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The Bootstrap in Econometrics
Joel L. Horowitz

Abstract. This paper presents examples of problems in estimation and
hypothesis testing that demonstrate the use and performance of the bootstrap
in econometric settings. The examples are illustrated with two empirical
applications. The paper concludes with a discussion of topics on which
further research is needed.
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1. INTRODUCTION

Many important statistics in econometrics have com-
plicated asymptotic distributions that depend on nui-
sance parameters and, therefore, cannot be tabulated.
Examples include the conditional Kolmogorov test sta-
tistic of Andrews (1997) and Manski’s (1975, 1985)
maximum score estimator for a binary-response model.
The bootstrap and related resampling techniques pro-
vide practical methods for estimating the asymptotic
distributions of such statistics. In other cases, the
statistics of interest have a standard distribution (e.g.,
bivariate normal) but with a complicated covariance
matrix that is difficult to work with analytically (e.g.,
Horowitz and Manski, 2000). Again, the bootstrap
provides a practical method for carrying out inference.
Finally, it is not unusual for first-order asymptotic ap-
proximations to be very inaccurate with the sample
sizes that are found in applications. When this happens,
the difference between the true and nominal coverage
probabilities (error in the coverage probability, or ECP)
of confidence intervals can be very large. Similarly, the
differences between the true and nominal probabilities
that a test rejects a correct null hypothesis (error in
the rejection probability, or ERP) can be very large.
Consequently, inference based on first-order asymp-
totic approximations can be highly misleading. White’s
(1982) information matrix test is a well-known exam-
ple of this, but there are many others. The bootstrap
often greatly reduces the ECPs of confidence intervals
and the ERPs of tests, thereby making reliable infer-
ence possible.
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Section 2 of this paper provides examples of prob-
lems in estimation and hypothesis testing that illustrate
the use and performance of the bootstrap in econo-
metric settings. Section 3 presents two empirical ap-
plications that are based on the examples of Section 2.
Section 4 discusses topics on which further research is
needed.

2. APPLICATIONS OF THE BOOTSTRAP AND
OTHER RESAMPLING TECHNIQUES

IN ECONOMETRICS

Section 2.1 provides examples of statistics with com-
plicated asymptotic distributions that depend on nui-
sance parameters and, therefore, cannot be tabulated.
Section 2.2 provides examples in which the bootstrap
reduces the ERP of a test.

2.1 Statistics with Nonpivotal Asymptotic
Distributions

EXAMPLE 1 [The conditional Kolmogorov test of
Andrews (1997)]. Let Y ∈ R

V and X ∈ R
K be ran-

dom variables. Let H(y|x) = P (Y ≤ y|X = x) and let
� ⊂ R

L be a parameter set. Andrews (1997) devel-
ops a test of the hypothesis H0 :H(y|x) = F(y|x, θ)

almost surely for some function F and some θ ∈ �.
The alternative hypothesis is that there is no θ ∈ �

such that H(y|x) = F(y|x, θ) for almost every x. Let
{Yi,Xi : i = 1, . . . , n} be a random sample of (Y,X),
θn be an estimator of θ that is n−1/2consistent under
H0 and I be the indicator function. Then the condi-
tional Kolmogorov test statistic is

CKn = max
j≤n

∣∣∣∣∣n
−1/2

n∑

i=1

[
I (Yi ≤ Yj )

− F(Yj |Xi, θn)
]
I (Xi ≤ Xj)

∣∣∣∣∣.
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Andrews gives conditions under which

CKn
d→ sup

z∈Z
|ν(z)|,

where Z = supp(Y,X) and ν(·) is a mean-zero
Gaussian process whose covariance function depends
on θ and the distribution of X. Critical values of CKn

cannot be tabulated. A bootstrap critical value can be
obtained by drawing bootstrap samples from the esti-
mated parametric model F(y|x, θn). Specifically, for
each i = 1, . . . , n, let Ŷi be drawn randomly from
the distribution whose cumulative distribution function
(CDF) is F(y|Xi, θn). Let CKnb denote the version of
the test statistic that is obtained by using the bootstrap
sample {Ŷi,Xi : i = 1, . . . , n}. The α-level bootstrap
critical value is then the 1 − α quantile of the empiri-
cal distribution of CKnb that is obtained from repeated
bootstrap sampling. Andrews (1997) gives conditions
under which the bootstrap procedure consistently esti-
mates the asymptotic distribution of CKn, and he pro-
vides Monte Carlo evidence indicating that the ERP of
the test with bootstrap critical values is small with sam-
ples of practical size.

