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Comment

G. O. Roberts, S. K. Sahu and W. R. Gilks

We congratulate the authors on a magnificent
paper, providing a nicely paced introduction to
Markov chain Monte Carlo and its applications,
together with several new ideas. In particular the
class of pairwise difference priors is bound to have
a substantial impact on future applied work. Other
ideas given less prominence in the paper are also
valuable, for example, the construction of simulta-
neous credible regions based on MCMC output.
There are several issues which we wish to comment
on in detail.

MCMC ON IMPROPER POSTERIORS

We would like to consider the issues raised by
possible impropriety of posterior distributions and
the use of MCMC on such target posteriors. For
instance, consider the logistic regression model in
Section 4. The model specification in (4.1) together
with the postulated priors make the model uniden-
tifiable. So the resulting posterior distribution is
improper. If the posterior is improper no notion of
convergence in distribution is meaningful for the
associated MCMC. However, we may ask if the
associated sequence of draws of a lower-dimen-
sional vector converges in distribution. When are
we allowed to use samples from this nonconvergent
MCMC to infer about our “identifiable” parameters
of interest? To date there is no literature address-
ing all of these concerns in total generality, but in
the context of generalized and normal linear mod-
els some of these issues have been addressed in
Sahu and Gelfand (1994).

Improper Posteriors from Generalized Linear
Models

Consider the usual linear model Y =X + &,
where Yis n X1, XisnXp(n>p),Bis p X1
and € ~ N(0, 02I) with o2 known. Let X have
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column rank r < p. Assuming a flat prior for B, the
posterior for B is improper. However, the complete
conditional distributions w( 8| B;, j # I, Y) are all
proper, so the Gibbs sampler can be implemented.
Note also that Xp has a singular normal posterior
distribution given by

m(XBIY) = N(X(XTX) X"Y,

o2X(XTX) XT).

Now we can choose a full-rank matrix R, p — r
X p, whose rows are linearly independent of the
rows of X, that is, Rp is a maximal set of nones-
timables. Suppose we take as a prior w(RB) =
N(0,V), where V is a positive-definite matrix of
appropriate order, and retain a flat prior for Xp.
Then we can show that B has a proper posterior
distribution given by

7(Bly) = N((c"2X"X + R"V-'R) ' X"y/0o?,
(c72X"X + RTV-'R) ).

It is easy to check that m(XB[Y) is exactly the same
singular normal distribution as in (1). Further, the
posterior of R is the same as the prior, and R is
a posteriori independent of XB. So any proper prior
for RB does not alter the posterior for XB but
makes the posterior distribution for B proper. If the
rank of R is less than p — r, we do not have a
proper posterior for B. Thus the propriety of the
posterior depends upon the propriety of the nones-
timables Rf.

Much of the above can be extended to the case of
structured generalized linear models (Sahu and
Gelfand, 1994). With unknown scale parameters,
checking propriety of posterior distributions is
somewhat complex. See Hobert and Cassella (1993),
Ibrahim and Laud (1991) for more in this regard.

(D

Implications for MCMC

For the linear models discussed above, there are
several possible choices for the prior specification of
the nonestimables RB. We consider three possibili-
ties and examine the consequences for MCMC.

1. We could use a degenerate point prior, for exam-
ple, RBp =0, which is equivalent to putting
“usual constraints” in the classical analysis of
linear models. Then we arrive at a lower-dimen-
sional model with proper posterior, for which
standard MCMC methods will work effectively.
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2. We could use a proper but vague prior for RB.
Then convergence for the full vector B would be
slow, because the MCMC will try to sample from
the almost improper posterior distribution of B.
But even in this situation the estimable func-
tions will converge very quickly. Whatever vague
prior we use for R, in the limit the MCMC will
sample from the exact posterior distribution of
XB.

3. We could use an improper prior for Rf. Then the
posterior distribution for B will be improper. As
shown in Sahu and Gelfand (1994), the MCMC
will retrieve the marginal posterior distribution
of the estimable functions while the nones-
timable functions will exhibit transient or null-
recurrent behavior. As the authors suggest,
numerical problems can arise due to the mean-
dering of the nonestimable parameters, and re-
centering may be required.

