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The Impact of Bootstrap Methods on
Time Series Analysis
Dimitris N. Politis

Abstract. Sparked by Efron’s seminal paper, the decade of the 1980s was
a period of active research on bootstrap methods for independent data—
mainly i.i.d. or regression set-ups. By contrast, in the 1990s much research
was directed towards resampling dependent data, for example, time series
and random fields. Consequently, the availability of valid nonparametric
inference procedures based on resampling and/or subsampling has freed
practitioners from the necessity of resorting to simplifying assumptions such
as normality or linearity that may be misleading.
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1. INTRODUCTION: THE SAMPLE MEAN OF
A TIME SERIES

Let X1, . . . ,Xn be an observed stretch from a strictly
stationary time series {Xt, t ∈ Z}; the assumption of
stationarity implies that the joint probability law of
(Xt ,Xt+1, . . . ,Xt+k) does not depend on t for any
k ≥ 0. Assume also that the time series is weakly
dependent; that is, the collection of random variables
{Xt, t ≤ 0} is approximately independent of {Xt,

t ≥ k} when k is large enough. An example of a weak
dependence structure is given by m-dependence under
which {Xt, t ≤ 0} is (exactly) independent of {Xt,

t ≥ k} whenever k > m; independence is just the
special case of 0-dependence.

Due to the dependence between the observations,
even the most basic methods involved in applied sta-
tistical work suddenly become challenging; an ele-
mentary such example has to do with estimating the
unknown mean µ = EXt of the time series. The sam-
ple mean X̄n = n−1 ∑n

t=1 Xt is the obvious estima-
tor; however—and here immediately the difficulties
crop up—it is not the most efficient. To see why, con-
sider the regression Xt = µ + εt , which also serves
as a definition for the εt process; it is apparent that
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X̄n is the ordinary least squares estimator of µ in this
model. However, because of the dependence in the
errors εt , the best linear unbiased estimator (BLUE)
of µ is instead obtained by a generalized least squares
argument; consequently, µ̂BLUE = (1′�−1

n 1)−11′�−1
n X,

where X = (X1, . . . ,Xn)
′, 1 = (1, . . . ,1)′ and �n is the

(unknown) covariance matrix of the vector X with i, j

element given by γ (i − j) = Cov(Xi,Xj ).
It is immediate that µ̂BLUE is a weighted average of

the Xt data, (i.e., µ̂BLUE = ∑n
i=1 wiXi ); the weights

wi are a function of the (unknown) covariances γ (s),
s = 0,1, . . . , n − 1. For example, under the simple
AR(p), that is, autoregressive of order p, model,

(Xt − µ)

= φ1(Xt−1 − µ) + · · · + φp(Xt−p − µ) + Zt,
(1)

where Zt ∼ i.i.d. (0, τ 2), it is easy to see that wj =
wn−j+1 for j = 1, . . . , p, wp+1 = wp+2 = · · · = wn−p

and
∑n

i=1 wi = 1; calculating w1, . . . ,wp in terms
of γ (·) is feasible but cumbersome—see Fuller (1996).
For instance, in the special case of p = 1, we can
calculate that w1 = w2/(1 − ρ(1)), where ρ(s) =
γ (s)/γ (0) is the autocorrelation sequence.

Nevertheless, it is apparent that, at least in the
AR(p) model above, the difference of the wi weights
from the constant weights in X̄n is due mostly to
the end effects, that is, the first and last p weights.
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Thus, it may be reasonable to conjecture that, for
a large sample size n, those end effects will have a
negligible contribution. This is, in fact, true; as shown
in Grenander and Rosenblatt (1957) for a large class
of weakly dependent processes [not limited to the
AR(p) models], the sample mean X̄n is asymptotically
efficient. Therefore, estimating µ by our familiar, easy-
to-use, sample mean X̄n is fortuitously justified.

The problem, however, is further complicated if one
wants to construct an estimate of the standard error
of X̄n. To see this, let σ 2

n = Var(
√

nX̄n) and note that
nσ 2

n is just the sum of all the elements of the matrix �n,
that is, σ 2

n = ∑n
s=−n(1 − |s|/n)γ (s). Under the usual

regularity conditions,

σ 2∞ := lim
n→∞σ 2

n =
∞∑

s=−∞
γ (s) = 2πf (0),

where f (w) = (2π)−1 ∑∞
s=−∞ eiwsγ (s), for w ∈

[−π,π ], is the spectral density function of the {Xt}
process. It is apparent now that the simple task of stan-
dard error estimation is highly nontrivial under depen-
dence, as it amounts to nonparametric estimation of the
spectral density at the origin.

One may think that estimating γ and plugging
into the above formula would give a consistent es-
timator of the infinite sum

∑∞
s=−∞ γ (s). Estimators

of γ (s) for |s| < n can certainly be constructed; γ̃ (s) =
(n − s)−1 ∑n−s

t=1 (Xt − X̄n)(Xt+s − X̄n) and γ̂ (s) =
n−1 ∑n−s

t=1 (Xt − X̄n)(Xt+s − X̄n) are the usual candi-
dates. Note that γ̃ (s) is unbiased but becomes quite
unreliable for large s because of increasing variabil-
ity; at the extreme case of s = n − 1, there is no aver-
aging at all in γ̃ (s). Thus, γ̂ (s) is preferable for two
reasons: (a) it trades in some bias for a huge variance
reduction by using the assumption of weak dependence
[which implies that γ (s) → 0 as s → ∞] to shrink
the γ̃ (s) toward 0 for large s; and (b) γ̂ (s) is a non-
negative definite sequence, that is, it guarantees that∑

|s|<n γ̂ (s) ≥ 0. To understand the last claim, note
that

∑
|s|<n γ̂ (s) = 2πT (0), where T (w) is the peri-

odogram defined by

T (w) = (2πn)−1

∣∣∣∣∣
n∑

s=1

eiws(Xs − X̄n)

∣∣∣∣∣
2

,

which, however, is well known to be inconsistent as an
estimator of f (w); although the bias of T (w) is negli-
gible [of order O(1/n)], its variance is approximately
constant and does not approach 0—see, for example,
Brockwell and Davis (1991). Consequently, the plug-
in idea

∑
|s|<n γ̂ (s) is inconsistent as well; intuitively,

it is seen that γ̂ (s) is still unreliable for large s and
more shrinking toward 0 is necessary.

