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Abstract. Environmental health research aims to discover and understand
the links between environmental exposure and disease and to inform the
regulatory community so that society can be protected against cancer,
birth defects and other adverse health effects associated with chemical,
industrial and other exposures. Statistical science has a critical role to
play in terms of providing the appropriate tools to design and analyze the
studies needed to address the questions of interest, as well as quantifying
risks and characterizing uncertainty. Recent years have seen some dramatic
changes in the way that environmental risk assessment is accomplished. One
such change is a move away from a traditional reliance on toxicological
studies in animals to incorporate more epidemiological data. This shift
has been facilitated by scientific advances that now allow researchers to
accurately characterize human exposures in a variety of settings, as well as
to measure genetic and other biomarkers that reflect subtle health effects
and variations in susceptibility. This article will use a high profile case
study to highlight some of the challenging statistical issues arising from
this shifting emphasis from animal based toxicology to environmental
epidemiology in the risk assessment world. Among the topics to be discussed
are the uses of biologically based models and biomarkers, as well as the
role of Bayesian methods to characterize uncertainty due to population
heterogeneity, unmeasured confounders, exposure measurement error and
model uncertainty.

Key words and phrases: Quantitative risk assessment, arsenic, carcino-
genicity, dose response.

1. INTRODUCTION

It has long been known that environmental expo-
sures can adversely affect human health. Attempts to
regulate dangerous exposures also have a long history
(Moeller, 1992). Much of modern day environmental
health research has its roots in the post-industrial revo-
lution years when increasing urbanization led naturally
to concerns about the safety of food, housing, sanita-
tion, industrial waste and other aspects of public works
that influence human health. As progress was made
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on more basic issues, the field evolved to encompass
more subtle concerns, especially the effects of chemi-
cal pollutants on cancer, respiratory and heart disease.
This interest in characterizing more subtle effects led to
the need for sophisticated statistical and mathematical
methods to quantify risks and to help inform decision
makers and regulators charged with setting environ-
mental standards.

During the latter part of the late 20th century,
much of environmental health research and regula-
tion was based on toxicological studies in rodents.
By conducting controlled experiments in genetically
homogeneous animal populations, investigators could
control extraneous sources of variability and also
boost study power by using higher exposure lev-
els. Also, conducting studies in animals allows for a
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toxicological assessment prior to widespread exposure
in humans (this argument is particularly important for
the pharmaceutical industry). While toxicological stud-
ies in animals are likely to continue as the “backbone of
most risk assessment determinations” for the foresee-
able future (Olden and Guthrie, 1996), recent advances
in the field of environmental epidemiology have led to
an increasing reliance on human data.

The purpose of this paper is to highlight some of the
challenging statistical problems motivated by modern
environmental health risk assessment involving epi-
demiological studies in humans. After a brief history
of risk assessment in the United States, a case study
will be presented and used to highlight weaknesses in
the traditional paradigms. We will discuss several areas
which are ripe for the development of new methods,
and we conclude with a general discussion.

2. ENVIRONMENTAL HEALTH RISK ASSESSMENT
IN THE UNITED STATES—A BRIEF HISTORY

Effective regulation of toxic substances and expo-
sures requires a careful balance of scientific knowledge
and uncertainty, economic and political considera-
tions. Most countries have their own regulatory system,
though they are strongly influenced by recommen-
dations from international bodies such as the World
Health Organization (WHO) and International Agency
for Research on Cancer (IARC). This section provides
some brief background on current regulatory practice
in the United States.

A number of different U.S. federal agencies have
authority to set and enforce laws to protect the pub-
lic against dangerous environmental exposures. The
Environmental Protection Agency (EPA) has broad-
reaching authority over water, air and land quality stan-
dards, while other agencies such as the Occupational
Safety and Health Administration (OSHA) and the Nu-
clear Regulatory Commission play more specialized
roles. One of the oldest regulatory agencies, the Food
and Drug Administration (FDA), dates back to the late
1800s and is charged with ensuring not only the effi-
cacy, but also the safety of drugs and medical devices.
While the details of regulatory practice and terminol-
ogy vary from agency to agency, there are important
common themes. These days, most agencies follow the
broad guidelines set out in a National Academy of Sci-
ences publication perceived by many as the “risk as-
sessment bible” [National Research Council (NRC),
1983]. This report distinguishes risk assessment from
risk management, the former using science to define

and quantify health effects associated with environ-
mental exposures, and the latter weighing those find-
ings with social, economic and political concerns to set
regulatory standards. Although sound statistical think-
ing has a role to play in all stages of the risk assess-
ment process, statisticians have been most active in the
areas of hazard identification (which involves decid-
ing whether or not an exposure is causally associated
with an adverse health effect, and hence relies heavily
on hypothesis testing) and dose response assessment
(which involves quantifying the dose–response rela-
tionship once a substance has been deemed hazardous
to human health).

The Food, Drug and Cosmetics Act of 1938 set the
stage for much of modern risk assessment. Of various
revisions and amendments to this act over the years,
perhaps none has garnered more attention nor had
a larger influence on the regulatory community than
the infamous Delaney Clause of 1958, which posited
a zero tolerance policy for suspected carcinogens,
specifying that “no additive shall be claimed safe if
it is found to induce cancer when ingested by man
or animal.”

When it was established in 1970 (see http://www.epa.
gov/history/ ), the EPA drew heavily on many of the
FDA’s regulatory practices. Because outright banning
of carcinogens was not always practical, the EPA’s ver-
sion of the Delaney Clause involved determination of
a virtually safe dose (VSD), or the dose corresponding
to an “acceptable cancer risk,” typically 10−6. Related
to such low-dose risk estimation was the so-called unit
risk, which corresponded to the increase in risk of an
adverse effect associated with a one-unit increase in ex-
posure. This movement toward a quantification of en-
vironmental health risk attracted many statisticians to
the field. Because a VSD could not generally be de-
termined experimentally, the general approach was to
conduct a high-dose study in laboratory animals, ap-
ply dose response modeling techniques and extrapo-
late. Given a dose response function p(x) representing
the lifetime probability of developing a tumor for an
animal exposed to dose level x, a VSD is computed
by solving r(x) = 10−6, where r(x) is a measure of
excess risk, additive or multiplicative excess risk mod-
els being

r(x) = p(x) − p(0) or r(x) = p(x) − p(0)

