} stands for Brownian mo-
tion and X, is a given Gaussian random variable.
The theory of such stochastic differential equations
is well developed [see, e.g., Arnold (1974)] and they
are widely applied in stochastic modeling.
However, it is not so commonly understood that
a vast class of diffusion processes {X(¢); ¢ > 0}
with given drift and diffusion coefficients can be de-
scribed by the stochastic differential equation

t
X@#) =X+ / a(s,X(s—)) ds
(1.2) t
+ / o(s,X(s=) dLa(s), >0,
0

where {L,(t); t € [0, 00)} stands for an a-stable Lévy
motion (defined in Section 3) and X, is a given a-
stable random variable. Note that in general dif-
-fusion processes {X(¢); t > 0} defined above do not
belong to the class of a-stable processes.

As sources of information on modern aspects of
stochastic analysis (e.g., on various properties of
stochastic integrals and on existence of solutions of
stochastic differential equations driven by stochas-
tic measures of different kinds), we recommend,
among others, Protter (1990) and Kwapieri and Woy-
czynski (1992).

An application of stochastic differential equations
(1.1) or (1.2) to statistical or stochastic model build-
ing is not an easy task. So it seems that the use of
suitable statistical estimation techniques, computer
simulation procedures and numerical discretization
methods should prove to be a powerful tool.

In most of nontrivial cases ... the
“closed form” solution is itself so compli-
cated that it is good for little other than
as a device for pointwise numerical evalu-
ation. The simulation route should gener-
ally be the method of approach for non-
trivial time-based modeling. ... Unfor-
tunately, at the present time, the use of
the modern digital computer for simula-
tion based modeling and computation is
an insignificant fraction of total computer
usage. [Thompson and Tapia (1990), pp.
232-233]

We agree with this opinion and add that unfor-
tunately, as far as we know, practical approximate

methods for solving stochastic differential equations
involving stochastic integrals with stable integrands
are only now beginning to be developed.

In our exposition we emphasize the methods ex-
ploiting computer graphics. Let us cite Thompson’s
opinion:

I feel that the graphics oriented density
estimation enthusiasts fall fairly clearly
into the exploratory data analysis camp,
which tends to replace statistical theory
by the empiricism of a human observer.
Exploratory data analysis, including non-
parametric density estimation, should be
a first step down a road to understand-
ing the mechanism of data generating sys-
tems. The computer is a mighty tool in
assisting us with graphical displays, but
it can help us even more fundamentally
in revising the way we seek out the basic
underlying mechanisms of real world phe-
nomena via stochastic modeling. [Thomp-
son and Tapia (1990), p. xiv]

1.3 Summary of the Contents

This article is structured as follows. After re-
calling in Sections 2 and 3 some basic properties
of a-stable random variables, stochastic integrals
with respect to a-stable Lévy motion and stochas-
tic differential equations involving such integrals,
we provide a brief survey of examples of stochastic
models involving a-stable variables and processes
in Section 4: mainly from physics, chemistry and
economics. Next, in Sections 5 and 6, we discuss
some techniques of computer generation of a-stable
random variables and some methods of simulation
of approximate solutions of stochastic differential
equations of the form (1.2). In Section 7 our method
of visualization of such stochastic processes is de-
scribed. Section 8 contains some theoretical conver-
gence results. Section 9, advertising possible ap-
plications of computer methods to empirical model
building, provides examples of computer visualiza-
tions of solutions of stochastic differential equations
driven by a-stable measures.

To the best of our knowledge the figures in this ar-
ticle present some of the first visual representations
of such stochastic processes.

2. SOME BASIC PROPERTIES OF a-STABLE
RANDOM VARIABLES

Beginning the discussion on properties of some
classes of a-stable random variates, we recall briefly
the main features of univariate a-stable (or sta-
ble) random variables. From the literature on this
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topic let us mention among others: Feller (1966)
and (1971), Lévy (1937), Gnedenko and Kolmogorov
(1954), Weron (1984), Zolotarev (1986) or Samorod-
nitsky and Taqqu (1993). Cf. also Hall (1980) for
historical comments.

2.1 Characteristic Function

The most common and convenient way to intro-
duce a-stable random variables is to define their
characteristic function, which involves four parame-
ters: a—the index of stability, /—the skewness pa-
rameter, c—the scale parameter and y—the shift.
This function is given by

log ¢(9)
—02|0|* {1 — ifsgn () tan (ar/2)} +ipud,
@1) _ ifae (0,1)U(1,2],
") —ol6l{1+iB2(sgn 6)In 6]} +iuf,
ifa=1,

where g€ [-1,1], o€R,, pcR.

For a random variable X distributed according to
the above described rule we will use the notation
X ~ S, (o, 8, u). Notice that Sa(c,0, 1) and S;(o, 0, p)
give the Gaussian distribution A(u,20%) and the
Cauchy distribution, respectively.

2.2 Domain of Attraction of X

A random variable X has a stable distribution if
and only if it has a domain of attraction, that is,
if there exists a sequence Y;,Y5,... of i.i.d. random
variables and sequences {d,} and {a,} of positive
real numbers such that

Yi+Ye+---+Y, va, =X,
dn

where Z, = X means convergence of Z, to X in
distribution.

According to Feller (1971), Theorem VI.1.1, in
general we have d, = n'/h(n), where the function
h = h(x), x > 0 varies slowly at infinity; the sequence
{Y;} is said to belong to the domain of attraction of
X, when d,, = n1/®. Observe that if Y;’s are i.i.d. ran-
dom variables with finite variance, then X is Gaus-
sian and we obtain an ordinary version of the CLT.