The above observations suggest two different ways
of achieving consistent spectral estimation:

A. Split the data series X1, . . . ,Xn into (overlapping)
blocks of size b, that is, (X1, . . . ,Xb), (X2, . . . ,

Xb+1) and so on. Calculate the periodogram Ti(w)

from block (Xi, . . . ,Xi+b−1), for i = 1, . . . , q

(where q = n − b + 1), and then let T̄ (w) =
q−1 ∑q

i=1 Ti(w) be the average of those short pe-
riodograms. It follows that the bias of T̄ (w) is
equal to the bias of each of the Ti(w), that is, it
is of order O(1/b), while its variance is O(b/n)

due to the averaging. [To see that Var(T̄ (w)) =
O(b/n), note that periodograms calculated from
nonoverlapping blocks are approximately indepen-
dent; there are approximately n/b such nonoverlap-
ping blocks within the data stretch X1, . . . ,Xn. By
a Cauchy–Schwarz argument, it is immediate that
the variance of T̄ (w) cannot be bigger than the vari-
ance of the average of just those n/b approximately
independent, nonoverlapping periodograms which
is O(b/n).] Thus, consistency of T̄ (w) ensues pro-
vided

b → ∞ as n → ∞ but with b/n → 0.(2)

This blocking idea was actually one of the very
first spectral estimation schemes proposed in a
pioneering paper by Bartlett (1946).

B. Since more shrinking of γ̂ (s) toward 0 is advis-
able for the purposes of convergence of their sum,
it comes as no surprise that a popular method
of estimating f (w) is given by means of trun-
cated/weighted sums:

f̂b,λ(w) = (2π)−1
b∑

s=−b

λ(s/b)eiwsγ̂ (s),(3)

where the lag window λ is some (well-chosen)
function on [−1,1]. Consistency is achieved again
under (2); in particular, the condition b = o(n)

effectively keeps the unreliable γ̂ (s)—the ones
for large s—from entering in and spoiling the
convergence of the sum in (3).

Interestingly, the above two methods of spectral
estimation turn out to be equivalent to each other—
as well as to the third popular method that entails
smoothing the periodogram; see Brockwell and Davis
(1991). For example, Bartlett’s T̄ (w) is approximately
equivalent to f̂b,λ(w) using the triangular lag window



IMPACT OF BOOTSTRAP METHODS ON TIME SERIES ANALYSIS 221

λB(x) = 1 − |x|. Although the constant lag window
λC(x) = 1 also leads to consistent estimation under (2),
improved accuracy is achieved via the family of flat-top
lag windows introduced in Politis and Romano (1995);
the simplest representative of the flat-top family is the
trapezoidal lag window λT(x) = min{1,2(1 − |x|)},
which can be thought of as a compromise between
λC and λB.

2. BLOCK RESAMPLING AND SUBSAMPLING

As is well known, the bootstrap scheme pioneered in
the seminal paper of Efron (1979) was geared toward
independent data. As a matter of fact, it was quickly
recognized by Singh (1981) that if one applies the
i.i.d. bootstrap to data that are dependent, inconsistency
follows; see also the early paper by Babu and Singh
(1983). Because of the total data “scrambling” induced
by the i.i.d. bootstrap, all dependence information is
lost. Consequently, the i.i.d. bootstrap estimate of σ 2

n

typically does not converge to the correct limit given
by σ 2∞ = ∑∞

s=−∞ γ (s); rather, it converges to γ (0),
that is, the i.i.d. bootstrap fails to give valid standard
error estimates in the dependent case.

2.1 Subsampling

Subsampling is probably one of the most intuitive
methods of valid statistical inference. To see why
subsampling works in the time series case, consider
the aforementioned consistent estimator of σ 2∞ due to

Bartlett, that is, 2πT̄ (0) or, equivalently, 2πf̂b,λB(0).
Recall that 2πf̂b,λB(0) = ∑b

s=−b(1 − |s|/b)γ̂ (s),
which is actually a simple, plug-in estimator of
σ 2

b = Var(
√

b
∑b

i=1 Xi) = ∑b
s=−b(1 − |s|/b)γ (s). In-

tuitively, 2πf̂b,λB(0) is estimating σ 2
b and not σ 2

n ; con-
sistency of 2πf̂b,λB(0) is achieved only because both
σ 2

b and σ 2
n tend to σ 2∞ under (2)—and therefore also

σ 2
b − σ 2

n → 0.
In other words, it seems that we cannot directly es-

timate σ 2
n or σ 2∞, and we have to content ourselves

with estimating σ 2
b . But an immediate, empirical es-

timator of σ 2
b = Var(

√
b

∑b
i=1 Xi) can be constructed

from the many size-b sample means that can be ex-
tracted from our data X1, . . . ,Xn. To formalize this no-
tion, let X̄i,b = b−1 ∑i+b−1

t=i Xt be the sample mean of

the ith block and let σ̂ 2
b,SUB denote the sample vari-

ance of the (normalized) subsample values
√

bX̄i,b for
i = 1, . . . , q . The simple estimator σ̂ 2

b,SUB is the sub-
sampling estimator of variance; it is consistent for σ 2∞

under (2) which is not surprising in view of that fact
that it, too, is equivalent to the ubiquitous Bartlett esti-
mator!