EXAMPLE 2 [Manski’s (1975, 1985) maximum
score estimator]. Manski considers the binary-
response model

Y = I (X′β − U ≥ 0),(1)

where X ∈ R
K is an observed random variable,

X′ is the transpose of the column vector X, β is a
K-vector of constant parameters to be estimated and
U is an unobserved random variable that satisfies
median(U |X = x) = 0 almost surely. The distribu-
tion of U is assumed to satisfy mild regularity con-
ditions but is otherwise unknown. This version of
the binary-response model contains probit and logit
models as special cases (i.e., if U has the standard
normal or logistic distributions) but is much more
flexible than a probit or logit model. For example,
(1) permits U to have heteroscedasticity of unknown
form. Let {Yi,Xi : i = 1, . . . , n} be a random sample
of (Y,X). The maximum score estimator of β is

bn = arg max
b∈B

n∑

i=1

(2Yi − 1)I (X′
ib ≥ 0),(2)

where B is a compact parameter set. Since β is iden-
tified only up to scale, it may be assumed without loss
of generality that ‖β‖ = 1 and that B is the surface of

the unit sphere in R
K . Manski (1985) gives conditions

under which bn → β almost surely as n → ∞. The as-
ymptotic distribution of the centered, scaled maximum
score estimator was derived by Cavanagh (1987) and
Kim and Pollard (1990). These investigators showed
that n1/3(bn − β) is distributed as the maximum of a
Gaussian process with quadratic drift. The asymptotic
distribution depends on unknown population parame-
ters and, therefore, cannot be tabulated.

Manski and Thompson (1986) proposed using the
bootstrap to carry out inference with the maximum
score estimator and gave Monte Carlo evidence in-
dicating that the bootstrap estimates the mean-square
error of bn accurately when P (Y = 1|X = x) is a
continuous function of x. However, there is as yet no
proof that the bootstrap consistently estimates the as-
ymptotic distribution of the maximum score estimator.
Moreover, Delgado, Rodríguez-Poo and Wolf (2001)
provide Monte Carlo evidence indicating that the boot-
strap does not provide correct critical values for testing
hypotheses about β , which suggests that the bootstrap
is inconsistent.

An alternative approach is to base inference on the
subsampling procedure of Politis and Romano (1994).
This procedure consistently estimates the asymptotic
distribution of a statistic under very weak assumptions.
Delgado, Rodríguez-Poo and Wolf (2001) describe the
application of subsampling to the maximum score es-
timator and propose a data-based method for choosing
the sizes of the subsamples. They also present Monte
Carlo evidence in which the ERPs of tests of hypothe-
ses about β are quite small with samples of 100–200
observations.

A third possibility is to replace the indicator func-
tion in (2) with a smooth function. Specifically, let
K be a smooth function, possibly but not necessar-
ily a distribution function, that satisfies K(−∞) = 0
and K(∞) = 1. Let {hn :n = 1,2, . . .} be a sequence
of strictly positive constants (bandwidths) that satisfies
hn → 0 as n → ∞. The smoothed maximum score es-
timator of β,bns , satisfies

bns = arg max
b∈B

n∑

i=1

(2Yi − 1)K(X′
ib/hn).(3)

Horowitz (1992) shows that under assumptions that
are stronger than those of Manski (1975, 1985) but
still quite weak, nr(bns − β) is asymptotically normal,
where 2/5 ≤ r < 1/2 and the exact value of r depends
on the smoothness of the distribution of X′β and
of P (Y = 1|X = x). Monte Carlo evidence suggests
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that the asymptotic normal approximation can be
inaccurate with samples of practical size. However,
Horowitz (2002) shows that the bootstrap, which is
implemented by sampling the data randomly with
replacement, provides asymptotic refinements for tests
of hypotheses about β and produces low ERPs for
these tests. Thus, the bootstrap provides a practical way
to carry out inference with the smoothed maximum
score estimator.