2.3 Stable Lévy Measure

To justify what was said above one may recall
the Lévy—Khintchine representation theorem [see
Feller (1966), p. 542]. Let us introduce the stable
Lévy measure .

P Q
L{dx) = ;T;;I(o‘oo)(x) dx + WI(—w.O)(x) dx,

with nonnegative numbers P, @, and a function

i0x

_ ,if
P(h,x) =" -1 - Taa2

Then for X we have the following representation:

exp {iM6 — 0262}, if a = 2,
E exp(i6X) = { exp {iM6 + [\ %(60.%) L(dx)} ,
if 0<a<?2,

where M is real and o is real and positive.

2.4 Finite and Infinite Moments

The striking feature of a-stable random variables
is the behavior of their moments.

1. If we have X ~ S,(o, 8, 1) and a € (0,2), then

EXP <oo  forp€(0,a),

and

EXP =00 forp>a.
2. If we have X ~ S,(0,0, 1) and a € (1,2], then
EX =pu.

2.5 Density Functions

The main problem when we start to work with a-
stable distributions is that, except for a few values
of the four parameters describing the characteris-
tic function, their density functions are not known
in a simple explicit form. The most interesting ex-
ceptions are the Gaussian distribution Sg(c.0, p) ~
N(p,202), the Cauchy distribution Sy (o, 0, 1) and the
Lévy distribution S;/5(c, 1, 1), whose density

(4

1/2
i () - onem )

27

is concentrated on (u,00), that is, fi/2(x) = 0 for
x € (—oo, u]. In order to obtain a-stable density func-
tions, we have to take into account the definition
describing characteristic functions of a-stable ran-
dom variables and to apply the Fourier transform,
namely

fala) = 2l / i §(t)d.
T J-—oo

With the use of numerical approximation of this
formula via the fast Fourier transform method, it
is possible to construct such densities in a general
case. Results of computer calculations are presented
here in the form of series of computer graphs of such
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Fic. 2.1. Three graphs of densities of a-stable random variables
S4(1.0,0.0,0.0) with « € {0.7,1.3,2.0} ( from top to bottom).

F1G. 2.2. Three graphs of densities of a-stable random variable
84(1.0,0.9,0.0) with a € {1.3,2.0,0.7} (from left to right).

densities for different values of parameters «, 3
(the role of the parameters o and 4 is obvious).

Figures 2.1 and 2.2 present the dependence of sta-
ble densities on two parameters o and 5, which ap-
pear in the definition (2.1). The first shows the de-
pendence on a. In the second one can see an impact
of the skewness parameter 3 on stable densities,
resulting in their asymmetry. Observe that when
o = 2, the Gaussian case, 8 does not influence the
distribution.

REMARK 2.1. All figures presented in this paper
demonstrate how different features of a-stable vari-
ates depend on a. In order to make the exposition
more instructive we fixed three values of a: 2.0, 1.3,
0.7.

2.6 Behavior of Tail Probabilities

Using a CLT-type argument [e.g., Feller (1971),
Theorem XVIL.5.1] one can prove that if X ~
S.(0,8,1) and a € (0,2), then

Jim A*P(X > A} = Ca : By
Jim A"P{X < —A} = Co™ ;ﬂ o,

where

oo -1
C,= ( / x~%sin(x) dx) .
0

In the rest of this paper we restrict ourselves to
the symmetric case of X ~ S,(1,0,0) (in what fol-
lows such random variables will be denoted by S,,).

The following result gives an exact explicit for-
mula which serves as a basis for two algorithms:
an applicable algorithm of computation of tail prob-
abilities and a method of computer simulation of a-
stable variables and random measures (see Sections
5 and 7).

THEOREM 2.1. Let us define in the square of
(x,y) € (0,1) x (0, 1) the function

sin(am(x — 1))
{eos(m(x — N}/

. {cos((l—a)w( —%»}“""”"

fa(x,y) =
(2.2)

—log(y)
Then we have
(2.3)  P{So > A} = {(x,3); folx,y) > A},

where |A| denotes the volume of a set A in R2.

A formula more general then (2.2) concerning
skewed stable variables S, (1, 3,0) can be found, for
example, in Chambers, Mallows and Stuck (1976).
It was Kanter (1975) who noticed that a certain in-
tegral formula dealing with totally skewed to the
right stable random variables (3 =1 and a € (0,1))
derived by Ibragimov and Chernin (1959) implies
a simulation method similar to that expressed in
Theorem 2.1. Then Chambers, Mallows and Stuck
(1976) noticed that a formula of Zolotarev’s (1966)
can be used similarly to give a simulation method
for the general case.

3. a-STABLE STOCHASTIC PROCESSES

The starting point for the discussion of a-stable
processes is a-stable Lévy motion.
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3.1 Stable Lévy Motion

A stochastic process {L,(t); ¢ > 0} is called (stan-
dard) symmetric a-stable Lévy motion if :

1. L,(0)=0 as.;

2. L,(t) has independent increments; and

3. Lo(t) — Lo(s) ~ So(t — 5)1/2,0,0) for any
0<s<t<oo

Observe that a-stable Lévy motion has stationary
increments. It is Brownian motion when o = 2, pre-
cisely Lo(t) = v2B(t). The symmetric a-stable Lévy
motion is 1/a self-similar. That is for all ¢ > 0, the
processes {L,(ct); t > 0} and {c}/*L,(¢); ¢t > 0} have
the same finite-dimensional distributions.