Nevertheless, the beauty of the subsampling method-
ology is its extreme generality: let θ̂n = θ̂n(X1, . . . ,Xn)

be an arbitrary statistic that is consistent for a general

parameter θ at rate an, that is, for large n, an(θ̂n − θ)

tends to some well-defined asymptotic distribution J ;
the rate an does not have to equal

√
n, and the dis-

tribution J does not have to be normal—we do not
even need to know its shape, just that it exists. Let
θ̂i,b = θ̂b(Xi, . . . ,Xi+b−1) be the subsample value of
the statistic computed from the ith block. The subsam-
pling estimator of J is Ĵb,SUB defined as the empirical
distribution of the normalized (and centered) subsam-
ple values ab(θ̂i,b − θ̂n) for i = 1, . . . , q .

The consistency of Ĵb,SUB for general statistics un-
der minimal conditions—basically involving a weak
dependence condition and (2)—was shown in Politis
and Romano (1992c, 1994b); consequently, confidence
intervals for θ can immediately be formed using the
quantiles of Ĵb,SUB instead of the quantiles of the (un-
known) J . A closely related early work is the paper by
Sherman and Carlstein (1996) where the subsampling
distribution of the (unnormalized) subsample values is
put forth as a helpful diagnostic tool.

If a variance estimator for anθ̂n is sought, it can be
constructed by the sample variance of the normalized
subsample values abθ̂i,b for i = 1, . . . , q; consistency
of the subsampling estimator of variance for general
statistics was shown by Carlstein (1986) under some
uniform integrability conditions. It should be pointed
out that if there is no dependence present, then the or-
dering of the data is immaterial; the data can be per-
muted with no information loss. Thus, in the i.i.d. case,
there are

(n
b

)
subsamples of size b from which sub-

sample statistics can be recomputed; in this case,
subsampling is equivalent to the well-known delete-d
jackknife (with d = n − b) of Wu (1986) and Shao and
Wu (1989); see Politis, Romano and Wolf (1999) for
more details and an extensive list of references.

Subsampling in the i.i.d. case is also intimately
related to the i.i.d. bootstrap with smaller resample
size b, that is, where our statistic is recomputed from
X∗

1, . . . ,X∗
b drawn i.i.d. from the empirical distribution

of the data X1, . . . ,Xn; the only difference is that
subsampling draws b values without replacement from
the dataset X1, . . . ,Xn while the bootstrap draws with
replacement.



222 D. N. POLITIS

The possibility of drawing an arbitrary resample
size was noted as early on as in Bickel and Freed-
man (1981); nevertheless, the research community fo-
cused for some time on the case of resample size n

since that choice leads to improved performance, that
is, higher-order accuracy, in the sample mean case
[cf. Singh (1981)]. Nevertheless, in instances where
the i.i.d. bootstrap fails, it was observed by many re-
searchers, most notably K. Athreya, J. Bretagnolle,
M. Arcones and E. Giné, that bootstrap consistency can
be restored by taking a smaller resample size b sat-
isfying (2); see Politis, Romano and Wolf (1999) for
references but also note the early paper by Swanepoel
(1986).

As a matter of fact, the i.i.d. bootstrap with resam-
ple size b immediately inherits the general validity of
subsampling in the case where b = o(

√
n) in which

case the question with/without replacement is imma-
terial; see Politis and Romano (1992c, 1993) or Politis,
Romano and Wolf (1999, Corollary 2.3.1). However, to
relax the condition b = o(

√
n) to b = o(n), some extra

structure is required that has to be checked on a case-
by-case basis; see Bickel, Götze and van Zwet (1997).

Finally, note that in the case of the sample mean
of i.i.d. data (with finite variance), the bootstrap with
resample size n outperforms both subsampling and
the bootstrap with smaller resample size, as well as
the asymptotic normal approximation. Although the
performance of subsampling can be boosted by the
use of extrapolation and interpolation techniques—
see, for example, Booth and Hall (1993), Politis and
Romano (1995), Bickel, Götze and van Zwet (1997)
and Bertail and Politis (2001)—the understanding has
been that subsampling sacrifices some accuracy for
its extremely general applicability; this was also the
viewpoint adopted in Politis, Romano and Wolf (1999,
Chapter 10). Nevertheless, some very recent results of
Sakov and Bickel (2000) and Arcones (2001) indicate
that this is not always the case: for the sample median,
the i.i.d. bootstrap with resample size b = o(n) has
improved accuracy as compared to the bootstrap with
resample size n; an analogous result is expected to hold
for subsampling.

2.2 Block Resampling

In the previous section, we saw the connection of
subsampling in the i.i.d. case to the delete-d jack-
knife. Recall that the standard delete-1 jackknife is
commonly attributed to Tukey (1958) and Quenouille
(1949, 1956). Interestingly, Quenouille’s work was fo-
cused on blocking methods in a time series context, and

thus it was the precursor of (block) subsampling; of
course, blocking methods for estimation in time series
go back to Bartlett (1946) as previously mentioned.