EXAMPLE 3 [The Box–Pierce (1970) test for ser-
ial correlation of a time series]. The Box–Pierce sta-
tistic is often used to test the hypothesis that a time
series is independently and identically distributed
(i.i.d.) against the alternative that at least one of its first
K autocorrelation coefficients is nonzero. The test
statistic is asymptotically chi-square distributed with
K degrees of freedom when the null hypothesis is true,
but it has a complicated asymptotic distribution that
depends on nuisance parameters when, as often hap-
pens, for example, with data in finance, the time se-
ries is uncorrelated but serially dependent. Horowitz,
Lobato, Nankervis and Savin (2003) proposed using
a double blocks-of-blocks bootstrap procedure to ob-
tain critical values for the Box–Pierce statistic when
the time series of interest is not assumed to be i.i.d. un-
der the null hypothesis. This procedure makes weaker
assumptions about the data generation process than
do several other tests of the null hypothesis of no
serial correlation in the presence of serial depen-
dence (e.g., Diebold, 1986; Romano and Thombs,
1996; Guo and Phillips, 1998; Lobato, Nankervis and
Savin, 2001). Horowitz, Lobato, Nankervis and Savin
(2003) present Monte Carlo evidence indicating that
the Box–Pierce test with critical values based on their
bootstrap procedure has low ERPs and power that
is comparable to the power of a modified (though
difficult to compute) version of the Box–Pierce sta-
tistic (Lobato, Nankervis and Savin, 2002) that is
asymptotically chi-square distributed when the time
series is serially uncorrelated but possibly serially de-
pendent.

2.2 Asymptotic Refinements

It is well known that the bootstrap provides as-
ymptotic refinements for tests and confidence inter-
vals that are based on asymptotically pivotal statistics
(see, e.g., Hall, 1992, among many others). This sec-
tion presents two important econometric examples in
which the bootstrap provides very large reductions in
the ERP of a test or the ECP of a confidence interval.

EXAMPLE 4 [White’s (1982) information matrix
(IM) test]. This is a specification test for parametric
models estimated by maximum likelihood. It tests the
hypothesis that the Hessian and outer-product forms of
the information matrix are equal. Rejection implies that
the model is misspecified. The test statistic is asymp-
totically chi-square distributed, but the asymptotic dis-
tribution is a poor approximation of the finite-sample
distribution. Monte Carlo experiments carried out by
many investigators have shown that with asymptotic
critical values and sample sizes in the range found in
applications, the true and nominal probabilities of re-
jecting a correct model can differ by a factor of 10
or more (Taylor, 1987; Kennan and Neumann, 1988;
Orme, 1990; Horowitz, 1994).

The IM test statistic satisfies the assumptions of
Hall’s (1992) smooth function model, so the bootstrap
provides asymptotic refinements. Horowitz (1994) re-
ports the results of Monte Carlo experiments that
investigate the ERPs of the IM test with bootstrap crit-
ical values. Some of these results are summarized in
Table 1. The table gives results for two asymptoti-
cally equivalent forms of the test: the Chesher (1983)
and Lancaster (1984) form and White’s (1982) original
form. The Chesher–Lancaster form is easier to com-
pute than the White form, which requires estimation of
expected values of third derivatives of the log density,
but the asymptotic chi-square approximation is espe-
cially poor for the Chesher–Lancaster form. The ex-
periments reported here consisted of applying the two
forms of the IM test to Tobit and binary probit mod-
els. [In a Tobit model, Y = max(X′β + U,0), where
U ∼ N(0, σ 2) independently of X, and β and σ 2

are unknown parameters.] The details are described
in Horowitz (1994). It can be seen from Table 1 that
the ERPs are very large when critical values based
on the asymptotic chi-square distribution are used.
When bootstrap critical values are used, however, the
ERPs are very small. In the experiments reported in
Table 1 as well as the additional experiments reported
in Horowitz (1994), the bootstrap essentially elimi-
nates the differences between the true and nominal re-
jection probabilities of the two forms of the IM test.

