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Parity: Implementing the
Telecommunications Act of 1996
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Abstract. We discuss various technical problems that have arisen in at-
tempting to implement the Telecommunications Act of 1996, the purpose of
which was to ensure fair competition in the local telecommunications mar-
ket. We treat the interpretation of the “parity” requirement, testing the parity
hypothesis, the effect of correlation, disaggregation and reaggregation, “bal-
ancing,” benchmarks, payment schedules and some computational problems.
Also we discuss the difficulty of working in an adversarial (rather than sci-
entific) environment.

Key words and phrases: Adversarial environment, modified t , permutation
tests, correlation, disaggregation and reaggregation, balancing, benchmarks,
optimal payments, Neyman–Pearson.

1. INTRODUCTION

The concept of “parity” arises when one company
(company B) enters into a contract to provide ser-
vices to the customers of a competitive company
(company A). The concept was incorporated into the
Telecommunications Act of 1996, which mandated that
an incumbent local exchange carrier (ILEC), that is,
an established local telephone company, company B
(think Bell), must provide, on request, for a fair
price, certain services (such as responding to customer
requests for installation or repair) to the customers
of a competitive local exchange carrier (CLEC), com-
pany A (think AT&T), where these services are “. . . at
least equal in quality to that provided by the local ex-
change carrier to itself . . . .”

If company B is found to be in violation, vari-
ous penalties can be imposed by the Federal Commu-
nications Commission (FCC) up to withholding per-
mission to enter or remain in the long-distance mar-
ket.

Clearly the situation imposes a conflict of interest
on company B, which is strongly motivated to give
poor service to company A’s customers in the hope
that they will become dissatisfied and will migrate to
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company B. To prevent this from happening, it is nec-
essary to establish formal procedures to test whether
parity of service is being provided and to prescribe fi-
nancial penalties if noncompliance is detected. Estab-
lishing these procedures has been the topic of lengthy
discussions and negotiations, supervised by the var-
ious state Public Service Commissions (PSCs) and
the Federal Communications Commission. Several in-
triguing statistical issues have arisen, which this paper
will discuss. We will not discuss the approach known
as mechanism design, which economists have devel-
oped to deal with similar externality problems (see,
e.g., Mas-Colell, Whinston and Green, 1995, Chap-
ter 23).

For each instance of customer service, one or more
service quality measurements (SQMs) can be recorded.
These measurements can be classified into several cat-
egories. For one version of such a classification, pro-
posed in Louisiana, see Appendix 2. In each of these
categories many measures can be defined, each of
which may be further subdivided according to geo-
graphic location, type of service, type of customer and
so on. For example, it is recorded whether a customer’s
line is out of service for more than four hours. These
SQMs are summarized in monthly reports. Definition
of these measurements has been the topic of extensive
negotiations between the ILECs (B companies) and
CLECs (A companies), supervised by the various com-
missions. The need for extreme care was made clear
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by an experience in New York, where the ILEC pro-
cedure for handling a delayed installation request had
the effect of the request being ignored completely once
the delay exceeded a certain threshold. The result was
that the CLECs and the PSC were receiving many com-
plaints, while the ILEC reports were still showing ac-
ceptable performance. A referee has remarked that the
use of thresholds to guide policy has introduced dis-
tortions in other contexts, for example, to reduce the
poverty count, it is optimal for the government to give
money to the people who are just below the threshold,
rather than those who need it most. See the discussion
under the heading “Benchmarks.”

Since SQMs are not precisely predictable and their
values in successive months exhibit irregular variation,
it is natural (for a statistician) to regard these SQMs as
realizations of random variables,X and Y , with distrib-
utions FA and FB for the customers of company A and
company B, respectively. We are thus led to formulate
the problem as that of testing the hypothesis that these
two distributions are the same. A complication is that
there are many different SQMs, and many of them must
be disaggregated into small cells, which may number in
the hundreds or even thousands. Also, the testing prob-
lem recurs in successive reporting periods (months).
Measures will exhibit nonstationary behavior, in part
because the ILEC management is continually modify-
ing its procedures. There may be many incoming com-
petitive companies: we need tests for each company
separately and for the group as a whole. Finally, we
must consider what schedule of penalties (called incen-
tives) should apply when discrimination is detected.