After Carlstein’s (1986) subseries variance estimator
[as well as Hall’s (1985) retiling ideas for spatial data]
the time was ripe for Künsch’s (1989) introduction
of the block bootstrap where, instead of recomputing
the statistic θ̂b on the smaller blocks of the type
Bi = (Xi, . . . ,Xi+b−1), a new bootstrap pseudo-series
X∗

1 , . . . ,X∗
l is created (with l = kb 
 n) by joining

together k (= [n/b]) blocks chosen randomly (and
with replacement) from the set {B1, . . . ,Bn−b+1}; then
the statistic can be recomputed from the new, full-size
pseudo-series X∗

1 , . . . ,X∗
l .

Thus, 10 years after Efron’s (1979) pioneering paper,
Künsch’s (1989) breakthrough indicated the starting
point for the focus of research activity on this new area
of block resampling. The closely related work by Liu
and Singh (1992), which was available as a preprint in
the late 1980’s, was also quite influential at that point
because of its transparent and easily generalizable
approach.

Examples of some early work on block resampling
for stationary time series include the blocks-of-blocks
bootstrap of Politis and Romano (1992a), which ex-
tended the applicability of the block bootstrap to para-
meters associated with the whole infinite-dimensional
probability law of the series; the circular bootstrap of
Politis and Romano (1992b), in which the bootstrap
distribution is automatically centered correctly; and the
stationary bootstrap of Politis and Romano (1994a),
which joins together blocks of random length—having
a geometric distribution with mean b—and thus gen-
erates bootstrap sample paths that are stationary series
themselves.

As in the i.i.d. case, the validity of the block-
bootstrap methods must be checked on a case-by-case
basis, and this is usually facilitated by an underlying
asymptotic normality; typically, a condition such as (2)
is required. For instance, the block-bootstrap estima-
tor of the distribution of

√
n(X̄n − µ) is essentially

consistent only if the latter tends to a Gaussian limit,
a result that parallels the i.i.d. situation; see Giné and
Zinn (1990) and Radulovic (1996). To see why, note
that in the sample mean case the block-bootstrap dis-
tribution is really a (rescaled) k-fold convolution of
the subsampling distribution Ĵb,SUB with itself; since
k = [n/b] → ∞ under (2), it is intuitive that the block-
bootstrap distribution has a strong tendency toward
Gaussianity.



IMPACT OF BOOTSTRAP METHODS ON TIME SERIES ANALYSIS 223

Interestingly, the block-bootstrap estimator σ̂ 2
b,BB of

Var(
√

nX̄n) is identical to the subsampling estimator
σ̂ 2

b,SUB which in turn is equivalent to the Bartlett esti-

mator 2πf̂b,λB(0); recall that the latter is suboptimal
due to its rather large bias of order O(1/b). In addi-
tion, the circular and stationary bootstrap estimators
of Var(

√
nX̄n) suffer from a bias of the same order

of magnitude; see Lahiri (1999). However, if variance
estimation is our objective, we can construct a highly
accurate estimator via a linear combination of block re-
sampling/subsampling estimators, in the same way that
the trapezoidal lag window spectral estimator f̂b,λT can
be gotten by a linear combination of two Bartlett esti-
mators. The simplest such proposal is to define

σ̃ 2
b = 2σ̂ 2

b,BB − σ̂ 2
b/2,BB,

where b is now an even integer. The estimator σ̃ 2
b

has bias (and MSE) that is typically orders of mag-
nitude less than those of σ̂ 2

b,BB; as a matter of fact,
σ̃ 2

b 
 2πf̂b,λT(0) which, as previously alluded to, en-
joys some optimality properties. For example, if the co-
variance γ (s) has an exponential decay—as is the case
in stationary ARMA models—then the bias of σ̃ 2

b be-
comes O(ξ−b) for some ξ > 1; see Politis and Romano
(1995), Politis, Romano and Wolf (1999, Section 10.5)
or Bertail and Politis (2001).

A theoretical disadvantage of σ̃ 2
b is that it is not

almost surely nonnegative; this comes as no surprise
since the trapezoidal lag window corresponds to a
higher-order (actually, infinite-order) smoothing ker-
nel: all kernels of order higher than 2 share this
problem. Notably, the fast convergence of σ̃ 2

b to a
nonnegative limit practically alleviates this problem.
Nevertheless, the implication is that σ̃ 2

b is not associ-
ated with some bootstrap distribution for X̄n, as is the
case with σ̂ 2

b,BB; if σ̃ 2
b could have been gotten as the

variance of a probability distribution (empirical or not),
then it should be nonnegative by necessity.

To come up with a method that gives improved
variance estimation while at the same time being able
to produce bootstrap pseudo-series and a bootstrap
distribution for X̄n, the following key idea may be
employed: the Bi blocks may be tapered, that is,
their end points are shrunk toward a target value,
before being concatenated to form a bootstrap pseudo-
series; this is the tapered block-bootstrap method of
Paparoditis and Politis (2001a, 2002b) which indeed
leads to a variance estimator σ̂ 2

b,TBB that is more
accurate than σ̂ 2

b,BB. In particular, the bias of σ̂ 2
b,TBB

is of order O(1/b2). Although σ̂ 2
b,BB is typically

less accurate than σ̃ 2
b , the tapered block-bootstrap

constructs an estimator of the whole distribution for X̄n

(not just its variance), and this estimator is more
accurate than its (untapered) block-bootstrap analog.
Intuitively, this preferential treatment (tapering) of the
block edges is analogous to the weighting of the
boundary points in constructing µ̂BLUE as discussed in
the Introduction.