1 − p(0)
,

respectively (see Gart et al., 1986, Chapter 6). Choices
for p(x) range from biologically motivated models,
such as the multistage model (Armitage and Doll,
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1954), to a variety of more empirical, statistical mod-
els (see Piegorsch and Bailer, 1997, for review; also
Morgan, 1992). A lower limit on the true VSD could be
obtained through use of a statistical confidence limit,
for example, through use of the delta method (see Gart
et al., 1986, page 270). While technical aspects of cal-
culating a VSD were relatively straightforward, there
were still a variety of interesting statistical issues to
address. For example, the classic paper by Hoel and
Walburg (1972) alerted statisticians to the bias that can
result from ignoring age of death when computing life-
time tumor incidence rates in a rodent tumorigenicity
study. Numerous papers ensued, including three-state
models for carcinogenicity, following the seminal work
of Kodell and Nelson (1980). While work on three-
state modeling of carcinogenicity data is important
and still of interest today (for some recent exam-
ples, see Dunson and Dinse, 2002; Mancuso, Ahn,
Chen and Mancuso, 2002), some statisticians have fo-
cused on broader topics. Others have criticized cancer
risk assessment methodologies at a fundamental level
(see, e.g., Freedman and Zeisel, 1988; Lin, Gold and
Freedman, 1995; also Abelson, 1995).

Because the Delaney Clause made no mention of
noncancer risks such as birth defects, neurological ef-
fects and so on, regulatory methods for such endpoints
developed along a different path. Based on the concept
that noncancer health effects are likely to operate ac-
cording to a threshold mechanism, risk assessment for
noncancer endpoints has been based on determination
of a “no observed adverse effect level” (NOAEL), de-
fined as the experimental dose level immediately below
the lowest dose that produces a statistically or biologi-
cally significant increase in the rate of adverse effects,
compared to controls. An appropriate human exposure
level is generally derived by dividing the NOAEL by a
“safety factor” of usually 100 or 1,000 to allow for the
possibility of sensitive subpopulations, extrapolation
from animal data to human risk and other sources of
uncertainty (see NRC, 1994). Various regulatory agen-
cies use different terminology to describe these recom-
mended regulatory levels. For example, the EPA refers
to this safe daily concentration as the reference dose
(RfD) while the FDA uses the term allowable daily in-
take (ADI).

During the 1980s and 1990s, use of NOAELs for
noncancer risk assessment became controversial, in
large part due to the emergence of some serious statis-
tical flaws with the approach (see, e.g., Gaylor, 1983;
Kaplan, Hoel, Portier and Hogan, 1987; Kimmel and
Gaylor, 1988). For instance, because the NOAEL must

correspond to one of the experimental doses, its value
can vary by orders of magnitude under repeated ex-
perimentation, yet this statistical variation is ignored.
Estimation of the NOAEL is anticonservative with
regard to sample size: since the NOAEL is based
on comparison to control levels, large studies have
higher power to detect small changes and therefore
produce lower NOAELs. In contrast, more variable,
smaller studies tend to produce higher, less conserv-
ative NOAELs. A landmark paper by Crump (1984)
proposed replacing the NOAEL by a so-called bench-
mark dose (BMD), based on a dose response modeling
approach and defined as a lower 95% (or 99%) confi-
dence limit on the dose corresponding to a moderate in-
crease (e.g., 1%, 5% or 10%) over the background rate.

From a statistical perspective, computation of a
benchmark dose is no different than for a VSD, except
that a more modest risk level of 1%, 5% or 10%
is used instead of 10−6. Several authors have argued
(see, e.g, Allen, Kavlock, Kimmel and Faustman,
1994; Leisenring and Ryan, 1992) that a NOAEL
from a typical-sized toxicological experiment will
correspond, on average, to a dose level close to the 5%
or 10% risk level. The move toward the use of a
benchmark dose for noncancer risk assessment has
also influenced thinking about cancer risk assessment.
For example, the EPA has proposed the use of a
benchmark dose approach for cancer risk assessment,
unless a strong biological justification could be made
for extrapolation based on a particular dose response
model (U.S. EPA, 1999).

There are many topics that could be addressed in a
paper on statistical methods for modern environmental
health risk assessment. The chosen focus here, how-
ever, is a series of broad statistical challenges arising
from the relatively recent trend toward the use of epi-
demiological data for quantitative risk assessment.

3. EPIDEMIOLOGICALLY BASED
RISK ASSESSMENT

Often, good quality human dose–response data can
be obtained from an occupational setting. For exam-
ple, EPA based its recent risk assessment for the com-
bustion by-product 1,3-butadiene on studies that had
been conducted in occupationially exposed rubber fac-
tory workers (U.S. EPA, 2002). The National Research
Council estimated high cancer risk due to radon ex-
posure based on studies in miners (NRC, 1988). In this
section, we will discuss a high-profile case study where
the first evidence of adverse effects arose from an ac-
cidental poisoning. Although superficially it might be
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argued that risk assessment based on human data in-
volves the same principles as that based on animal
data, we will see that some unique and challenging is-
sues arise.

3.1 Arsenic in Drinking Water

Establishing appropriate regulatory standards for
arsenic in drinking water has been a source of consider-
able controversy and provides a fascinating example of
the complex interplay between science and policy. Ar-
senic is a naturally occurring metal and had been used
for medicinal purposes for well over a century before
evidence began to emerge regarding serious adverse
health effects associated with chronic exposures (NRC,
1999). Some of the most compelling data arose from a
rural population in southwestern Taiwan who had been
exposed to high levels of arsenic in drinking water af-
ter primitive “tube wells” had been sunk in a postwar
effort to increase supplies of fresh drinking water in
the region. Earlier reports were concerned with skin
lesions, including blackfoot disease (a condition that
can lead, in its most extreme form, to limb loss) and
a nonlethal form of skin cancer (Tseng et al., 1968).
However, more mature studies based on the same pop-
ulation eventually pointed to arsenic’s being associ-
ated with several life-threatening conditions, including
bladder and lung cancer (Chen, Chuang, Lin and Wu,
1985). Evidence of carcinogenic effects of arsenic have
also emerged from studies in other parts of the world,
along with the possibility that chronic arsenic expo-
sure can also cause diabetes and cardiovascular disease
(NRC, 1999).