EXAMPLE 5 (Estimation of covariance structures).
In estimation of covariance structures, the objective
is to estimate the covariance matrix of a k × 1 vec-
tor X subject to restrictions that reduce the number
of unique, unknown elements to r < k(k + 1)/2. Es-
timates of the r unknown elements can be obtained
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TABLE 1
Empirical rejection probabilities of nominal 0.05-level information matrix tests of probit and Tobit models

Rejection probability using

Distribution Asymptotic critical values Bootstrap critical values

N of X White Chesher–Lancaster White Chesher-Lancaster

Binary probit models

50 N(0,1) 0.385 0.904 0.064 0.056
U(−2,2) 0.498 0.920 0.066 0.036

100 N(0,1) 0.589 0.848 0.053 0.059
U(−2,2) 0.632 0.875 0.058 0.056

Tobit models

50 N(0,1) 0.112 0.575 0.083 0.047
U(−2,2) 0.128 0.737 0.051 0.059

100 N(0,1) 0.065 0.470 0.038 0.039
U(−2,2) 0.090 0.501 0.046 0.052

by minimizing the weighted distance between sam-
ple moments and the estimated population moments.
Weighting all sample moments equally produces the
equally weighted minimum distance (EWMD) esti-
mator, whereas choosing the weights to maximize
asymptotic estimation efficiency produces the optimal
minimum distance (OMD) estimator.

The OMD estimator dominates the EWMD estima-
tor in terms of asymptotic efficiency, but it has poor
finite-sample performance in applications (Abowd and
Card, 1989). Altonji and Segal (1994, 1996) carried
out an extensive Monte Carlo investigation of the
finite-sample performance of the OMD estimator. They
found that the estimator is badly biased with samples of
the sizes often found in applications and that its finite-
sample root-mean-square estimation error (RMSE) of-
ten greatly exceeds the RMSE of the asymptotically
inefficient EWMD estimator. In addition, the true cov-
erage probabilities of asymptotic confidence intervals
based on the OMD estimator tend to be much lower
than the nominal coverage probabilities.

Horowitz (1998) reports the results of a Monte Carlo
investigation of the ability of the bootstrap to reduce
the ERPs of nominal 95% symmetrical confidence in-
tervals based on the OMD estimator. In each experi-
ment, X has 10 components, and the sample size is n =
500. The j th component of X,Xj (j = 1, . . . ,10) is
generated by Xj = (Zj + ρZj+1)/(1 + ρ2)1/2, where
Z1, . . . ,Z11 are i.i.d. random variables with means of 0
and variances of 1, and ρ = 0.5. The Z’s are sam-

pled from five different distributions depending on the
experiment. It is assumed that ρ is known and that
the components of X are known to be identically dis-
tributed and to follow MA(1) processes. The estima-
tion problem is to infer the scalar parameter θ that
is identified by the moment conditions Var(Xj ) = θ

(j = 1, . . . ,10) and Cov(Xj ,Xj−1) = ρθ/(1 + ρ2)

(j = 2, . . . ,10).
The results of the experiments are summarized in

Table 2. The coverage probabilities of confidence in-
tervals based on asymptotic critical values are far be-
low the nominal value of 0.95 except in the experiment
with uniform Z’s. However, the use of bootstrap criti-
cal values greatly reduces the ERPs. In the experiments
with normal, Student t , uniform or exponential Z’s, the
bootstrap essentially eliminates the errors in the cover-
age probabilities of the confidence intervals.