2.3 Block Size Choice and Some Further Issues

Recall that the block size b must be chosen in
order to practically implement any of the block re-
sampling/subsampling methods. By the equivalence
of σ̂ 2

b,BB and σ̂ 2
b,SUB to the Bartlett spectral estimator

2πf̂b,λB(0), it is apparent that choosing b is tantamount
to the difficult problem of bandwidth choice in non-
parametric smoothing problems. As in the latter prob-
lem, here, too, there are two main approaches:

(a) Cross-validation. A promising subsampling/
cross-validation approach for block size choice pro-
posed by Hall, Horowitz and Jing (1995).

(b) Plug-in methods. This approach entails work-
ing out an expression for the optimal (with respect to
some criterion) value of b and then estimating/plugging
in all unknown parameters in that expression.

For the plug-in approach to be viable, it is necessary
that the “pilot” estimators to be plugged in are accurate
and not plagued by a difficult block/bandwidth choice
themselves! Both of those issues can be successfully
addressed by using pilot estimators of the trapezoidal
lag window type f̂b,λT; see Paparoditis and Politis
(2001a) or Politis and White (2001). Note that choos-
ing b in the estimator f̂b,λT (or, equivalently, in σ̃ 2

b )
is relatively straightforward: one may pick b = 2m̂,
where m̂ is the smallest integer such that γ̂ (k) 
 0 for
k > m̂. Here γ̂ (k) 
 0 really means γ̂ (k) not signifi-
cantly different from 0, that is, an implied hypothesis
test; see Politis (2001b) for more details.

Finally, note that all of the aforementioned block
resampling/subsampling methods were designed for
stationary time series. What happens if the time series
is not stationary? Although both subsampling and
block resampling will not break down under a mild
nonstationarity—see, for example, Politis, Romano
and Wolf (1999, Chapter 4)—the following interesting
cases may be explicitly addressed:

(i) Seasonal effects. If the time series Xt can be
decomposed as Xt = Yt + Wt , where Yt is stationary
and Wt is random or deterministic of period d , then
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block resampling and subsampling will generally re-
main valid if b is chosen to be an integer multiple
of d . In addition, resampling/subsampling should not
be done from the set {B1,B2, . . . ,Bn−b+1} but rather
from a set of the type {B1,Bd+1,B2d+1, . . . }; that is,
full overlap of the blocks is no longer recommended—
see Politis (2001a).

(ii) Local stationarity. Suppose that the time se-
ries has a slowly changing stochastic structure in the
sense that the joint probability law of (Xt ,Xt+1, . . . ,

Xt+m) changes smoothly (and slowly) with t for
any m; see, for example, Dahlhaus (1997). Then a “lo-
cal” block bootstrap may be advisable; here a bootstrap
pseudo-series is constructed by a concatenation of
k blocks of size b (such that kb 
 n), where the j th
block of the resampled series is chosen randomly from
a distribution (say, uniform) on all the size-b blocks
of consecutive data whose time indices are “close” to
those in the original block. A rigorous description of
the local block bootstrap is given in Paparoditis and
Politis (2002c).

(iii) Unit root—integrated time series. A useful
model in econometrics is a generalization of the
random walk notion given by the unit root model
under which Xt is not stationary but Dt is, where
Dt = Xt − Xt−1 is the series of first differences—see,
for example, Hamilton (1994). In this case, a block
bootstrap of the differences Dt can be performed
yielding D∗

1 ,D∗
2 , . . . , and a bootstrap pseudo-series

for Xt can be constructed by “integrating” the D∗
t , that

is, by letting X∗
t = ∑t

i=1 D∗
i . This idea is effectively

imposing a sample path “continuity” on the bootstrap
realization X∗

t ; see Paparoditis and Politis (2001c). On
the other hand, if a unit root is just suspected to exist,
a bootstrap test of the unit root hypothesis (vs. the
alternative of stationarity) may be constructed using
similar ideas; see Paparoditis and Politis (2003).

2.4 Why Have Bootstrap Methods Been so
Popular?

Finally, it is interesting to recall the two main
reasons for the immense success and popularity of the
i.i.d. bootstrap of Efron (1979):

(a) The bootstrap was shown to give valid estimates
of distribution and standard error in “difficult” situa-
tions; a prime example is the median of i.i.d. data for
which the (delete-1) jackknife was known to fail, and
the asymptotic distribution is quite cumbersome.

(b) In “easy” cases where there exist easy-to-
construct alternative distribution estimators, for exam-
ple, the regular sample mean with its normal

large-sample distribution, the (Studentized) bootstrap
was shown to outperform those alternatives, that is, to
possess “second-order accuracy”—see Hall (1992) for
details.

In the case of dependent stationary data, under
some regularity conditions, the appropriately standard-
ized/Studentized block bootstrap (in all its variations,
including the stationary and circular bootstrap) also
possesses a “higher-order accuracy” property when es-
timating the distribution of the sample mean; see Lahiri
(1991, 1999) and Götze and Künsch (1996). [Note that
it is not advisable to use a simple block-bootstrap esti-
mate of standard error for the Studentization as it does
not converge sufficiently fast; however, one may use an
estimator such as σ̃b—see Davison and Hall (1993) or
Bertail and Politis (2001).] Nevertheless, the gains in
accuracy are not as spectacular as in the i.i.d. case; in
addition, estimating the standard error accurately is the
dominant factor so that it is somewhat of a luxury to
think of capturing higher-order moments.