Although the World Health Organization had long
since recommended a standard of 10 parts per billion
(ppb), the U.S. standard for arsenic in drinking water
remained at an interim level of 50 ppb in the late 1990s,
despite increasing pressure to promulgate a revision.
Unable to reach a consensus on how to do so, the EPA
sought advice from the National Academy of Sciences

(NAS), which subsequently released a report (NRC,
1999) confirming unacceptably high risks at 50 ppb
and urging the EPA to establish a lower water standard.
The EPA established a new maximum contaminant
level (MCL) of 10 ppb in late 2000, and it was hoped
that the controversy would be ended. However, not
long after the Bush presidency was established in 2001,
the new standard was revoked and EPA was instructed
to go back and seek a decision based on “better
science.” The EPA again turned to NAS, which issued
an updated report on September 11, 2001, reiterating
its earlier findings and pointing to studies released
since the earlier report which added to the weight
of evidence supporting a standard closer to 10 ppb.
EPA reinstituted the revised standard of 10 ppb in
November 2001.

Many of the core issues that made the arsenic story
so controversial were inherently statistical in nature.
Being one of very few compounds that appear to be
carcinogenic in humans but not in animals, quantita-
tive risk assessment for arsenic has had to rely ex-
clusively on epidemiological data. A 1988 EPA re-
port had used prevalence data (see Table 1) from the
Tseng study to estimate an excess lifetime skin can-
cer risk of between 3 and 7 per 1,000 for a typical
U.S. resident exposed over their lifetime to an arsenic
level of 50 ppb (U.S. EPA, 1988). A number of issues
with EPA’s statistical analysis contributed to a stale-
mate in terms of their using the results to implement
new guidelines. Concerns related to exposure assess-
ment were foremost. First of all, the Tseng study had
not been designed for a dose response analysis. Instead
of assessing each individual’s exposure level, the study
had simply classified each subject as being exposed to
low, medium or high arsenic levels, based on the lev-
els measured in the wells from the village where they
lived. This gave the study a so-called ecological de-
sign, which is generally considered to be the least de-
sirable basis for use in risk assessment (NRC, 1991).

TABLE 1
Data reported by Tseng et al. (1968), adapted from U.S. EPA (1988, Table B-l ); entries
show male population at risk, followed by number of skin cancer cases in parentheses

Arsenic
concentration

Age group (in years)

0–19 20–39 40–59 ≥ 60 Total

Low (0–30 ppb) 2714 (0) 935 (1) 653 (4) 236 (11) 4538 (16)

Medium (30–60 ppb) 1542 (0) 531 (2) 371 (18) 134 (22) 2578 (42)

High (> 60 ppb) 2351 (0) 810 (18) 566 (56) 204 (52) 3931 (126)

Unknown 4933 (0) 1699 (3) 1188 (61) 429 (64) 8249 (128)
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As discussed by many authors (e.g., Wakefield, 2003;
Greenland and Robins, 1994), the main concern with
the use of ecological data is the potential for bias asso-
ciated with the omission of important individual-level
confounding factors. In the case of the Tseng study,
however, it is reasonable to argue that concerns about
confounding are relatively minimal: the study area was
relatively homogenous from a socioeconomic stand-
point, comprising a relatively stable, but poor, rural
population. Of more serious concern here was the po-
tential for measurement error to influence the results.
Unfortunately, while it is easy to raise general ques-
tions and concerns, relatively little work has been done
toward quantifying the bias that could be involved.
Prentice and Sheppard (1995) argue that, so long as ap-
propriate adjustments are made for confounding, eco-
logical studies may be subject to less measurement
error than studies where exposures are measured at the
individual level. Finally, as seen in Table 1, exposure
levels could not be determined for many subjects in the
Tseng study.

In light of all the problems with the Tseng skin
cancer data, the NRC committee decided to focus on
data related to internal cancers. In contrast to the Tseng
data, the internal cancer data (reported by Chen et al.,
1985) involved a more accurate exposure assessment,
in that measured arsenic levels were reported for each
village in the study area. Table 2 shows a subset of
the raw data (two villages only), stratified by age
group. Readers interested in the full data may obtain it
from Statlib (www.stat.cmu.edu—select “get data” and
search for arsenic). The literature includes relatively
little discussion about the computation of a benchmark
dose based on epidemiological cohort data, the only
sources being a brief mention in a book chapter on
metaanalysis by Wright, Lopipero and Smith (1997)
and an appendix to a National Academy report on
radon (NRC, 1988, page 131). We thus describe the
approach in some detail.

Poisson modeling provides a convenient and natural
framework for analyzing cancer incidence data of
the form seen in Table 2 (see Breslow and Day,
1987, for further discussion). Suppose the data are
divided into n unique covariate combinations (in our
case, age and arsenic concentration), indexed by i.
While gender could also be considered as a covariate,
we describe here the approach taken by NRC, namely
reporting separate analyses for males and females.
Let di denote the number of cancer deaths among the
ri person-years-at-risk in group i, let xi be the arsenic
concentration and let ti be a suitable representative age

TABLE 2
Male lung cancer data reported by Chen et al. (1985); entries
show village-specific median arsenic levels, person years at

risk in each age group, followed by number of cancer deaths;
only two villages are included; full data available

at Statlib (www.stat.cmu.edu)

Arsenic Age group Person No. lung
conc. midpoint years cancer

Village in ppb (years) at risk deaths

1 10 22.5 1128 0
1 10 27.5 634 0
1 10 32.5 389 0
1 10 37.5 313 0
1 10 42.5 364 0
1 10 47.5 410 0
1 10 52.5 325 1
1 10 57.5 227 1
1 10 62.5 141 1
1 10 67.5 104 0
1 10 72.5 63 0
1 10 77.5 39 0
1 10 82.5 22 1

40 698 22.5 1085 0
40 698 27.5 617 0
40 698 32.5 390 0
40 698 37.5 361 0
40 698 42.5 395 0
40 698 47.5 339 0
40 698 52.5 337 1
40 698 57.5 275 1
40 698 62.5 195 1
40 698 67.5 167 0
40 698 72.5 102 1
40 698 77.5 37 2
40 698 82.5 10 0