3.2 a-stable Measures and Integrals

For any Lebesgue measurable set A in R its sta-
ble independently scattered stochastic measure is
defined by the formula

LA~ 8, ((m(A))l/"‘, 0, o) ,

where m(A) denotes Lebesgue measure of A.
Now we want to define an a-stable stochastic in-
tegral

3.1 I(f) = / FOLo(dx)
A

on any measurable set A C R and for all f € L*(m),
that is, for all measurable functions f : A — R sat-
isfying the condition

/ | fx) |* m(dx) < 0.
A

For a simple function f(x) = ¥jc; 14,(x), where Aj are
disjoint measurable sets such that | J;A; = A, we put

1) = [ F0Latd) = S alath).
J

The integral I(f) is obviously linear on the space
of all simple functions f. The random measure
L, is independently scattered, so the a-stable
random variables L,(A;),..., Lo(A,;) are indepen-
dent and consequently I(f) is a-stable, say I(f) ~
Sa(or, Br, pf). Consider now ‘any function f in the
space Le(m). It is easy to construct a sequence of
simple functions {f"}2°, possessing the following
properties:.

f™(x) — f(x) for almost all x € A;

there exists a function g € L*(m) such that
| f™(x) |< glx) for any n,x.

The sequence of integrals I(f™) , n =1,2,... is well
defined and converges in probability. Therefore, we
define

I(f) =4 lim I( ™) in probability.

This definition does not depend on the choice of ap-
proximating sequence ™ and I(f) is linear with re-
spect to f.

For other possible definitions of a-stable inte-
grals consult Kwapien and Woyczyriski (1992) or
Samorodnitsky and Taqqu (1993).

3.3 Diffusion Processes Driven by Stable Lévy
Motion

Applying the above definition of stochastic inte-
gral we can define an a-stable diffusion process as a
solution of a linear stochastic differential equation
with respect to stable Lévy motion of the form

t
X@t)=Xo+ / (a(s) + b(s)X(s—)) ds
(3.2) 0 ,
+ / c(s) dL,(s) for te€[0,00),
0

with X(0) = X, a given stable random variable.

This linear stochastic equation is of independent
interest because, as is easily seen, the general so-
lution belongs to the class of a-stable processes. It
may be expressed in the following form:

¢
X@) = o(¢,0X, + / o(¢,s) a(s) ds
0

¢
+ / ®(t, 8) c(s) dLy(s),
0

where &(t,s) = exp { [ b(u) du}.

The special case of the equation (1.2) involving
only integration of deterministic functions with re-
spect to a-stable integrators can be expressed in the
following form:

¢

Xt)=Xo+ / a(s,X(s=)) ds

(3.3) 0 ,

+ / c(s) dL(s) for ¢t > 0.
0

Notice that more general than equations (3.3)
and (1.2) are the so-called stochastic differential
equations with jumps, involving stochastic integrals
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with respect to Poisson random measures of suit-
able point processes with given deterministic inten-
sity measures [see Ikeda and Watanabe (1981)]. In
turn, all these stochastic equations are special cases
of general stochastic differential equations driven by
semimartingales, that is, equations of the form

t
34 X=X+ / F(X(s—)) dY(s),
0

where {Y(#)} stands for a given semimartingale pro-
cess. -

There is a vast literature concerning this topic
[see, e.g., Protter (1990) and the bibliography there-
in].

To see that the differential equation (1.2) driven
by a-stable Lévy motion is a special case of the equa-
tion (3.4) with a semimartingale as an integrator, it
is enough to notice that a-stable Lévy motion can
serve as an example of a semimartingale [see, e.g.,
Kwapieri and Woyczynski (1992)].

This fact allows us to obtain theorems on exis-
tence of solutions of stochastic differential equations
(3.2) or (3.3) driven by stable measures. It is enough
to employ corresponding theorems concerning semi-
_ martingales. :

4. A SURVEY OF o-STABLE MODELING

We believe that stable distributions and stable
processes provide useful models for many phenom-
ena observed in diverse fields. The central limit ar-
gument often used to justify the use of a Gaussian
model in applications may also be applied to support
the choice of a non-Gaussian stable model. That
is, if the randomness observed is the result of sum-
ming many small effects, and those effects follow a
heavy-tailed distribution, then a non-Gaussian sta-
ble model may be appropriate. An important dis-
tinction between Gaussian and non-Gaussian sta-
ble distributions is that the stable distributions are
heavy-tailed, always with infinite variance, and in
some cases with infinite first moment. Another dis-
tinction is that they admit asymmetry, or skewness,
while a Gaussian distribution is necessarily sym-
metric about its mean. In certain applications, then,
where an asymmetric or heavy-tailed model is called
for, a stable model may be a viable candidate. In

"any case, the non-Gaussian stable distributions fur-
nish tractable examples of non-Gaussian behavior
and provide points of comparison with the Gaus-
sian case, highlighting the special nature of Gaus-
sian distributions and processes.

In order to obtain an appreciation of the ba-
sic difference between the Gaussian distribution
and a distribution with a long tail, Montroll and

Shlesinger (1983b) proposed to compare the distri-
bution of heights with the distribution of annual in-
comes for American adult males. An average indi-
vidual who seeks a friend twice his height would
fail. On the other hand, one who has an average in-
come will have no trouble discovering a richer per-
son who, with a little diligence, may locate a third
person with twice his income, etc. The income dis-
tribution in its upper range has a Pareto inverse
power tail; however, most of the income distribu-
tions follow a log-normal curve. But the last few
percent have a stable tail with exponent o = 1.6
[see Badgar (1980)], that is, the mean is finite but
the variance of the corresponding 1.6-stable distri-
bution diverges.

Failure of the least-squares method of forecast-
ing in economic time series was first explained by
Mandelbrot (1963). He introduced a radically new
approach based on a-stable processes to the problem
of speculative price variation.