MCMC on General Improper Posteriors

The random-effects models considered in the pa-
per do not fall within the class of models considered
by Sahu and Gelfand (1994). Further theoretical
work is required to establish whether MCMC ap-
plied to improper posteriors from these models is
safe.

In general, justification of the use of MCMC on
improper posterior distributions in order to esti-
mate a subset of identifiable parameters is difficult.
To fix ideas, suppose 7 is the improper posterior
measure, and let P denote the transition probabili-
ties for the constructed Markov chain. Since 7 is
improper, P cannot be positive recurrent and is
therefore either null-recurrent or transient. How-
ever, since we know that an invariant measure ()
exists for P, there are a collection of Markov chain
results which are relevant. Under these conditions,
we can make statements about ratios or ergodic
averages if and only if P is Harris recurrent. This
is part of Theorem 17.3.2 of Meyn and Tweedie
(1993), and we are grateful to Richard Tweedie for
drawing our attention to this result.

» Specifically, suppose f and g are two functions
integrable with respect to 7, that is,

@  [If(®)m(8) 6, [l2(®)lm(8) d < o
such that
@  [f®)m(8)ds, [g(6)m(0) b * 0.

Define S,(f) = X_,f(8,), where {8} denotes the
Markov chain with transition probabilities given by

P. Define S,(g) similarly. Then if {0} is Harris
recurrent,

S,.(f) R /f(0)m(8) d6
S.(g)  [g(@)m(8)d6

almost surely as n — o, If {8} is not Harris recur-
rent, there is at least one pair of functions f and g
satisfying (2) and (3), but such that (4) does not
hold.

The usefulness of this result is limited by the fact
that functionals of interest are commonly not =-
integrable. For example, returning to the Sahu and
Gelfand (1994) example above, one might be inter-
ested in functions such as f,(B) = I[XB < K] for
some vector k. (Here I denotes the indicator func-
tion and the inequality needs to hold for each com-
ponent.) We might perhaps hope that S,(f,)/S,(f.)
would converge to the posterior cdf of XB evalu-
ated at k. Unfortunately, for all k, f;, is not an
integrable function, and the above result cannot be
directly applied. However, if B has rank 1 or 2, and
with a flat prior on R, the resulting algorithm is
Harris recurrent. Let C, denote a ball centered at
the origin of radius N. Then letting fy , denote
I[XB <k, RB € Cy],

4)

(5) Sn(fN,k)
Sn(fN,oo)

— the multivariate
posterior cdf of X

almost surely as n — o, Note that this problem is
especially simple because of the factorization of the
posterior into functions of Xp and RP. Therefore
the result is independent of the choice of N. This
approach can be extended to situations where

y J/IRBl € Cy, xB <k 7(0) dO
N JIRBIE Cy7(8)d0

exists, although care must be taken in the interpre-
tation of these results.

A word of caution is in order about generating
from improper posteriors. Algorithms constructed
from such posterior measures are not usually geo-
metrically ergodic, so that they will often converge
slowly. Another consequence of lack of geometric
convergence is that assessment of Monte Carlo er-
rors is difficult: this is at the forefront of current
theoretical research.

OPTIMAL ACCEPTANCE RATES
FOR METROPOLIS ALGORITHMS

As the authors suggest at the end of Section
2.3.3, monitoring the average acceptance rate of a
simple Metropolis algorithm is an extremely ap-
pealing and simple way of monitoring the Markov
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chain output. Consider a set of possible algorithms
indexed by the standard deviation o of the pro-
posal distribution. Each algorithm has an average
acceptance rate p;,,,(o), and suppose we agree on
some well-defined criterion for efficiency, such as
asymptotic variance of ergodic averages. (In general
such criteria are not unique and will depend on the
statistical context.) Call this measure of efficiency
e(o). It is reasonable to suppose that in the vast
majority of practical problems, pj,, (") will be a
monotone decreasing function. In this case, it makes
sense to consider efficiency as a function of accep-
tance rate, f(a) = e(pj,5,(a).