(e.g., midpoint of the age interval) for the same group.
Then the Poisson modeling approach assumes

di ∼ Poisson
[
rih

C(ti , xi)
]
,(1)

where hC(t, x) is the cause-specific hazard of dying
from the cancer of interest for an individual aged t ,
exposed to arsenic at level x. The Poisson modelling
approach derives naturally from a survival analysis
framework where the hazard for death from the cancer
of interest is piecewise constant on intervals that
correspond to the observed age groups (see Laird
and Olivier, 1981). Assumption of a multiplicative
exposure effect implies

hC(t, x) = hC(t,0)g(x),(2)

with hC(t,0) reflecting the cause-specific hazard for
unexposed individuals aged t and g(x) is interpretable
as a relative risk. The latter can be modeled using
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an appropriate parametric form, with simple models
such as g(x) = exp(βx) being easily fitted in stan-
dard generalized linear model (glm) software (PROC
GENMOD in SAS or glm in S-PLUS), declaring age
group as a factor variable. More complicated dose re-
sponse models, and additive models,

hC(t, x) = hC(t,0) + g(x),

can also be used, though these may require specialized
programming. A parsimonious approximation to a
piecewise constant age effect is to impose a parametric
form on hC(t,0), for example,

hC(t,0) = exp(α0 + α1t + α2t
2),

with the values of t chosen to correspond to the
midpoint of each of the observed age intervals. Such
an approach might be suitable for smaller data sets.
Strictly speaking, model fitting should account for the
grouped nature of the data, for example, by considering
an EM approach (see Brumback, Cook and Ryan,
2000). In practice, it seems unlikely that this would
have a substantial impact on the estimated hazard rate,
especially when balanced with the magnitudes of other
uncertainties, discussed below.

Of course, there are many choices for characterizing
hC(t, x) (see NRC 1999, 2001; Morales et al., 2000).
EPA has often favored the multistage Weibull model,
which generalizes the multistage model (Armitage and
Doll, 1954) to accommodate age effects, and which
corresponds to putting

hC(t, x) = (t − t0)
k+

J∑
j=1

αjx
j ,(3)

where t0, k and the αj ’s are unknown parameters.
The term (t − t0)

k+ denotes a truncated polynomial
of the kth degree, which takes the value 0 if t < t0
and (t − t0)

k otherwise. As in the multistage model,
the parameters α0, . . . , αJ are generally constrained to
be positive. Other options include the consideration of
various dose transformations (log, square root, etc.)
and flexible models for age [quadratic, spline models,
etc. (see Morales et al., 2000)].

Translating the Poisson modeling results to a bench-
mark dose requires computing p(x), the risk of dying
from the cancer of interest for someone exposed over
their lifetime to exposure concentration x:

p(x) =
∫ ∞

0
S(t, x)hC(t, x) dt,

where S(t, x) is the overall probability of surviving
to age t for someone exposed to arsenic level x,

and hC(t, x) is the cause-specific hazard defined above.
In the context of an animal experiment, the sur-
vivorship function S(·) would be estimated from the
observed data, along with the cause-specific hazard
function hC(·) [see Finkelstein (1991) for discussion
related to calculating age-adjusted lifetime tumor rates
in an animal study]. In the context of an epidemio-
logic cohort study, however, it will generally be nec-
essary to go to other data sources for information
about S. Indeed, the purpose of the NRC’s arsenic
risk assessment was to estimate a benchmark dose for
the United States, even though the data being used
to quantify the dose–response relationship were based
on the Taiwanese population. The National Academy
used U.S. life tables and cancer mortality data to es-
timate both S(t,0) and hC(t,0), the survivorship and
cause-specific hazard functions for an unexposed sub-
ject. Because life table and cancer mortality data are
reported in five-year intervals, it is useful to consider
a discretized version of the formula for p(x). Let
hC

g (x) and hO
g (x) be the cancer-specific and overall

death hazards for people exposed at arsenic level x dur-
ing the gth age interval. Similarly, let qg(x) be the con-
ditional probability of surviving through the end of gth
age group, given survival to the beginning of that age
group, for someone exposed at level x. Then, the un-
conditional probability of surviving to the beginning of
the gth age group: Sg(x) = ∏

f ≤g qf (x). Then, some
simple algebra (see NRC, 1988, page 131) establishes
the following approximation:

p(x) ≈ ∑
g∈G

hC
g (x)

hO
g (x)

Sg(x)
(
1 − qg(x)

)
,(4)

where the sum is over the set of age groups G
represented in the life tables. Under the multiplicative
model (2), it follows that hO

g (x) can be written as

hO
g (x) = hO

g (0) + [g(x) − 1]hC
g (0),(5)

and also

qg(x) = qg(0)e−5[g(x)−1]hC(t,0).

Once p(x) has been estimated, the benchmark dose
simply corresponds to the value of x that solves
p(x) − p(0) = q , where q is the desired risk level.
A Taylor series expansion of the expression in (4) es-
tablishes that a simple approximation (see also Wright,
Lopipero and Smith, 1997) to the BMD is the value
of x that solves p(0)(g(x) − 1) = q .

The approach outlined here is particularly appealing
when it comes to extrapolating from one population
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to another. For example, the arsenic analysis dose
response model was estimated using data from Taiwan,
yet the objective was to estimate a benchmark dose
for the U.S. population. Although it is well known
that baseline cancer incidence rates vary significantly
from country to country, epidemiologists have argued
that relative risks associated with smoking and other
environmental exposures tend to be fairly constant
(Breslow and Day, 1987). This argument supports the
approach taken for the arsenic risk assessment, namely
using an estimated relative risk based on data from
Taiwan in (5), with baseline hazards for overall and
cancer-specific deaths taken from vital statistics data
for the United States. A major advantage of the relative
risk approach is that it can even be applied when the
available data related to dose response effects come
from a case–control study. For example, Ferreccio
et al. (2000) report on a case–control study from
Chile which examines the association between arsenic
exposure and lung cancer. Figure 1 plots estimated
odds ratios, along with associated confidence intervals
(dotted lines), reported in Table 5 of that paper, for
five groupings of arsenic exposure levels (0–10, 10–29,
30–49, 50–199 and 200–400 ppb). Also shown in
the plot is a linear fit to these estimated odds ratios,
with the line forced through the point (0,1) and
with assumed exposure levels within each exposure
grouping set at the midpoint.

Despite the seeming simplicity of these arguments
from a statistical perspective, a number of factors
complicated the process of using the Taiwanese data to
predict risks for the U.S. population. We discuss some
of these briefly.