Now it is commonly accepted that the distribu-
tion of returns on financial assets is non-Gaussian.
Mandelbrot (1963) and Fama (1965) proposed the a-
stable distribution for modeling stock returns. Mitt-
nik and Rachev (1989) found that the geometric
summation scheme provides a better model for de-
scribing the stability properties of stock returns
computed from the Standard and Poor’s (S and P)
500 index. The problem of estimating multivariate
a-stable distributions has received increasing atten-
tion in recent years in modeling portfolios of finan-
cial assets; see Mittnik and Rachev (1991) and ref-
erences therein.

There are many physical phenomena which ex-
hibit both space and time long tails and thus seem
to violate the requirements for a Gaussian distri-
bution as a limit in the traditional CLT; see Weron
and Weron (1985). However, since these physical
systems usually have nice scaling properties (self-
similarity) one suspects the use of stable distribu-
tions which have long tails, infinite moments and el-
egant scaling properties to be relevant in the physics
of these phenomena. Tunaley (1972) invoked phys-
ical arguments to suggest that if the frequency dis-
tributions in metallic films are stable, then the ob-
served noise characteristics in them may be under-
stood. Based only on the experimental observation
that near second order phase transition, where long
tail spatial order develops, Jona-Lasinio (1975) con-
sidered stable distributions as a basic ingredient in
understanding renormalization group notions in ex-
plaining such phenomena. Also see a review article
by Cassandro and Jona-Lasinio (1978). Scher and
Montroll (1975) connected intermittent currents in
certain xerographic films to a stable distribution of
waiting times for the jumping of charges out of a dis-
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tribution of deep traps. This was used to give the
first explanation of experiments measuring tran-
sient electrical currents in amorphous semiconduc-
tors.

Stable distribution of first passage times ap-
pears both in the recombination reactions in amor-
phous materials [Montroll and Shlesinger (1983a)]
as well as in the dielectric relaxation phenomena
described by the Williams—Watts formula: Montroll
and Shlesinger (1984), Montroll and Bendler (1984),
Bendler (1984) and Weron (1986). It turns out that
the way stable distributions appear here is some-
what more refined and it has been a subject of ex-
tensive research in physics; see Scher, Shlesinger
and Bendler (1991); Weron (1991); as well as in
chemistry; see Plonka (1986, 1991) and Pittel, Woy-
czyriski and Mann (1990).

As examples of the exploration of the stable pro-
cess models in physical contexts we may cite a few
very interesting papers. Doob (1942) and West and
Seshadri (1982) examined the response of a linear
system driven by stable noise fluctuations and mod-
eled by appropriately constructed stochastic differ-
ential equations. Takayasu (1984) demonstrated
that the velocity of the fractal turbulence in R3
is the stable distribution with the index of stabil-
ity @ = D/2, where D denotes the fractal dimen-
sion of the turbulence and that the diffusion pro-
cess of particles in the turbulence and that of elec-
trons in a uniformly magnetized plasma both can
be approximated by the Lévy process. Mandelebrot
and Van Ness (1968) defined fractional Brownian
motion. Hughes, Shlesinger and Montroll (1981)
examined random walks with self-similar clusters
leading to Lévy flights and 1/f-noise. Some connec-
tions between such clustered behavior in space or
time of physical processes and fractal dimensional-
ity of Lévy processes were studied by Seshadri and
West (1982). Klafter et al. (1990, 1992) described
the Lévy walk scheme for diffusions in the frame-
work of continuous time random walks with cou-
pled memories. They concentrated on those Lévy
walks which lead to enhanced diffusions. Their
approach was based on a modification of the Lévy
flights. Schertzer and Lovejoy (1990) made use
of the self-similarity property of stable processes
in order to make evident the multifractal behavior
of some geophysical fields. For computer methods
of construction of fractional Brownian motion and
other processes mentioned above we refer the reader
to Barnsley et al. (1992), pages 42-132.

Stable and infinitely divisible (or Lévy) processes
are beginning to attract the interest of mathemati-
cians working in the field of applied probability. Let
us mention among others Hardin, Samorodnitsky
and Taqqu (1993), Kasahara and Yamada (1991),

Kella and Whitt (1991) and McGill (1989).

In this context let us remark that in commonly
known probability textbooks only reference to Holts-
mark’s work from 1915 on the gravitational field of
stars (3/2-stable distribution) is made. For example,
Feller devotes considerable space to stable distribu-
tions in volume 2 of his pair of probability books,
but the admission is made that their role in applied
sciences seems to be almost nonexistent. The above
mentioned and related findings should be viewed as
a step forward toward fulfilling Gnedenko and Kol-
mogorov’s (1954) prophecy: “It is probable that the
scope of applied problems in which stable distribu-
tions will play an essential role will become in due
course rather wide”.

5. COMPUTER SIMULATION OF a-STABLE
RANDOM VARIABLES

Computer methods of generating random distri-
butions of different kinds have existed for a long
time; let us mention Devroye (1986) or Bratley,
Fox and Schrage (1987) with the references therein.
They are based on the application of effective com-
puter generators of uniformly distributed random
numbers [see Marsaglia and Zaman (1991)]. From
Theorem 2.1 one can easily derive the following al-
gorithm of simulation of symmetric a-stable ran-
dom variables. It contains as a special case (o = 2)
the well known Box-Muller method of construction
of normally distributed random variables [see, e.g.,
Bratley, Fox and Schrage (1987), p. 161].