TABLE 2
Empirical coverage probabilities of nominal 95% symmetrical

confidence intervals based on the OMD estimator

Asymptotic Bootstrap
Distribution of Z critical value critical value

Uniform 0.93 0.96
Normal 0.85 0.95
Student t with 10 d.f. 0.79 0.95
Exponential 0.54 0.96
Lognormal 0.03 0.91
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3. EMPIRICAL APPLICATIONS

This section presents two empirical applications of
the bootstrap. One consists of smoothed maximum
score estimation of a model of the choice between
automobile and transit for travel to work. The other
consists of OMD estimation of the covariance structure
of year-to-year changes in the logarithms of annual
earnings and hours worked.

3.1 Smoothed Maximum Score Estimation of a
Work Trip Mode Choice Model

Horowitz (1993) used the smoothed maximum score
method to estimate the parameters of a model of the
choice between automobile and transit for work trips
in the Washington, DC, area. The model is given
by (1), and the estimator of the parameter vector, β , is
given by (3). The explanatory variables are defined in
Table 3. Scale normalization is achieved by setting
the coefficient of DCOST equal to 1. The data consist
of 842 observations sampled randomly from the Wash-
ington, DC, area transportation study. Each record
contains information about a single trip to work, in-
cluding the chosen mode (automobile or transit) and
the values of the explanatory variables. Column 2 of
Table 3 shows the smoothed maximum score estimates
of the model’s parameters. Column 3 shows the half-
widths of nominal 90% symmetrical confidence inter-
vals based on the asymptotic normal approximation
(the half-width equals 1.67 times the standard error of
the estimate). Column 4 shows half-widths obtained

TABLE 3
Smoothed maximum score estimates of a work trip mode

choice model

Half-width of nominal
90% confidence interval based on

Estimated Asymptotic normal
Variable∗ coefficient approximation Bootstrap

INTRCPT −1.5761 0.2812 0.7664
AUTOS 2.2418 0.2989 0.7488
DOVTT 0.0269 0.0124 0.0310
DIVTT 0.0143 0.0033 0.0087
DCOST 1.0∗∗

∗INTRCPT, intercept term equal to 1; AUTOS, number of cars
owned by traveler’s household; DOVTT, transit out-of-vehicle
travel time minus automobile out-of-vehicle travel time (minutes);
DIVTT, transit in-vehicle travel time minus automobile in-vehicle
travel time; DCOST, transit fare minus automobile travel cost ($).
∗∗Coefficient equal to 1 by scale normalization.

from the bootstrap. The bootstrap confidence inter-
vals are 2.5–3 times wider than the intervals based on
the asymptotic normal approximation. The bootstrap
confidence interval for the coefficient of DOVTT con-
tains 0, but the confidence interval based on the as-
ymptotic normal approximation does not. Therefore,
the hypothesis that the coefficient of DOVTT is 0 is
not rejected at the 0.1 level based on the bootstrap but
is rejected based on the asymptotic normal approxi-
mation. Horowitz (2002) shows that the bootstrap pro-
vides asymptotic refinements for hypothesis tests and
confidence intervals based on the smoothed maximum
score estimator. Horowitz (2002) also presents Monte
Carlo evidence indicating that the bootstrap reduces the
ECPs of confidence intervals and the ERPs of hypoth-
esis tests.

3.2 Estimation of Covariance Structures

This section reports results of OMD estimation of
the covariance structure of year-to-year changes in the
logarithms of annual earnings and working hours of
male heads of households in the Panel Study of Income
Dynamics (PSID). The results are taken from Horowitz
(1998), who provides further details on the estimation
method.