FIG. 1. Estimated odds ratios and confidence limits from Table 5
in Ferreccio et al. (2000), along with linear fit.

Body weight and water consumption. Of particular
importance were assumptions related to body size and
drinking water consumption in the two countries. Tox-
icologists commonly assume that exposure per unit
body weight is the appropriate dose metric for extrap-
olating toxicological effects between two populations
whether two animal species or two different human
populations. In other words, a 100-pound person ex-
posed to 50 micrograms of a toxicant should experi-
ence, on average, the same toxicity as a 200-pound
person exposed to 100 micrograms of the same sub-
stance. In their 1988 arsenic risk assessment, the EPA
argued that adjustments were needed to extrapolate
results from Taiwan to the United States because
(a) the current U.S. population is generally much heav-
ier than the poor rural Taiwanese study population
back in the 1960s and (b) the typical subject from
the Taiwanese study was likely to drink more wa-
ter per day than the typical U.S. person. In their
1988 analysis EPA assumed that a typical Taiwanese
male from the study weighed 55 kg and drank 3.5 liters
of water per day, while the typical female weighed
50 kg and drank 2 liters of water per day. In con-
trast, typical U.S. males and females were both as-
sumed to weigh 70 kg and drink 2 liters of water
per day. This means that in terms of exposure per unit
body weight, the toxicity experienced by a U.S. res-
ident drinking water contaminated with 50 ppb (mi-
crograms per liter) of arsenic would be equivalent to
a Taiwanese male drinking from a source contaminated
with only 50 × 2 × 55/(70 × 3.5) = 22 ppb (36 ppb
for a Taiwanese woman). To accommodate these dif-
ferences, the EPA simply rescaled the exposure levels
in the Taiwanese data by a factor of 50/22 = 2.27 for
males and 50/36 = 1.39 for females, so that the re-
sulting BMD estimate would be relevant for the United
States. Clearly, variations in these assumptions could
have substantial impact on estimated benchmark dose
calculations! For example, assuming that a typical U.S.
resident weighs 80 kg instead of 70 kg would result in
a 15% reduction in the estimated BMD. In a later sec-
tion of the paper we briefly discuss a more rigorous
approach to addressing the uncertainty associated with
variation in body weight and drinking water rates be-
tween the two populations.

Baseline cancer rates. Another factor that compli-
cated the extrapolation of dose response results from
Taiwan to the United States had to do with adjust-
ments for cancer rates among the unexposed popu-
lation. As described above, available data included



EPIDEMIOLOGICALLY BASED RISK ASSESSMENT 473

person-years at risk and cancer mortality data, stratified
by age group, for 42 villages in southwestern Taiwan
that had arsenic contamination levels ranging from 10
to over 900 ppb. Clearly, it is possible to fit a dose re-
sponse model to these data and to use that fitted model
to estimate the dose corresponding to a specified ex-
cess risk over background. However, since none of the
villages was assessed as having a zero level of arsenic
contamination, such calculations effectively involve an
extrapolation of the fitted model outside the range of
observed data. As discussed by Morales et al. (2000),
many epidemiologists would argue that the analysis
should include appropriate unexposed controls. A rel-
atively common approach would use an analysis based
on standardized mortality ratios (SMRs), which in-
volves computing the ratio of observed to expected
number of cancer deaths in various exposure-group
categories, and modeling these ratios as a function
of exposure level. It is straightforward to show (see
Breslow and Day, 1987) that the SMR-based approach
is asymptotically equivalent to performing a Poisson
analysis, as described above, with the population-based
data considered as additional data corresponding to an
exposure level of 0. In addition to analyses that model
data from only the 42 villages, NRC considered analy-
ses that included population data from either the whole
of Taiwan, or at least the southwestern region (see
Morales et al., 2000, Table 2). Figure 2 shows the es-
timated village-specific lifetime risks of dying of lung
cancer (circles), along with the population-based rate
(triangle). The village-specific risks are estimated by

FIG. 2. Circles show village-specific estimates of lifetime lung
cancer death risk (males); the triangle shows the lifetime risk for
the Taiwanese population as a whole. Solid line shows predicted
lifetime risk curve when baseline data are used in the analysis;
dotted line shows predicted curve based only on data from the
42 villages.

fitting a Poisson model like (2), but with the linear ex-
posure term replaced with h village ID specified as a
factor variable. The figure illustrates that risks in even
the lowest exposed of the 42 study villages were sub-
stantially higher than population-based rates. Hence,
the fitted dose response curve was sensitive to whether
or not the comparison population was included. While
dose response models fitted only within the 42 villages
yielded relatively consistent results in terms of BMDs,
estimated BMDs based on the dataset expanded to
include population-based cancer mortality data were
much lower, and quite variable. In particular, choice of
dose transformation had a relatively strong impact on
estimated benchmark dose (see Morales et al., 2000,
for further details).

Measurement error. We have already discussed the
potential for bias and increased uncertainty associated
with the ecological design of the southwest Taiwanese
study. In fact, the situation was even more complicated
than we have described in that many of the villages had
multiple wells. Figure 3 is a plot of the arsenic levels
measured in each of the 42 village wells, ordered by
the median level assigned to each village. The figure
illustrates that well measurements could be highly
variable within a village, with levels varying between
50 and 1752 ppb in one case. Consequently, the levels
assigned to each village are likely to be subject to
considerable measurement error themselves. Although
at first glance it appears that a Berkson measurement
error paradigm (see Carroll, Ruppert and Stefanski,
1995) might be appropriate for the analysis of the
Taiwanese cancer data, the actual measurement error
structure will be hierarchical. While some limited work

FIG. 3. Well arsenic levels (ppb), by village. Villages are or-
dered according to median arsenic levels. Raw data are available
in the Appendix to NRC (1999) and also at Statlib.
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has been done on this topic (see Goldstein, 1995,
Chapter 10, for some discussion), there is a definite
need for further work on the subject of measurement
error associated with ecological design and its impact
in environmental risk assessment.