5.1 a-stable Random Variable Generation

To generate a symmetric a-stable random variable
X ~ 8,(1,0,0) for « € (0,2], we may

e generate a random variable V uniformly dis-
tributed on (-7 /2, 7/2) and an exponential ran-
dom variable W with mean 1;

; _ (1-a)
o compute X = SNa_ . {esizell} e

We regard this method as a good technique of com-
puter simulation of a-stable stochastic processes
and measures, but of course it has its limitations.

5.2 Density Estimators

Problems of smoothing statistical data were stud-
ied, for example, by Gyorfi et al. (1989). Our aim is
to recall briefly formulas describing kernel density
estimators. So let us suppose that we are interested
in a sequence {£1,£2,...,&,, ...} ofii.d. random vari-
ables distributed according to the law described by
an unknown density function and we are given a
random sample (a sequence of observed values or
realizations) {¢1,¢@),. .. ™},
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The well known Rosenblatt-Parzen method of
construction of kernel density estimator f;, = f,(x)
is described by the formula

11 (x—®
fn(x) = ; ; E;K (Tn—) s

for univariate density function f = f(x), and by

_ 11 x_&(i) y_c(i)
falx,y) = ; 2 EK( b, )K( b,

in the case of approximation of f = f(x,y) by
fn = faulx,y) on the basis of a random sample
{ED,¢D), .., (e, ¢},

The problem of optimal selection of the bandwith
parameter b, was discussed by several authors [see,
e.g., Hall and Marron (1991) and the references
therein].

We believe that this method provides a general,
powerful tool for construction of approximate den-
sities of random variates of different kinds. It can
also be successfully applied to multidimensional o-
stable random samples. There are, however, other
methods applicable when other characteristics of
" such vectors are known. For example, Byczkowski,
Nolan and Rajput (1991) developed a method of con-
struction of multidimensional stable densities which
is based on numerical integrations of approximate
characteristic functions defined by spectral mea-
sures having finite number of atoms.

6. APPROXIMATION AND SIMULATION OF
a-STABLE INTEGRALS AND STOCHASTIC
DIFFERENTIAL EQUATIONS

Numerical methods of approximate solution of the
stochastic differential equation (1.1), involving an
It6 integral with respect to Brownian motion, have
existed for some time [see, e.g., Yamada (1976),
Pardoux and Talay (1985) or Kloeden and Platen
(1992)]. Up to now these methods focused on such
problems as mean-square approximation, pathwise
approximation or approximation of expectations of
the solution, etc.

Our aim has been to adapt some of these construc-
tive computer techniques, based on discretization of
the time parameter ¢, to the case of equation (3.3)
or (1.2). So, looking for an approximation of the
process {X(¢); t € [0, T} solving such equations, we
have to approximate them by a time discretized ex-
plicit scheme of the form

6.1) X =F (X,. . ) ,

i-1’ a,l

where the set {t; =ir, i=0,1,...,I}, 7=T/I,
describes a fixed mesh on the interval [0, T], AL7,;
denotes the stochastic stable measure of the interval
[¢;—1,t;), that is, an a-stable random variable defined
by

(6.2) AL7; =Lo(lti_1,)) ~ Sa(r%/*,0,0),

and where F stands for an appropriate operator
defining the method.

Our idea consists of representing the discrete-
time process {X;.}, solving this discrete system and
approximating the solution of equation (3.3) by an
appropriate sequence of random samples X, (e}
calculated with the use of a computer generator of
stable random variables. In this way we can obtain
kernel estimators of densities of the discrete-time
diffusions solving equation (6.1).

Surprisingly, not much has been done in the
field of approximation of diffusions driven by stable
stochastic measures. The only reference to be found
is Janicki, Podgérski and Weron (1993). There are
some new, rather sophisticated theoretical results
concerning stability theorems for stochastic equa-
tions with jumps [see, e.g., Kasahara and Yamada
(1991)]. It is possible to derive from them some re-
sults on convergence of the approximate method de-
fined in (6.1). In Section 8 we present some rather
elementary results on convergence of approximate
discrete numerical and statistical methods, related
to examples presented in this paper (Sections 7 and
9).

Now we are going to describe briefly a construc-
tive computer method providing approximate solu-
tions to stochastic differential equations involving
integrals with respect to stable Lévy motion, intro-
duced in Section 3. An algorithm based on the Euler
method consists of the following:

e With a fixed regular mesh on [0, 7] approxi-
mate the process {X(¢); ¢ € [0, T} which solves
equation (3.3) by a discrete time process {X7 H
defined by

1. Xg =X0 NSa(U, 0’ N);
2. fori=1,2,...,1,

(6.3) Xt"; = Xt";_l + YZ,
(6.4) Y;’; =alt;—1,X(¢;_1)) T +c(t;_1)ALT,

a,i’

where AL ; is defined by (6.2);

3. the sequence {AL] ;; i = 1,...,I} being a
given i.i.d. sequence.

e In order to obtain an appropriate sequence
of random samples {X;(n)}Y., it is enough to
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replace random variables X7, AL7;, X7 and

Y] above by random samples {Xj(n)}y,,

{ALT YL, X7}, and (Y7}, re-
spectively, fori=1,2,...,1.

An approximate solution to the equation (1.2) can
be obtained replacing (6.4) by

(6.5) Y =alti_1,X(t;_1) 7 +c(ti_y, X(£;_ )AL ;.