The data are those used by Altonji and Segal (1994,
1996). They are based on observations of annual earn-
ings and hours worked of 1536 individuals over the
11-year period 1969–1979. The data provide 10 ob-
servations per individual on year-to-year changes in
the logarithms of earnings and hours. Accordingly,
the covariance matrix of the observations contains 210
separate moments for the various years and lags. How-
ever, Abowd and Card (1989) found that the covari-
ances of observations separated by more than two years
are negligible. Accordingly, the estimates reported here
are based on a vector of 98 variances and covariances
with time lags of up to two years. The estimated model
is stationary, so there are only r = 11 separate covari-
ance parameters. Table 4 shows the estimated covari-
ances and the half-widths of nominal 95% symmetrical
confidence intervals based on the asymptotic normal
approximation and the bootstrap. The bootstrap confi-
dence intervals are 2–3 times wider than the intervals
based on the asymptotic normal approximation. As was
discussed in Section 2, there are both theoretical ar-
guments and Monte Carlo evidence indicating that the
bootstrap intervals have smaller ECPs than do the in-
tervals based on the asymptotic normal approximation.
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TABLE 4
OMD estimates of covariances of logarithms of

earnings and hours

Half-width of nominal
95% confidence interval based on

Covariance Asymptotic normal
parameter∗ Estimate approximation Bootstrap

E(t), E(t) 0.173 0.011 0.025
E(t), E(t − 1) −0.056 0.005 0.012
E(t), E(t − 2) −0.010 0.003 0.008
H(t), H(t) 0.118 0.008 0.018
H(t), H(t − 1) −0.039 0.004 0.009
H(t), H(t − 2) −0.012 0.002 0.007
E(t), H(t) 0.077 0.007 0.016
E(t), H(t − 1) −0.021 0.003 0.005
E(t), H(t − 2) −0.001 0.003 0.008
H(t), E(t − 1) −0.023 0.004 0.010
H(t), E(t − 2) −0.015 0.003 0.007

∗E and H denote logarithms of earnings and hours, respectively.
E(t), E(t) denotes variance of logarithm of earnings; E(t), H(t)

denotes covariance of logarithms of earnings and hours; E(t),
E(t −1) denotes covariance of logarithms of earnings and earnings
lagged by one year, etc.

4. UNSOLVED PROBLEMS: THE BOOTSTRAP FOR
TIME-SERIES DATA

Applied econometric research often involves infer-
ence based on time-series data. Accordingly, there is
much interest in using the bootstrap to reduce the
ERPs of tests and the ECPs of confidence intervals
obtained from time-series data. This raises the ques-
tion of how bootstrap samples should be generated. In
many applications, it is undesirable to assume that the
data generation process (DGP) belongs to a known,
finite-dimensional, parametric family (e.g., a finite-
order ARMA model), so a nonparametric method for
bootstrap sampling is needed. If the DGP is strictly
stationary, then the block bootstrap is the best-known
such method. However, blocking distorts the depen-
dence structure of the DGP, thereby causing the er-
rors of bootstrap estimates to converge more slowly
than is the case with i.i.d. data. For example, when
the block length is chosen optimally, the errors in
block-bootstrap estimates of one-sided and symmetri-
cal distribution functions are O(n−3/4) and O(n−6/5),
respectively (Hall, Horowitz and Jing, 1995), com-
pared to O(n−1) and O(n−3/2) for the bootstrap with
i.i.d. data. The errors made by the asymptotic nor-
mal approximation are O(n−1/2) and O(n−1) for
one-sided and symmetrical distribution functions, re-
spectively. Thus, the improvement in accuracy avail-

able from the block-bootstrap is considerably less than
that from the bootstrap for i.i.d. data. In the case of esti-
mating a symmetrical distribution function, the rate of
convergence of the block-bootstrap estimation error is
only slightly faster than the rate of convergence of the
error made by the asymptotic normal approximation.
Similarly, the rates of convergence of block bootstrap
ERPs and ECPs are relatively slow (Zvingelis, 2001;
Andrews, 2002a). Monte Carlo results have confirmed
this disappointing performance of the block bootstrap
(Hall and Horowitz, 1996).