The authors suggest that an acceptance rate
somewhere between 0.3 and 0.7 often produces sat-
isfactory results. The simulations in Gelman,
Roberts and Gilks (1995) suggest that, for updating
one-dimensional components at a time, an accep-
tance rate of between 0.4 and 0.5 is usually optimal
and supports the claims of the authors, that effi-
ciency in the wider range [0.3,0.7] is satisfactorily
close to optimal.

For updating multidimensional components,
however, a somewhat lower value for p;,,, is to be
preferred. Roberts, Gelman and Gilks (1994) give
an asymptotic approximation (valid as dimension
approaches ©) which gives the optimal acceptance
rate as approximately 0.234. More important, ac-
ceptance rates in the range [0.1,0.5] all perform
satisfactorily close to optimal according to this ap-
proximation.

It is important to remember that the recommen-
dations made by the authors and ourselves are only
rough guides. It is easy to construct examples where
average acceptance rates of reasonable strategies
can be arbitrarily close to 0 or 1. Also, these recom-
mendations cannot be carried over to other types of
Hastings algorithm. For updating schemes which
try to update (perhaps approximately) according to
the full conditional distribution, acceptance rates
much closer to 1 will be preferable.

CHOICE OF HASTINGS ALGORITHM

As the authors describe in Section 2.3.4, the prac-
titioner is often faced with a choice of possible
samplers. Often, two possible types of strategy ex-
ist: use a blanket strategy which should work rea-
sonably effectively on most problems, such as the
random walk Metropolis algorithm; or use a tailor-
made algorithm, such as the Langevin-Hastings

algorithm described at the end of Section 2.3.4.
Although Langevin algorithms frequently work very
effectively, care has to be taken when using these
methods since they often converge at a subgeomet-
ric rate. See Roberts and Tweedie (1995) for further
details. (We are grateful to Julian Besag for sug-
gesting the problems considered in this paper.) In
contrast, the random walk Metropolis algorithm is
geometrically ergodic for large classes of target den-
sities with exponential or lighter tails (see Roberts
and Tweedie, 1994).

CURTAILMENT IN ADAPTIVE REJECTION
SAMPLING

Appendix 1 of the paper discusses adaptive rejec-
tion sampling methods (ARS and ARMS) for sam-
pling from full conditional distributions. The au-
thors point out that these methods are open ended,
in the sense that there is no upper bound on the
number of adaptive steps required to sample one
point from the full conditional. They suggest cur-
tailing ARS /ARMS after a fixed number of adapta-
tions. Unfortunately it is not clear from the paper
how this should be done. It seems to us that an
appropriate curtailment procedure would be as fol-
lows.

Let h,(x;) denote the piecewise-exponential ap-
proximation to the full conditional 7(x,|x_;,) gen-
erated at the kth adaptive step of ARS or ARMS.
Let ¢ denote a prescribed upper limit on the num-
ber of adaptive steps. Let x7. denote a sample from
h,(xp). If x; passes the ARS/ARMS rejection test,
perform a Hastings—Metropolis step with R;(x; —
xp; x_p) = min{h,(x7), m(x7lx_;)} in equation
(29). If x fails the ARS/ARMS rejection test
and %k = ¢, perform a Hastings—Metropolis step
with Ryp(x; = x7p; x_7) = hy(xp) — min{h,(x7),
7 (xp|x_7)}). Otherwise construct A, ;(x;) and con-
tinue with ARS/ARMS.

Curtailment is unlikely to offer worthwhile com-
putational savings with log-concave full condi-
tional, since adaptive steps rarely exceed 6 or 7 and
probabilities of failure in the ARS rejection test
decrease substantially with each adaptation. For
non-log-concave full conditionals the situation is
less clear-cut, and it may be that in certain situa-
tions it will be more computationally efficient to
curtail ARMS, jettisoning information on
w(xp|x_7) accumulated in A,(x;), and attempt to
move in a different direction away from x.



