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integrated to find marginal posterior densities for
components of interest, using flat priors for the re-
gression coefficients. (It is not clear to me how one
can be sure that anomalies of the type that arise
in Mitchell’s example cited above do not arise in
this model.) The conditional approach, carried out
approximately, requires an exercise similar to that
outlined above to be recomputed for each compo-
nent parameter of interest. While this is tiresome,
it is not particularly complicated.

Casella, DiCiccio and Wells refer in their Section
3.1 to the saddlepoint alternative. I think it is more
accurate to refer to it as a marginal alternative,
since, as they acknowledge, Field’s saddlepoint ap-
proximation for M-estimates is an approximation
to the marginal sampling distribution of these esti-
mates. It shares the drawback with other marginal
solutions that elimination of nuisance parameters
is not achieved in models where nuisance parame-
ters are eliminated by conditioning. The saddlepoint
method is a technique of approximation, which can
be applied to conditional or unconditional models,
but is not an inferential methodology.

5. CONCLUSION

The approach of Liang and Zeger is more directly
motivated by particular practical applications, and
it presents a quite different method for eliminating
or minimizing the effect of nuisance parameters. At
first glance our two papers seem quite unrelated,
but the discussion of Lindsay and Waterman shows
that they are more closely related than might ap-

Rejoinder

Kung-Yee Liang and Scott L. Zeger

We would like to thank the discussants for their

thoughtful comments. We would also like to add our
congratulations to Dr. Reid, for her clear exposition
on conditional inferences, a tool for reducing the in-
fluence of nuisance parameters in a fully parametric
setting.

The two papers by Dr. Reid and ourselves address,
in part, the common question of how to draw infer-
ences in the presence of nuisance parameters. As
pointed out by the discussants, they also both focus
on methods most directly applicable to exponential
family models. However, the fundamental distinc-
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pear. In particular, Lindsay and Li give convincing
evidence that projection using Bhattacharyya scores
can imitate conditioning. It would be interesting to
know if this approach reproduces exact results when
they are available, and what the connection might
be to approximate ancillarity.

Dawid and Goutis refer to some confusion in my
use of the terms sufficiency and ancillarity in the
presence of nuisance parameters, and they point out
that one aspect of this is the use of the phrase “the
nuisance parameter,” when in fact this parameter
is typically not uniquely defined. Severini provides
a more careful, and more helpful, definition of S-
ancillarity related to this point. Barndorff-Nielsen
and Cox (1994, Chapter 8) emphasize the impor-
tance of finding procedures which are invariant to
interest-respecting reparametrizations. It is possi-
ble that, in particular models, a natural form of
the nuisance parameter could be constructed us-
ing the estimating equations approach; that is, the
nuisance parameter in a fully specified parametric
model could be chosen to coincide with the nuisance
parameter that would arise in a compatible semi-
parametric estimating equations approach.

In conclusion I find it heartening to see that dis-
cussions of theoretical statistics continue to engen-
der lively debate.
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tion between these two papers is the degree to which
we specify a probability mechanism for the data. Dr.
Reid’s paper starts with the assumption that a full
probability mechanism can be specified. We begin
with the assumption that it is not possible nor per-
haps desirable to do so.

Peter McCullagh comments on the role of condi-
tional inference when the likelihood is fully speci-
fied. He reflects upon the inherent contradiction in
the practice of statistics that conditionality and suf-
ficiency are accepted, while the likelihood principle
is not. He raises the important point that the like-
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lihood function is most often unknown, forcing ap-
plied statisticians to look beyond this measure of
evidence. We would add that statisticians address
different questions in practice. As summarized by
Royall (1992), they ask the following questions:

e What do the data say?

e What is it reasonable to believe given the data?

¢ What decision should we make in light of the
data?

When addressing the first question, we believe
most applied statisticians are satisfied with the like-
lihood principle and will rely on the likelihood func-
tion as the best measure of evidence when a sensi-
ble probability mechanism for the data is available.
Applied statisticians are also content to amend the
first question slightly, asking: “What do the part of
the data most relevant to a particular subset of pa-
rameters say?” Here, they are happy to use a condi-
tional likelihood that is less dependent on nuisance
parameters, but again, this conditional measure of
evidence is satisfactory.