7. COMPUTER VISUALIZATION OF PROCESSES
DRIVEN BY ao-STABLE MEASURES

In order to obtain a graphical representation of
the process {X(¢); t € [0,T1} defined by (3.3), we
propose the following:

1. Fix a rectangle [0, T1x[c, d], that should include
trajectories of {X(¢)};

2. For each n = 1,2,...,npa (with fixed npay <
N) draw line segments determined by the
points (t;_1,X] ,(n)) and (¢;,X](n)) for i =
1,2,...,1, constructing npn.y approximate tra-
jectories of the process X (thin lines on all fig-
ures);

" 3. Construct kernel density estimators f; = f;.I N2
f;I’N (x) of the densities of X(¢;), using for ex-
ample the optimal version of the Rosenblatt—
Parzen method, and their distribution func-
tions F; = F/N = F[N(x);

4. Fix a few values of a “probability parameter”
pj from (0,1/2) for j = 1,2,...,J and for each
of them compute two quantiles: ¢-1 = F; l(p))
and ¢l = Fi‘l(l —pj)foralli=1,2,...,I; then
draw line segments determined by the points
o105, (8,952 and (41, ghax?), (i, qlilax
fori=1,2,...,] andj = 1,2,...,J, construct-
ing J (varying in time) intervals (thick lines on
all figures), that determine subdomains of R?
to which the trajectories of the approximated
process should belong with probabilities 1 — 2p;
at any fixed moment of time ¢ = ¢;.

REMARK 7.1. On the computer screen an inter-
val [0,T1] is represented by a few hundred pixels,
that is, computer screen “points” (working with VGA
graphics card one has exactly 640 pixels). Computer
experiments with Brownian motion like processes
{X(®)} proved that, when simulating them on a fi-
nite interval [0, 7] with the mesh consisting of 1000,
10,000, 100,000 subintervals (some number of time
steps is performed within 1 pixel size), the pictures
of approximate trajectories look very much alike.

In our computational experiments, we have found
that:

e The most significant errors are induced by ap-
proximation of any X(¢;) by a simulated sample
{X7r(n)}¥_, and the only way to improve the sit-
uation is to enlarge N making sure to apply
computer generators of random numbers with
large periods;

e The simplest numerical method of an approxi-
mation of stochastic differential equations (the
Euler method) performs quite well:

- it does not bother us that we have to carry
out a lot of iterations in time, when we
want to obtain a nice graphical representa-
tion of curves of any kind (“smooth” quan-
tile lines or “jumping” trajectories),

- it is the most convenient and effec-
tive method to handle stochastic mea-
sures more general than those defined by
Brownian motion;

e Simulation techniques are incomparable with
other techniques (such as, for example, con-
struction of approximate solutions of appro-
priate Fokker-Planck equations) in situations
when we have to manage with long-tail proba-
bilities and when the starting value of an ap-
proximated process has a discrete distribution;

e Statistical smoothing techniques providing
density estimators perform well, but the prob-
lem is to find the best possible value of the
bandwidth parameter b, in practical calcula-
tions;

e It is possible to apply statistical methods of es-
timating parameters o and ¢ changing in time
[see Feuerverger and McDunnough (1981) or
DuMouchel (1983)], although our computer ex-
periments did not provide satisfactory results;

e Thanks to some efficient computer algorithms
it is possible to make usable quite compli-
cated explicit formulas describing linear and
nonlinear regression functions of a-stable ran-
dom variables [see Hardin, Samorodnitsky and
Taqqu (1991)].

7.1 What is to be Learned from Graphical
Presentations of Stochastic Processes?

It is clear that in some situations, when we try to
construct a stochastic process or to build up an ap-
propriate statistical model, an analytical approach
is not usable in practice. In such situations com-
puter simulation techniques may be of particular
interest. A combination of suitable statistical esti-
mation techniques, computer simulation procedures
and numerical discretization methods seems to be
a powerful method at least at a level of prelimi-
nary verification of conjectured models. Applying
the “scientific visualization” (i.e., computer graphics
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providing indispensable quantitative information)
we try to follow Tufte’s advice:

The computer world has provided us
this big set of tools ... I think the way you
learn to use the tools is not by contemplat-
ing tools but by trying to solve substantive
problems. [LePage (1991)]

8. CONVERGENCE OF COMPUTER
APPROXIMATIONS

Let us discuss briefly some results on convergence
of approximate discrete numerical and statistical
methods related to examples in Section 9.

The theory of convergence of discrete time approx-
imations of stochastic integrals and diffusion pro-
cesses driven by Brownian motion has existed for
some time [see e.g. Rootzén (1980), Pardoux and
Talay (1985) or Kloeden and Platen (1992)].

The rate of the mean-square convergence of the
Euler scheme in the case of equation (1.1) provides
the following result.

THEOREM 8.1. If coefficient functions a = a(t,x)
and ¢ =c(t,x) in (1.1) are for all t € [0, T1 uniformly
Lipschitz continuous with respect to x, then

E |X(T)-X"(T)|* =O0(7).
This corresponds to the example (9.3).

REMARK 8.1. It is well known that for an a-
stable stochastic integral defined by (3.1) the fol-
lowing statement is true.

The sequence {I(f™)}2, converges to I(f) in prob-
ability, if and only if, f® — f in L*(m), when n — co.

This yields the convergence in probability, when
7 — 0, of the process {X"(¢)} defined by

X™(@®) =XtTi_1 for ¢t € [t;_1,¢) withi=1,2,...,1,

and by (6.3) — (6.4) (with a(t,x) = 0) to the process .

{X(#)} defined by

, .
X@®) = / c(s) dLy(s) for all ¢ € [0, T1.
0

In the case of a linear stochastic equation (3.2)
we can provide two results on convergence of the
approximate method described in Section 6 related
to examples (9.1) and (9.2).