Use of safety factors. The arsenic risk assessment
raises challenging philosophical issues in relation to
the use of safety factors. As discussed in Section 2,
regulatory levels are usually obtained by dividing es-
timated benchmark doses by a safety factor of any-
where between 10 and 1,000 to reflect various sources
of uncertainty (NRC, 1994). While it can be argued that
risk assessments based on epidemiological data do not
need to consider uncertainty due to species-to-species
variability, other sources of uncertainty (e.g., consid-
erations of sensitive subpopulations) still exist. For ar-
senic, however, there was a conundrum: assuming a 1%
excess risk associated with exposure to 50 ppb of ar-
senic would suggest that the appropriate MCL be many
orders of magnitude lower. While an MCL of 5 ppb
is still associated with a high level of risk (approxi-
mately 1/1000) by usual EPA standards, this level is
close to the limit of detection for arsenic in drinking
water. Furthermore, enforcing standards at this level
would entail remediation costs in the billions. EPA’s
final decision to set a new standard of 10 ppb involved
a trade-off between health risks and cost. EPA’s cost–
benefit analysis required them to “monetize” the ben-
efit from the bladder and lung cancers cases avoided.
Two different values were used. Cancer cases resulting
in death were attributed the “value of statistical life”
(VSL), which in 1999 dollars was assumed by EPA to
be $6.1 million. A “willingness-to-pay value” (WTP)
was used to monetize nonfatal cancer cases. The as-
sumed WTP value was $607,000 in 1999. Despite the
highly quantitative nature of cost–benefit analysis, sta-
tisticians have not traditionally been active in this area,
though it is certainly one where useful contributions
could be made. Further interesting reading and refer-
ences to EPA’s arsenic risk assessment can be found at
http://www.epa.gov/safewater/arsenic.html.

4. GENERAL DISCUSSION

The arsenic case study raises a number of difficult
and challenging issues that commonly arise in epi-
demiologically based risk assessment, including choice
of control group, model choice and exposure measure-
ment error. The EPA’s risk asessment for arsenic in
drinking water ran up against the serious inadequacies
of the traditional risk assessment paradigms involving

safety factors, as well as some of the difficult chal-
lenges of balancing health concerns with economic
considerations.

There are no easy answers. In this section, we
discuss several areas where some good statistical
thinking has the potential for important impact in terms
of finding some solutions to these problems.

4.1 Biologically Informed Dose Response Curves

Talk to any environmental health scientist and they
will tell you that the key to improved risk assessment
is identifying appropriate biologically based dose re-
sponse models. In their 1999 proposed guidelines for
cancer risk assessment, the United States Environmen-
tal Protection Agency suggests the use of biologically
based carcinogenesis models for low-dose risk estima-
tion whenever sufficient evidence is available to sup-
port the choice. While in principal this makes perfect
sense, it often proves difficult, if not impossible, to im-
plement in practice. When the NAS formed its first
committee on arsenic in drinking water, it was hoped
that arsenic might be a candidate for using a bio-
logically based model. As the committee deliberated,
however, it became clear that there was too much un-
certainty and disagreement regarding mechanisms and
hence that the default approach, based on a benchmark
dose analysis, should be used.

In practice, the term “biologically-based model”
has been interpreted in a number of different ways.
The general idea is that more accurate dose response
models should be obtained by taking account of the
various steps going from the original exposure to the fi-
nal health outcome [see Figure 4, adapted from Schulte
(1993)]. How can these ideas be implemented in prac-
tice? One approach is to use biological principles to
derive a specific dose response model. The multistage
model of Armitage and Doll (1954) is a classic exam-
ple of this approach. Many authors have proposed gen-
eralizations of this model. For example, Moolgavkar
and Venzon (1979) proposed a two-stage clonal ex-
pansion model that assumes that cancer arises from a
multistage process that involves proliferation at one of
the stages. A problem with such approaches, however,
is that they are not generally well identified, except

FIG. 4. Conceptual framework for biologically-based models.
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in relatively simple cases, with only the usual observ-
able data, namely exposure and outcome. To be use-
ful in practice, biologically-based models need to draw
on additional data sources. Physiologically based phar-
makokinetic (PBPK) models are one such approach,
and these have become increasingly popular over the
past decade or so (see Smith, 2002).

In contrast to mechanism-based models of carcino-
genicity, PBPK models seek improved dose response
modelling through the use of more accurate measures
of internal dose. PBPK models typically assume that
the body comprises several compartments linked to-
gether by the circulatory system. A popular choice is
a three-compartment model that groups metabolically
active organs such as the liver into a well-perfused
compartment, which is subject to a relatively high vol-
ume of blood flow. Other organs and body structures
(including skin, bones, etc.) are grouped into a moder-
ately well-perfused compartment, while body fat forms
a poorly perfused compartment. PBPK models can
incorporate some mechanistic ideas as well. For exam-
ple, Smith et al. (2001) use a PBPK model to estimate
the rate at which butadiene is metabolized into expoxy
butene, which is thought to be one of the primary car-
cinogenic pathways. A PBPK model is usually charac-
terized through a series of differential equations, each
describing the rate of change of concentration of the
compound under study in various parts of the body.
A particularly appealing feature of the PBPK approach
is that it allows the investigator to incorporate infor-
mation collected from a variety of different studies re-
garding, for example, flow rates between the various
organs. By contributing understanding regarding how
the substance travels through the body and by mak-
ing appropriate assumptions regarding the mechanisms
by which an adverse effect occurs, a PBPK model can
be invaluable for extrapolating information from one
species to another. Because fitting a PBPK model typi-
cally requires incorporating information from several
different experiments, a Bayesian formulation works
particularly well. Wakefield, Smith, Racine-Poon and
Gelfand (1994) were among the first to describe the
use of a Bayesian hierarchical model to fit a PBPK
model, though they considered the relatively simple
case where the differential equations characterizing the
model could be solved in closed form. Gelman, Bois
and Jiang (1996) extended the approach to apply in
more complex settings.

Despite their potential, PBPK models have been
slow to enter into the mainstream of quantitative risk
assessment. In addition to the complexity of fitting

them, PBPK models are limited in that, while they are
helpful in terms of characterizing internal dose, it is
unclear how they can be used to better quantify the
link between exposure and the health outcome of in-
terest. There is an important need for the development
of new methods that incorporate biological information
in a more flexible way. In recent years, environmental
scientists have been making rapid progress in identify-
ing relevant biomarkers for a variety of exposure and
disease settings [see other papers in the special issue
of Environmental Health Perspectives introduced by
Holian (1996)]. However, statistical methods to incor-
porate biomarkers into the risk assessment process are
lagging behind. While much progress has been made
on statistical methods to use biomarkers in the clinical
trials context (see, e.g., Prentice, 1989) the focus there
tends to be somewhat different, for example, evaluating
the usefulness of a biomarker as a surrogate outcome
variable. Even so, some of the thinking that has been
developed in the clinical trial context could potentially
be useful for environmental risk assessment as well.
For example, characteristics needed for a biomarker to
prove useful for the purpose of dose response modeling
might include the following:

• the biomarker is a strong predictor of the outcome of
interest, even after adjusting for exposure and other
measurable characteristics;

• exposure is a strong predictor of the biomarker.