The bottom line is that practically all time series
problems fall under the “difficult” category, and thus
the aforementioned block resampling/subsampling
methods become invaluable. To give a simple exam-
ple, consider the problem of estimating the distribution
of the lag-p sample autocorrelation ρ̂(k) = γ̂ (k)/γ̂ (0),
for some fixed k, with the purpose of constructing a
confidence interval or hypothesis test concerning ρ(k).
It is quite straightforward to show, under usual moment
and mixing conditions, that the large-sample distribu-
tion of

√
n(ρ̂(k) − ρ(k)) is N(0,V 2

k ). Unfortunately,
the variance V 2

k is, in general, intractable involving in-
finite sums of fourth-order cumulants and so on; see,
for example, Romano and Thombs (1996). Neverthe-
less, block resampling and subsampling effortlessly
yield consistent estimators of V 2

k and the distribution
of

√
n(ρ̂(k) − ρ(k)).

One may ask how it had been possible in the pre-
bootstrap days to practically address such a basic
time series inference question regarding the autocor-
relations; the answer is that people had to resort to
some more restrictive model assumptions. For exam-
ple, a celebrated formula for V 2

k exists involving in-
finite sums of the (unknown) ρ(·) coefficients but no
higher cumulants; this formula is due to Bartlett but
is valid only under the assumption that the time series
{Xt } is linear; that is, it satisfies an equation of the type

Xt = µ +
∞∑

i=−∞
ψiZt−i ,(4)
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where Zt ∼ i.i.d. (0, τ 2) and the ψj coefficients
are absolutely summable—see Brockwell and Davis
(1991). Nonetheless, the class of nonlinear time series
is vast; for example, the simple time series defined by
Yt = ZtZt−1 for all t is nonlinear and 1-dependent
although uncorrelated. Other examples of nonlinear
time series models include the ARCH/GARCH and
bilinear models that are of particular prominence in
econometric analysis; see, for example, Granger and
Andersen (1978), Subba Rao and Gabr (1984), Tong
(1990), Bollerslev, Chou and Kroner (1992) or Engle
(1995).

To give a concrete example, the ±1.96/
√

n bands
that most statistical programs like S+ automatically
overlay on the correlogram [the plot of ρ̂(k) vs. k]
are based on Bartlett’s formula. These bands are
usually interpreted as giving an implied hypothesis
test of the first few ρ(k) being 0 or not, ρ(1) in
particular; however, this interpretation is true only
if one is willing to assume (4). If the time series
{Xt } is not linear, then Bartlett’s formula and the
±1.96/

√
n bands are totally uninformative and may

be misleading; resampling and subsampling may well
give the only practical solution in this case—see, for
example, Romano and Thombs (1996).

As an illustration, consider a realization X1, . . . ,

X200 from the simple ARCH(1) model:

Xt = Zt

√
0.1 + 0.9X2

t−1,

where Zt ∼ i.i.d. N(0,1); the sample path is plotted in
Figure 1(a), while the sample autocorrelation function
is given in Figure 1(b).

Note that the time series {Xt } is uncorrelated al-
though not independent. Consequently, the ±1.96/

√
n

bands are misleading as they indicate that ρ̂(1) is sig-
nificantly different from 0. Because of the nonlinearity
present, the correct 95% confidence limits should be
approximately ±4.75/

√
n, that is, more than two times

wider than the ones given by Bartlett’s formula. Us-
ing the correct confidence limits ±0.34, the estimate
ρ̂(1) = −0.33 is seen to not be significantly different
from 0 (if only barely).

Figure 1(c) depicts the subsampling estimator of the
standard error of ρ̂(1) as a function of the subsampling
block size b. It is apparent that the block size choice
discussed in the previous section is an important issue:
for good results, b must be large but small with respect
to n = 200. With this caveat, the subsampling method
seems to be successful in capturing/estimating the
correct standard error in this nonlinear setting. Even for
a wide range of block size values going from b = 50

(a)

(b)

(c)

FIG. 1. (a) Sample path of an ARCH(1) time series with n = 200;
(b) sample autocorrelation of the series with the customary
±1.96/

√
n bands; (c) subsampling-based estimates of the standard

error of ρ̂(1) as a function of the subsampling block size b.

to 100, the subsampling estimator is 0.14 or above,
which is a reasonable approximation of the target value
of 0.17.
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3. MODEL-BASED RESAMPLING
FOR TIME SERIES

3.1 Linear Autoregressions

Historically speaking, block resampling/sub-
sampling was not the first approach to bootstrapping
non-i.i.d. data. Almost immediately following Efron’s
(1979) paper, the residual-based bootstrap for lin-
ear regression and autoregression was introduced and
studied; cf. Freedman (1981, 1984) and Efron and
Tibshirani (1986, 1993). In the context of the semi-
parametric AR(p) model of (1), the residual-based
bootstrap amounts to an i.i.d. bootstrap of (a centered
version of ) the estimated residuals Ẑt defined by

Ẑt = (Xt − X̄n)

− φ̂1(Xt−1 − X̄n) − · · · − φ̂p(Xt−p − X̄n),

where φ̂j are some consistent estimators of φj ,
for example, the Yule–Walker estimators. Having
constructed bootstrap pseudo-residuals Ẑ∗

1 , Ẑ∗
2 , . . . ,

a bootstrap series X∗
1 , . . . ,X∗

n can be generated via the

recursion (1) with φ̂j in place of φj ; finally, our sta-
tistic of interest can be recomputed from the bootstrap
series X∗

1 , . . . ,X∗
n.

If the assumed AR(p) model holds true, then the
above residual-based bootstrap works well for the
sample mean and other more complicated statistics,
and even enjoys a higher-order accuracy property
similar to Efron’s i.i.d. bootstrap; see Bose (1988).
Nevertheless, one never really knows whether the
underlying stochastic structure conforms exactly to
an AR(p) model, and furthermore one would not know
the value of p. A more realistic approach followed by
the vast majority of practitioners is to treat (1) only as
an approximation to the underlying stochastic structure
and to estimate the order p from the data by criteria
such as the AIC; see, for example, Shibata (1976).
Doing so, one is implicitly assuming that {Xt } is a
linear time series possessing an AR(∞) representation
of the form:

(Xt − µ) =
∞∑

i=1

φi(Xt−i − µ) + Zt ,(5)

where Zt ∼ i.i.d. (0, τ 2) and the φj coefficients are
absolutely summable.