The poor performance of the block bootstrap has led
to a search for other ways to implement the bootstrap
with dependent data. Bühlmann (1997, 1998), Choi
and Hall (2000), Kreiss (1992) and Paparoditis (1996)
proposed a sieve bootstrap for linear processes. In the
sieve bootstrap, the DGP is approximated by an AR(p)

model in which p increases with increasing sample
size. Bootstrap samples are generated by the estimated
AR(p) model. Choi and Hall (2000) showed that the
ECP of a one-sided confidence interval based on the
sieve bootstrap is O(n−1+ε) for any ε > 0, which is
only slightly larger than the ECP of O(n−1) that is
available when the data are a random sample. However,
the assumption of linearity is too strong for many
applications.

Another possibility is to assume that the DGP is a
(possibly higher order) Markov process or a process
that is well approximated in a suitable sense by a
Markov process. The Markov transition density can
be estimated nonparametrically and bootstrap samples
generated from the DGP that is implied by the es-
timated density. This approach has been investigated
by Rajarshi (1990), Datta and McCormick (1995),
Paparoditis and Politis (2001, 2002) and Horowitz
(2003). Horowitz (2003) gives conditions under which
the errors in Markov bootstrap estimates of one-
sided and symmetrical distribution functions and the
ERPs of one-sided and symmetrical hypothesis tests
are O(n−1+ε) and O(n−3/2+ε), respectively, for any
ε > 0. Thus, the Markov bootstrap improves on the
block bootstrap when the DGP is a Markov process that
satisfies appropriate regularity conditions. However,
the Markov bootstrap suffers from a form of the curse
of dimensionality of nonparametric estimation owing
to the need to carry out nonparametric estimation of
the transition density. Consequently, the Markov boot-
strap is likely to be most suitable in practice for DGPs
that are either low-order Markov processes or can be
approximated well by low-order processes.

It is largely an open question whether there are
practically useful bootstrap methods for time-series
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data whose assumptions about the structure of the
DGP are weaker than those of the Markov bootstrap
but that achieve rates of convergence of ERPs and
ECPs that are the same as or faster than those of the
Markov bootstrap. One possible approach is a mod-
ified block-bootstrap procedure that is described by
Andrews (2002b). More generally, the incomplete-
ness of the current theory of the bootstrap’s abil-
ity to achieve asymptotic refinements is an obstacle
to research about the application of the bootstrap to
time series. The current theory is based on Edgeworth
expansions. Essentially, the bootstrap amounts to car-
rying out a low-order Edgeworth expansion of the
statistic in question. However, if the DGP is strictly
stationary and geometrically strongly mixing, the rel-
evant moments can be estimated with rates of con-
vergence in probability that are only slightly slower
than O(n−1/2). This result can be used to show that
the errors made by an empirical Edgeworth expan-
sion converge more rapidly than do the errors of ei-
ther the block or the Markov bootstrap. However,
the results of Monte Carlo simulations show that the
numerical accuracy of an empirical Edgeworth ex-
pansion is much worse than that of the bootstrap.
Thus, the current Edgeworth-based theory provides
an inadequate guide to the numerical performance of
methods for improving upon first-order asymptotic
approximations. This problem is especially serious
with time-series data because a method whose errors
converge relatively rapidly (an empirical Edgeworth
expansion) has worse numerical performance than
methods whose errors converge relatively slowly (the
block and Markov bootstraps). Accordingly, it would
be useful (though undoubtedly very difficult) to de-
velop a theory of the bootstrap that provides a more
reliable guide to its finite-sample performance.

Bootstrap methods for DGPs with unit roots or coin-
tegration is another area where there are important
opportunities for further research. Methods for obtain-
ing consistent bootstrap estimates when the DGP has or
may have a unit root are now available (Basawa et al.,
1991; Datta, 1996; Ferretti and Romo, 1996; Inoue and
Kilian, 2002; Paparoditis and Politis, 2003; Park,
2002). However, research is only just beginning on
the ability of the bootstrap to provide asymptotic re-
finements when the DGP may have a unit root (Park,
2002). Similarly, there has been little research on ap-
plying the bootstrap to cointegrated data.
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