Ideally, the biomarker should provide a stronger sig-
nal than the health outcome alone. For example, bio-
markers measured on a continuous scale (e.g., DNA
adducts) are likely to be more informative than binary
indicators of the presence or absence of rare diseases
such as cancer. Ryan et al. (2004) discuss these ideas
in a special issue on biomarkers of Statistical Methods
for Medical Research.

Unfortunately, finding real-world datasets to test
out the utility of biomarker data for dose response
modeling is difficult. Although many environmental
health researchers are actively studying biomarkers in
a variety of different disease settings, most studies are
focused fairly narrowly on specific mechanistic ques-
tions and do not simultaneously collect the exposure
and response information needed to construct a dose
response model. Many studies have either biomarker
data and exposure, or biomarker data and outcome,
but not all three together. An exception is an ongoing
case–control study in lung cancer in which, in addi-
tion to standard measurements of smoking exposure
(pack-years, etc.), measurements have been taken on
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DNA adducts in blood and tissue, as well as various ge-
netic polymorphisms (e.g., GSTM1) thought to affect
susceptibility to smoking-related lung cancer (Zhou
et al., 2003). The scientific goal of this study is not
to characterize the dose–response relationship between
smoking and lung cancer, but rather to understand the
genetic basis of lung cancer. As is typical of many such
studies, the biomarkers are measured on only a small
subset of study subjects. In fact, of 1,842 subjects avail-
able for the analysis, only 9 had measurements on all
three biomarkers. The sparseness of the observations
meant that this particular study provides only a lim-
ited opportunity to explore the use of biomarker mod-
els for the purpose of dose response modeling. Even
so, Ryan et al. (2004) were able to analyze the data us-
ing a likelihood-based approach and obtain some use-
ful findings. In particular, they found that DNA adducts
were indeed able to explain a good deal of the associa-
tion between smoking and lung cancer, suggesting that
DNA damage is indeed an important pathway.

The lung cancer example raises interesting design
challenges. In most epidemiological studies, it will not
be possible to measure expensive and labor intensive
biomarkers on all study subjects. However, judicious
choices about which subjects to measure have the po-
tential to provide considerable improvement in effi-
ciency. To take a heuristic example, if one believes
that a particular kind of DNA adduct is part of the
causal pathway between exposure to cigarette smoke
and the onset of lung cancer, it will be a waste of
resources to measure adducts in a large number of
nonsmokers. Depending on the design of the main
study, it may also make sense to oversample lung can-
cer cases for the purpose of measuring a biomarker.
White (1982) proposed a two-stage case–control de-
sign where one starts with a traditional case–control
design. Some expensive-or difficult-to-measure covari-
ates are assessed only on a subset of the study subjects,
with selection probabilities that depend on the value
of other covariates of interest. A number of authors
have discussed analytical approaches as well as exten-
sions to the two-stage case–control design. For exam-
ple, Breslow and Cain (1988) extended the design to
allow second stage sampling probabilities to vary ac-
cording to whether the subject is a case or a control.
Further analytic considerations have been discussed by
many authors, including Breslow and Holubkov (1997)
and Wacholder and Weinberg (1994). Reilly and Pepe
(1995) discuss a nonparametric approach to fitting re-
gression models when some covariates are missing and

use their formulation to address optimal design consid-
erations as well. Further development of these ideas for
dose response modeling would be useful.

4.2 Quantifying Uncertainty

While the ideal is of course to base risk assessment
on highly accurate, biologically based dose response
models, the reality is inevitably a great deal of un-
certainty regarding the true relationship between ex-
posure and outcome. Our arsenic case study involved
considerable levels of uncertainty from several differ-
ent sources, but especially in terms of exposure assess-
ment. While it is well known that measurement error
can lead to biased estimation of the dose–response re-
lationship and underestimation of the associated un-
certainty (see Carroll, Ruppert and Stefanski, 1995),
the literature has seen relatively little discussion about
the effects of measurement error on benchmark dose
calculations. While issues of bias are certainly impor-
tant, developing better methods to quantify the uncer-
tainty associated with dose response modeling could
have significant impact on the field. In the context of
the arsenic study, for example, it could be argued that
using village-level exposure measures to represent in-
dividual exposures should not result in too much bias,
since this is an example of so-called Berkson mea-
surement error, which does not lead to bias, at least
in the linear model setting. However, the extra vari-
ability induced by the uncertainty could be consider-
able. As a case in point, the NRC arsenic report (NRC,
2001) described an analysis that attempted to account
for person-to-person variations in daily drinking water
intake. NRC reanalyzed the male lung cancer data us-
ing a multiplicative model (2), with g(x) replaced by