Of course, in fitting model (5) to the data, a fi-
nite order p must be used which, however, is al-
lowed to increase as the sample size n increases.
Thus, the residual-based bootstrap applies verbatim

to the AR(∞) model of (5) with the understanding
that p increases as a function of n; this is the so-
called AR(∞) “sieve” bootstrap employed by
Swanepoel and van Wyk (1986) and rigorously investi-
gated by Kreiss (1988, 1992), Paparoditis (1992) and
Bühlmann (1997), among others. Conditions for the
validity of the AR(∞) bootstrap typically require that

p → ∞ as n → ∞ but with pk/n → 0,(6)

where k is a small integer, usually 3 or 4. Consistency
still holds when the order p is chosen via the AIC; that
is, it is data dependent.

Under assumption (5), Choi and Hall (2000) proved
a higher-order accuracy property of the AR(∞) boot-
strap in the sample mean case, while Bühlmann (1997,
2002) showed that the AR(∞) bootstrap estimator
σ̂ 2

AR(p) of σ 2
n = Var(

√
nX̄n) has a performance compa-

rable to the aforementioned optimal estimator σ̃ 2
b . Both

σ̂ 2
AR(p) and σ̃ 2

b exhibit an adaptivity to the strength of
dependence present in the series {Xt }, that is, they be-
come more accurate when the dependence is weak, and
they both achieve a close to

√
n rate of convergence

for series with exponentially decaying covariance γ (s),
for example, in the case of stationary ARMA models.
Not surprisingly, the best performance for σ̂ 2

AR(p) is
achieved when {Xt } satisfies a finite-order AR model,
that is, a linear Markovian structure, whereas the best
performance for σ̃ 2

b is achieved when {Xt } has an
m-dependent structure, for example, a finite-order MA
model. Nevertheless, σ̃ 2

b is more generally valid. Even
among the class of linear time series (4), there are
many series that do not satisfy (5), for example, the
simple MA(1) model Xt = Zt + Zt−1, where Zt ∼
i.i.d. (0, τ 2).

3.2 Nonlinear Autoregressions and
Markov Processes

Although the class of linear time series is quite
rich including, for example, all Gaussian time series,
as mentioned before the class of nonlinear time se-
ries is vast. It is intuitive that the AR(∞) bootstrap
will generally not give good results when applied to
data X1, . . . ,Xn from a nonlinear time series. [Unless,
of course, it so happens that the statistic to be boot-
strapped has a large-sample distribution that is totally
determined by the first two moments of {Xt }, i.e., by
µ and γ (·); this is actually what happens in the sample
mean case.] See, for example, Bühlmann (2002) for a
discussion and some illustrative examples.

The linearity of model (1) is manifested in the fact
that the conditional expectation m(Xt−1, . . . ,Xt−p) :=
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E(Xt |Xt−1, . . . ,Xt−p) is a linear function of the vari-
ables (Xt−1, . . . ,Xt−p) just as in the Gaussian case.
If we do not know and/or assume that m(·) is lin-
ear, it may be of interest to estimate its functional
form for the purposes of prediction of Xn+1 given
the recent observed past Xn, . . . ,Xn−p+1. Under some
smoothness assumptions on m(·), this estimation can
be carried out by different nonparametric methods, for
example, kernel smoothing; see, for example, Masry
and Tjøstheim (1995). The bootstrap is then called
to provide a measure of accuracy of the resulting es-
timator m̂(·), typically by way of constructing con-
fidence bands. With this objective, many different
resampling methods originally designed for nonpara-
metric regression successfully carry over to this au-
toregressive framework. We mention some prominent
examples:

A. Residual-based bootstrap. Assuming the struc-
ture of a nonlinear (and heteroscedastic) autore-
gression:

Xt = m(Xt−1, . . . ,Xt−p)

+ v(Xt−1, . . . ,Xt−p)Zt ,
(7)

where Zt ∼ i.i.d. (0,1) and m(·) and v(·) are
two (unknown) smooth functions, estimates of
the residuals can be computed by Ẑt = (Xt −
m̃(Xt−1, . . . ,Xt−p))/ṽ(Xt−1, . . . ,Xt−p), where
m̃(·) and ṽ(·) are preliminary [oversmoothed as in
Härdle and Bowman (1988)] nonparametric esti-
mators of m(·) and v(·). Then an i.i.d. bootstrap can
be performed on the (centered) residuals Ẑt , and
recursion (7)—with m̂(·) and v̂(·) in place of m(·)
and v(·)—can be used to generate a bootstrap se-
ries X∗

1 , . . . ,X∗
n from which our target statistic, for

example, m̂∗(·), can be recomputed. The consis-
tency of this procedure under some conditions has
been recently shown in a highly technical paper by
Franke, Kreiss and Mammen (2002).

B. Wild and local bootstrap. Let Xt−1 = (Xt−1, . . . ,

Xt−p) and consider the scatterplot of Xt vs. Xt−1;
smoothing this scatterplot will give our estima-
tor m̂(·) as well as estimators for higher-order con-
ditional moments if so desired. Interestingly, the
wild bootstrap of Wu (1986) and the local boot-
strap of Shi (1991) both have a direct application
in this dependent context; their respective imple-
mentation can be performed exactly as in the inde-
pendent (nonparametric) regression setting without
even having to assume the special structure implied
by the nonlinear autoregression (7) which is quite

remarkable. Neumann and Kreiss (1998) show the
validity of the wild bootstrap in this time series con-
text, while Paparoditis and Politis (2000) show the
validity of the local bootstrap under very weak con-
ditions.