To address the second and third questions, the
Bayesian and frequentist paradigms are used. As
we will continue to address all three questions, we
should not expect a single paradigm to dominate.

As is evident in the practice of statistics, the ma-
jority of questions asked by scientists of their data
address only a part of the probability mechanism
that generated the data. For example, in regression
analysis, we ask whether a mean response is related
to a particular set of covariates. In likelihood-based
inference, we more often than not complete the spec-
ification of the parts of the probability model that
are not themselves of scientific interest for mathe-
matical or analytic convenience. Gross departures
from these nuisance parts may be detected with
large samples, but, as often as not, they receive lit-
tle or no attention. Hence, we require methods of
inferences which, to the extent possible, are insensi-
tive to misspecification of these nuisance parts. Ide-
ally, we would specify those parts of the probability
mechanism which are of interest and make infer-
ences in a way that is robust to the other parts. The
question naturally arises, exactly what do we mean
by “robust” and how can we specify an optimal esti-
mating equation from a robust class?

Lindsay and Li offer a sensible answer as well
as the basis for connecting the estimating equation
approach with the more traditional and desirable
likelihood formulation. Their definition (a) of “ro-
bust” is our condition (b) that the consistency of the
estimation of the nuisance parameters should not
affect the consistency of the estimation of the pa-
rameters of interest. Among the class that satisfies

this property, the optimal estimating equation can
be defined as the one nearest to the unconditional
score in terms of squared error lost. They point out
that, under regularity conditions, inferences based
upon the conditional likelihood (Lindsay, 1982) are
optimal; that is, the conditional score is the unique
estimating equation that satisfies our condition (b)
and is as close to the unconditional score as possi-
ble.

Lindsay and Li further point out that this strat-
egy does not depend upon the existence of the like-
lihood or a factorization to admit the conditional
argument. One can think of finding the optimal es-
timating equation by projecting the true score func-
tion for the parameters of interest onto Hilbert’s
base spanned by the first-order statistics Y;, 1 <
i < n, or first- and second-order statistics Y,;Y ;,
1 < y < j < n. Hence, the estimating equations
we discussed can be thought of as approximations
to score equations, approximations that are formu-
lated in terms of that part of available data whose
expectations involve the parameters of interest but
not others.

Louise Ryan focuses on the analysis of teratolog-
ical data in which the likelihood approach based on
the beta-binomial distribution and the estimating
function approach are nicely compared. It is com-
forting to learn that the impact of nuisance param-
eters is considerably less dramatic for the latter ap-
proach in the examples Ryan considered.

Ryan identified some interesting statistical issues
that deserve further investigation. We agree that
Wald-based confidence intervals may be less desir-
able, especially in the situation where the sample
size is not sufficiently large. One alternative ap-
proach is to invert the distribution of the standard-
ized estimating function § as detailed by Godambe
(1991a). More recently, some approximate likelihood
ratio methods based on the estimating function have
been proposed by Hanfelt and Liang (1995a). This
method provides a likelihood-based version confi-
dence interval and is shown to behave better than
the other two approaches in the context of odds ra-
tio regression with a series of 2 x 2 tables (Hanfelt
and Liang, 1995b).

The issue of dealing with multivariate outcome
is a challenging one. The Dirichlet—trinomial distri-
bution may not be desirable, in that intralitter cor-
relations for different outcomes are captured by a
single parameter. The estimating function approach
is not limited in this way as different correlation
parameters may be modeled for different outcomes.
While the work on mixture of discrete and continu-
ous outcomes along the line of estimating functions
is primitive, the work by Zhao, Prentice and Self
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(1992) may serve as a starting point. Recent work
by Heagerty and Zeger (1995) illustrates very flexi-
ble simultaneous regression modelling of means and
associations for multivariate discrete data.

Finally, we thank Professor Godambe for his com-
ments. While our interests in estimating functions
with nuisance parameters originated with very
practical data analysis problems, Dr. Godambe’s
foundational research has paved the way and pro-
vided valuable insights as to how best to proceed
sensibly. He continues to provide leadership in this
fruitful area of research.
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