THEOREM 8.2. The family {X"(¢); t € [0,T1} of
approximate solutions of the stochastic equation (3.2)
with coefficient functions a = a(t), b = b(¢) and ¢ = c(¢t)
continuous on [0,T], converges uniformly in proba-
bility to the exact solution {X(¢); t € [0,T1} of (3.2)
on [0,T], when ™ — 0.

The proof is contained in Janicki, Podgérski and
Weron (1993).

Combining some methods yielding convergence of
numerical schemes approximating stochastic differ-
ential equations presented above with some tech-
niques developed in the theory of nonparametric sta-
tistical estimation [see, e.g., Gyorfi et al. (1989)] one
can prove several properties, for example, the fol-
lowing one.

THEOREM 8.3. Let f(x,T) be the nondegenerate
density of the solution {X(t)} of the equation (3.2) at
t=T and let fII N(x) be its kernel density estimator.
Then

. Il\}m / | f,l Nx) — fx,T) | dx =0 in probability.

At present we do not know any reference to works
concerning the rate of convergence of numerical
approximations of a-stable integrals or differential
equations, the convergence of pathwise approxima-
tions, etc. It is possible, however, to derive some
convergence theorems from the general results con-
cerning stability theorems for stochastic differential
equations with jumps; see, e.g., Kasahara and Ya-
mada (1991) and Janicki, Michna and Weron (1993).

9. EXAMPLES OF STOCHASTIC DIFFERENTIAL
EQUATIONS

In this section we provide a few examples of diffu-
sion processes constructed and visualized with the
use of our method described in previous sections.

9.1 Visualization of an a-stable Lévy Motion

We find it interesting to illustrate the difference
between Brownian and Lévy motions (e.g., the effect
of jumps of trajectories) and to demonstrate graph-
ically how a-stable Lévy motion depends on the pa-
rameter o. '

In order to obtain stable Lévy motion, it is enough
to notice that

t
©1)  La(®)= / dLo(s), te€[0,T].
0

Here on Figures 9.1 through 9.3 we present three
examples of this integral for T' = 4.0. Each of them
contains two pairs of quantile lines defined by p; =
0.1 and ps = 0.25 and 10 trajectories. In all cases we
have chosen I=2000, N=2000. Observe that scaling
of the vertical axis is changing with a.

9.2 Test of Stationarity

In order to demonstrate the usefulness of com-
puter graphics, we propose a series of figures al-
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F1c. 9.1. Stable Lévy motion for o = 2.0.
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F1G. 9.2. Stable Lévy motion for a = 1.3.

lowing us to check whether a given Ornstein—
Uhlenbeck process is stationary or not.

Let us start with the observation that the
Ornstein—-Uhlenbeck process {X(¢); ¢ > 0}, defined
by

X(t) = e X(0)+p / -Xt-9 gB(s), A>0, u>0,

with a fixed X(0) = X, and with a given Brownian
motion {B(); ¢t > 0}, is a diffusion process, that
is, it can be considered a solution to the equation
(1.1) with drift and dispersion coefficients defined
as a(s,X(s)) = —\X(s) and c(s, X(s)) = p?

Figures 9.4 through 9.6 show four approximate
trajectories of the Ornstein—Uhlenbeck processes
{X@); t € [0,1]} with X(0) ~ N(0,1) for three dif-
ferent values of \: A =1, A = 2 and )\ = 4 with the
same value of ;4 = 2. In all cases the trajectories

F16. 9.3. Stable Lévy motion for a =0.7.

are included in the same rectangle (¢,X(?)) € [0, 1] x
[—2,2]. As in all figures in this section the trajec-
tories are represented by thin lines. The two pairs
of quantile lines defined by p; = 0.1 and py = 0.25
show that only for the case A =2 and p = 2 (Figure
9.5) they are “parallel.” This means that the quan-
tile lines are time invariant, demonstrating the sta-
tionarity of the corresponding Ornstein—Uhlenbeck

process (only in this case we have Var X, =1 = %).
Moreover, the field of directions of the ordinary dif-
ferential equation dx = —)x(¢) dt inserted in these
figures helps to estimate the proper value of the pa-
rameter )\ assuring stationarity of the process (in
Figure 9.4 it is too small; in Figure 9.6 it is too
large).

This observation helps to estimate this param-
eter in more complicated situations, for example,
when we work with a-stable Ornstein—Uhlenbeck
processes, assuming p and X to be fixed.

9.3 Diffusions with Jumps

For some time there has been a growing interest
in various applications of stochastic processes with
discontinuous trajectories. Such processes appear in
stochastic models defined by the stochastic differen-
tial equations with jumps. As an example we recall,
after Sgrensen (1991), an equation which models the
dynamics of a population that grows logistically be-
tween disasters. It can be expressed as a nonlinear
stochastic differential equation of the form

dX(t-) = oX(t-)NK — X(@¢-)ldt — X(t—)dZ(t)
+9X(t—)dB(),

where {Z(¢)} is given Poisson compound process and
where ¢,K and ¥ are some fixed parameters.
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Fic. 9.5. Caseof \=2, p=2.

A vast subclass of diffusion processes with jumps
can be constructed with the use of stochastic inte-
grals with a-stable integrators of different kinds (in-
cluding subordinators, etc.). For example, it could
be of interest to consider the logistic model of a pop-
wulation growth of the form

dX(t-) = pX(t-)K — X(t-)ldt — 6X(t—)dM,(2),

where {M,} denotes an appropriately constructed
a-stable stochastic measure.

9.4 Resistive-inductive Electrical Circuit

Here we present an example of a linear stable
stochastic equation involving this-kind of stochastic
measure [see West and Seshadri (1982)] that has a
nice physical interpretation emphasizing the role of
the parameter a.

Fic. 9.6. Caseof \=4,u=2.