Comparing the above two methods, that is, the
residual-based bootstrap vs. the wild/local bootstrap,
we note the following: the wild/local bootstrap meth-
ods are valid under weaker assumptions, as, for exam-
ple, when (7) is not assumed; on the other hand, the
residual-based bootstrap is able to generate new boot-
strap stationary pseudo-series X∗

1 , . . . ,X∗
n from which

a variety of statistics may be recomputed as opposed to
just generating new scatterplots to be smoothed.

In order to have our cake and eat it, too, the Markov-
ian local bootstrap (MLB for short) was recently in-
troduced by Paparoditis and Politis (2001b, 2002a). To
describe it, assume for the sake of argument that the
time series {Xt } is Markov of order p, with p = 1 for
simplicity. Given the data X1, . . . ,Xn, the MLB proce-
dure constructs a bootstrap sample path X∗

1 , . . . ,X∗
n as

follows:

(a) Assign X∗
1 a value chosen randomly from the

set {X1, . . . ,Xn}. Suppose this chosen value is equal
to Xt1 (for some t1).

(b) Assign X∗
2 a value chosen randomly from the set

{Xs+1 : |Xt1 −Xs | ≤ h and 1 ≤ s < n−1}, where h is a
bandwidth-type parameter. Suppose this chosen value
is equal to Xt2 .

(c) Assign X∗
3 a value chosen randomly from the set

{Xs+1 : |Xt2 − Xs | ≤ h and 1 ≤ s < n − 1}. Repeat the
above until the full bootstrap sample path X∗

1 , . . . ,X∗
n

is constructed.

The lag-1 (i.e., p = 1) MLB described above is capa-
ble of capturing the transition probability, as well as the
two-dimensional marginal of the Markov process {Xt };
thus, it can capture the whole infinite-dimensional dis-
tribution of {Xt } since that is totally determined by the
two-dimensional marginal via the Markov property. To
appreciate why, consider momentarily the case where
{Xt } has a finite state space, say {1,2, . . . , d}, and sup-
pose that Xt1 from part (a) equals the state 1. Then we
can even take h = 0, and the set {Xs+1 : |Xt1 −Xs | ≤ h}
is simply the set of all data points whose predecessor
equaled 1. Choosing randomly from this set is like gen-
erating data from the empirical transition function, that
is, an estimate of P (Xt+1 = ·|Xt = 1). In the general
continuous-state case, consistency of the MLB requires
that we let h → 0 as n → ∞, but at a slow enough rate
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(e.g., nh → ∞) sufficient to ensure that the cardinal-
ity of sets of the type {Xs+1 : |Xt − Xs | ≤ h} increases
with n.

The above MLB algorithm can be easily modi-
fied to capture the Markov(p) case for p ≥ 1. It
can then generally be proven—cf. Paparoditis and
Politis (2001b, 2002a)—that the MLB bootstrap
pseudo-series X∗

1 ,X∗
2, . . . is stationary and Markov of

order p and that the stochastic structure of {X∗
t } ac-

curately mimics the stochastic structure of the original
Markov(p) series {Xt }.

Note that the assumption of a Markov(p) structure
is more general than assuming (7). It should be
stressed, however, that the applicability of the MLB
is not limited to Markov processes: the lag-p MLB
accurately mimics the (p + 1)-joint marginal of a
general stationary {Xt } process, and therefore could
be used for inference in connection with any statistic
whose large-sample distribution only depends on this
(p + 1)-joint marginal; in that sense, the MLB is
actually a model-free method. Prime examples of
such statistics are the aforementioned kernel-smoothed
estimators of the conditional moments m(·) and v(·);
see, for example, Paparoditis and Politis (2001b).

Finally, note that a closely related method to the
MLB is the Markov bootstrap of Rajarshi (1990) that
also possesses many favorable properties; see, for ex-
ample, Horowitz (2003) who also shows a higher-order
accuracy property. The Markov bootstrap proceeds by
nonparametrically estimating the transition density as
a ratio of two kernel-smoothed density estimators (the
joint over the marginal). A bootstrap series X∗

1 , . . . ,X∗
n

is generated by starting at an arbitrary data point and
then sampling from this explicitly estimated transition
density.

The relation between the MLB and the Markov boot-
strap of Rajarshi (1990) is analogous to the relation
between Efron’s (1979) i.i.d. bootstrap (that samples
from the empirical) and the so-called smoothed boot-
strap (that samples from a smoothed empirical); for ex-
ample, the MLB only generates points X∗

t that actually
belong to the set of data points {X1, . . . ,Xn}, while the
Markov bootstrap generates points X∗

t that can be any-
where on the real line. By analogy to the i.i.d. case,
it is intuitive here, too, that this extra smoothing may
well be superfluous at least in the case of statistics
such as the conditional/unconditional moments and
functions thereof. Nevertheless, in different situations,
for instance, if the statistic under consideration has a
large-sample distribution that depends on the underly-
ing marginal densities—as opposed to distributions—

this explicit smoothing step may be advisable. An ex-
ample in the i.i.d. case is given by the sample me-
dian (and other nonextreme sample quantiles) where
the smoothed bootstrap outperforms the standard boot-
strap; see, for example, Hall, DiCiccio and Romano
(1989).
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