g(w) = exp(βw),

where w represented individual arsenic intake (mea-
sured in micrograms per kilogram body weight per
day), rather than arsenic concentration in the drinking
water. Although w was not observed in the study, a dis-
tribution for w could be estimated for each observed
village-level arsenic concentration, using an EPA sur-
vey that had characterized the population distribution
of daily drinking water volumes. The EPA survey sug-
gested that daily drinking rates followed an approxi-
mate gamma distribution, with mean 21 milliliters per
kilogram body weight per day, and a standard devi-
ation of 15. Keeping in mind that a milliliter is a
one one-thousandth of a liter and that parts per bil-
lion in water corresponds to micrograms per liter, it
follows, for example, that a 50 kg person drinking
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water from a well contaminated with 100 ppb of ar-
senic would have a mean daily exposure level of 2.1
(100 × 21/1,000) micrograms of arsenic per kilogram
body weight per day, with associated standard devia-
tion of 1.5. A Bayesian approach can easily accom-
modate such data to fit the dose response model in
terms of w, even though this variable is not directly
observable. The Bayesian approach can also be used to
generate a posterior distribution of lifetime risk levels
associated with each observed concentration of arsenic
in drinking water. NRC reported on such an analysis
(see Table 5.5 in their report), finding that, as expected,
incorporating uncertainty about drinking water rates
increased the width of confidence limits substantially.
Interestingly, the NRC analysis also suggests that ig-
noring drinking rate variability also induces some bias
in estimated BMDs, despite the fact that the measure-
ment error is of the Berkson class. The explanation for
this likely includes the nonlinear nature of the dose–
response relationship, as well as the nonnormal distri-
bution of the measurement errors. While a statistician
would think of the analysis described here as a classic
Bayesian hierarchical analysis, risk assessors might de-
scribe it as an example of probabilistic risk assessment
or perhaps uncertainty analysis. A relatively recent de-
velopment in the risk assessment world, probabilistic
risk assessment uses tools such as Monte Carlo simula-
tion to explore the impact of population heterogeneity
with respect to exposure, susceptability and basic phys-
iology, to quantify uncertainty in estimation of quanti-
ties such as BMDs and lowest-observed-effect levels
(LOELs) (see NRC, 1994, Chapter 9). In general, the
approach is fairly ad hoc and does not take into ac-
count the effect of uncertainty on parameter estima-
tion. With a few exceptions (see Rai, Bartlett, Krewski
and Paterson, 2002), few statisticians have worked in
the area, which is ripe for further development, espe-
cially using a Bayesian formulation. Of course, expo-
sure measurement error is just one of many sources
of uncertainty in dose–response modeling. In the case
of arsenic, uncertainty regarding the dose–response
relationship was itself another major source (Morales
et al., 2000). While it is almost certainly true that more
accurate exposure measurement would reduce model
uncertainty, the biological complexity of most risk as-
sessment settings will lead to uncertainty regarding the
true dose–response relationship, even in the context of
perfect exposure measurements. Morales (2001) used
Bayesian model averaging to incorporate this model
uncertainty into risk estimation. Morales’ reanalysis
of the NRC arsenic data suggests that the Bayesian

model averaging approach will lead to similar point
estimates as a more traditional approach of basing es-
timates on the best fitting models. However, confi-
dence limits based on model averaging will be much
wider, thus reflecting more appropriately the true un-
certainty involved.

5. CONCLUSIONS

This paper has used a high-profile case study to
highlight some of the interesting and challenging
problems that arise in modern environmental health
risk assessment, especially when epidemiological data
are involved. While the use of epidemiological data
avoids many serious criticisms that have been targeted
toward the use of animal data for assessing human
health risks, other perhaps equally challenging issues
arise. This paper has argued that statistical science
has the potential to play a significant and central
role in guiding the field toward new and appropriate
paradigms for environmental health risk assessment.
These new paradigms must include an emphasis on not
only providing estimates of central tendency, but also
quantifying the true population heterogeneity in risk.

An issue of central importance is finding ways not
only to improve dose response modeling, but also
to accurately characterize the uncertainty in using
such models to estimate benchmark doses and other
quantities important to regulators. We have argued that
Bayesian models provide an ideal framework for this.
In our arsenic case study, for example, we saw how a
Bayesian hierarchical model could be used to assess
the impact of individual variation in an ecological
study where exposure levels were measured only at
the group (village) level. A particularly appealing
aspect of the Bayesian approach in this context is
that it facilitates the incorporation of information from
a variety of sources, not just the study at hand. In
the case of the arsenic analysis, for example, data
from an EPA survey was used to characterize the
distribution of male and female drinking water rates.
Such analyses provide an ideal means of addressing
issues of uncertainty, yet at the same time incorporating
expert knowledge and other related scientific evidence
into the modeling process. Also in the context of our
arsenic case study, we described the use of Bayesian
model averaging techniques to quantify uncertainty
assocated with model choice. There are a number
of examples in the literature (see Dominici, Samet
and Zeger, 2000) where Bayesian models have been
successfully used to synthesize data from several
different environmental studies.
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While characterizing uncertainty is important, the
ideal, of course, is to identify the information and
data sources needed to fit accurate dose response
models. Developing improved ways to incorporate
biological information into dose response modeling is
an important area where statisticians have the potential
for significant contributions. While significant progress
has already been made in the area of pharmacokinetic
modeling, such models do not provide all the answers
when it comes to risk assessment. Of more value are
likely to be hybrid models that combine statistical
modeling with biomarker data to find more accurate
dose response models relating an exposure of interest
to a health outcome. In practice, such models require
the incorporation of data from a variety of sources,
so that a Bayesian approach will once again provide
a natural framework for analysis. Statistical design
issues are very important, especially when it comes
to incorporating biomarkers. In practice, cost and
other practical considerations will make it possible to
measure biomarkers on only a subset of study subjects.
Providing guidelines for optimal selection of subjects
for biomarker assessment is a very important topic
worthy of further study.

There are many important statistical problems moti-
vated by environmental health research that this article
has not discussed. For example, though we have em-
phasized the challenges of epidemiologically based
risk assessment, many fascinating problems still arise
from toxicological studies in animals. For example,
the use of genetically altered mice has become par-
ticularly popular in toxicology, leading to a need for
new statistical methods adapted to this context (see
Dunson, 2000).

Although we touched on the topic in our discus-
sion on biomarkers, genetic susceptability to environ-
mentally mediated disease is an important topic that
could have been the focus of an entire paper, just on
its own. The newly established National Center for
Toxicogenomics, established under the auspices of the
National Institute of Environmental Health Sciences
(see http://www.niehs.nih.gov/nct/home.htm), has as
its mission helping environmental scientists to apply
modern tools of genomics and proteomics to explore
and understand the genetic and metabolic pathways of
disease, along with the interactive effect of environ-
mental factors. While great progress has been made in
the area of statistical genetics, statistical methods for
addressing the problem of detecting gene–environment
interactions (Niu, 2002) are still relatively new.

A theme of this paper is that statisticians working
in the area of environmental health research need to
challenge themselves constantly to think about the big
picture and to identify important questions. As in many
areas of application, it is easy to become focused on
small, technically challenging problems that really do
not contribute significantly to the real world. Like
many other fields, environmental health is changing
rapidly in response to new developments in genomics
and other areas of basic science. These changes provide
interested statisticians with a great opportunity to make
valuable contributions.
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