The deterministic part of the stochastic differen-
tial equation

9.2)  dX() = (4sin(t) — X©O)dt + %dLa(t)

can be interpreted as a particular case of an ordi-
nary differential equation

di

&TITL
which describes the resistive-inductive electrical cir-
cuit, where i, R, L, E and v denote, respectively, elec-
tric force, resistance, induction, electric power and
pulsation. [Similar examples can be found in Gard-
ner (1986).] In order to obtain a realistic model,
it is enough to choose for example R 2.5[k0],
L = 0.005[H], E = 10[V], v = 500[1/s] and to rescale
real time s using the relation ¢ = vs.

Results of computer simulation and visualization
of the equation (9.2) with the initial random variable
X(0) chosen as an a-stable variable from S,(2,0,1)
for ¢ € [0, 4] and three different values of the param-
eter o € {2.0,1.3,0.7} are included in the follow-
ing two series of figures. The first series of figures
shows the behavior of trajectories in the same way
and with the same values of technical parameters
as before in the case of a-stable Lévy motion. They
contain also a field of directions corresponding to a
deterministic part of the equation (9.2), that is, the
equation

sin(vys),

dx .
(_ﬁ(t) = —x(t) + 4 sin(?).

This helps us to figure out how the drift acts
“against” the diffusion, when ¢ tends to infinity. The
second series shows density estimators of X(4.0) for
these three values of a.
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FIG. 9.13. Density estimator of (X(2),Y(2)).

F1G. 9.15. Density estimator of (X(8),Y(8)).

FiG. 9.14. Density estimator of (X(4),Y(4)).

9.5 Nonlinear Harmonic Oscillator

There are a lot of well known models described
by means of stochastic differential equations driven
by Brownian motion [see, e.g., Gardiner (1983) or
Gardner (1986)]. They still play a very important
‘role in applications. ’

As an example of a nonlinear stochastic physi-
cal model submitted to random external forces de-
scribed by a-stable “colored noise,” we considered a
system of two equations describing a harmonic oscil-
lator. We look for a solution {(X(¢),Y(®));¢ € [0,16]}
of the following system of stochastic differential
equations:

dX(¢) = Y(t)dt,

(9.3) o
dY(t) = {~ sin(X(t)) — 1Y (®)}dt +dL. (),

where X(0) =0 a.s. and Y(0) =1 a.s.

FiG. 9.16. Density estimator of (X(16), Y(16)).

Notice that, of course, X(¢) and Y(¢) are not inde-
pendent and the joint distributions of (X(2), Y(#)) are
not a-stable. The dependence of solutions of (9.3) on
the parameter « is similar to that discussed in con-
nection with the previous example, see Figures 9.7
through 9.12. Therefore, we restrict ourselves to
presentation of the Gaussian case only.

This example demonstrates that a wide class of
nonlinear multidimensional problems can be suc-
cessfully solved with the use of computer simulation
and visualization techniques when analytical calcu-
lations are inaccessible.

In Figures 9.13 through 9.16, we present the evo-
lution in time of joint densities of (X(2), Y(2)), solving
the system of equations (9.3). They contain esti-
mators of these densities for ¢ € {2.0,4.0,8.0,16.0}.
All of them were obtained with the use of the same
technical parameters (e.g., defining kernel func-
tion) and their graphs are included in the same
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part of R3; their domains are cut to the rectangle
[-8,8]x[—8, 8]. It is impossible to construct the den-
sity of (X(0), Y(0)), which is of the form of a product
of two Dirac delta functions: 6(0) x 6(1), or even for
values of ¢ close to 0, so the first value for which we
decided to present a density estimator in the chosen
frame in R was ¢ = 2. To give an idea of scaling of
the vertical axis let us mention that the maximum
of the density for ¢ = 16 is about 0.090.

With the use of the computer methods presented
in this paper, it is possible to construct successfully
approximate solutions of much more complicated
and more general problems than (9.1), (9.2) and
(9.3), chosen here as expository examples. For more
sophisticated problems consult Janicki and Weron
(1993).

10. CONCLUSIONS

The powerful tools of stochastic calculus are find-
ing their way into many branches of applied proba-
bility and statistics, enabling analysis of more com-
plicated models than could be handled earlier. In
particular, understanding stable distributions and
processes has become increasingly important. The
Gaussian model, long used in the past to describe
many random phenomena because of its versatibil-
ity and mathematical simplicity, is not universally
applicable. One reason for this is that the Gaussian
model does not allow for the large random fluctua-
tions found in many important phenomena in sci-
ence and engineering. A number of such phenom-
ena (gravitational fields of stars, transport of elec-
tric charges in amorphic materials, dielectric relax-
ation, etc.) have been discussed in Section 4.

Looking ahead, while a great deal still remains
to be done to improve our understanding of stable
models, we tried to convince the reader that in spite
of the lack of practically useful analytical methods

it is possible to demonstrate different properties of

a-stable random variables and processes with the
use of computer methods (see Section 9). We hope
. that the illustrative examples given in this paper
show how the application of proper statistical meth-
ods, computer simulation techniques and computer
graphics provides interesting quantitative and vi-
sual information on those features of a-stable mod-
els which distinguish them from their commonly
used Gaussian counterparts. We also believe that
the included figures will permit the reader to find
his (or her) own answer to the title question.

This article was written as an open invitation to
the wonderful world of a-stable variables and pro-
cesses and was influenced by the opinion that com-
puters provide powerful tools for construction of so-
lutions to modern statistical and stochastic models

of real life phenomena [see, e.g., Lehmann (1990) or
Bickel and Le Cam (1990)].
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