There are cases where no comparable measurements
on customers of company B can be identified. In
this case, it is necessary to set up “benchmarks” to
quantify satisfactory performance. These raise further
problems.

While this formulation is natural for a statistician, it
is not without its deficiencies. In reality, observations
are not independent: it makes little sense to assume that
the specifications remain constant throughout a calen-
dar month, changing to a new value at midnight on
the last day of the month. However, the data do ex-
hibit irregular unpredictable variability, and the sim-
plest way to deal with this is by way of a probabilistic
model.

Further, this statistical formulation may not seem
natural to a lawyer. The legal language does not men-
tion variability, but says simply that company B’s per-
formance for company A’s customers must be “at least
equal in quality to” its service to its own customers.

The first problem we must discuss is “What does
the legal language mean?” In subsequent sections we
will discuss the problem of working in an adversarial
(rather than scientific) environment, testing the parity
hypothesis, correlation, disaggregation and reaggrega-
tion, balancing, benchmarks, payment schedules and
some computational problems. Along the way we will
draw attention to several open issues. Since the purpose
of this paper is solely to explain the technical issues,
I have chosen not to assign authorship to the various
positions that have been taken by the parties. Appen-
dix 1 describes an elegant (but unrealistic) solution to
a simplified version of the problem of defining an opti-
mal payment function.

2. WHAT IS PARITY?

One reading of the law suggests that if comparable
measurements of some service to customers of compa-
nies A and B are X1 ≤ X2 ≤ · · · ≤ Xn and Y1 ≤ Y2 ≤
· · · ≤ Yn, respectively (where large values are “bad”),
then company B is in violation unless Xi ≤ Yi for all i.
However, what if the samples are of different sizes?
How do we decide whether the samples are of “at least
equal quality”? One could compare the sample means,
but from company A’s point of view, a simple aver-
age may not be relevant, since bad service for one cus-
tomer (who may decide to leave company A) cannot
be balanced by good service for another (who expects
good service anyway). The parties have disputed what
the law means. One way this could be resolved is for
the parties to agree on the financial utility of each ser-
vice measurement. For example, the companies might
be able to agree that the (dis)utility of a SQM of mag-
nitude a is some function u(a). Perhaps this could
be calculated from (estimates of) the discounted total
value of that customer, multiplied by the probability
that this SQM value will cause the customer to mi-
grate to the other company. Presumably u(a) will be
a rapidly growing function of a. Then we could com-
pare ave(u(X)) with ave(u(Y )). This approach is diffi-
cult to implement even in principle, because if service
is sufficiently bad, so many customers of company A
may decide to leave that company A cannot continue
in business; the disutility of the “last straw” customer
is effectively infinite.

Some parties have suggested that parity exists when-
ever the application of some statistical test results in a
finding of “not significant.” Thus they do not distin-
guish between parity and a test of parity. A counter
to this argument can be made by pointing out that to
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choose a statistical test, we must (1) choose a statis-
tic (Z), (2) choose a type-1 error (α) and (3) be able to
find the critical value (ζ ) such that when parity holds,
Z will exceed ζ with probability α. If we do not dis-
tinguish between the test and the parity concept itself,
it is not clear that there is any rational basis for choos-
ing the statistic. Of course the usual statistical approach
is to consider a class of alternative hypotheses and to
choose the statistic to give good power for these alter-
natives. We will need to consider what alternatives are
relevant; see the discussion under the heading “Balanc-
ing.”

The most satisfying definition of parity for a sta-
tistician is that the CLEC observations and the ILEC
observations should be exchangeable. (This definition
could make sense even if the processes that generate
the SQMs were not stationary.) However, so far this
concept has not been accepted by any commissions.
It is possible to explain this concept in nontechnical
terms: one says that the law implies that it should not
be possible to distinguish, by looking at the data, the
CLEC observations from the ILEC observations. Then
the concept of a permutation test can be explained by
considering the special case where there is just one
CLEC observation, and many (say m) ILEC observa-
tions. If exchangeability holds, the CLEC observation
will be larger than all m ILEC observations with proba-
bility exactly 1/(m+ 1), so this gives us a permutation
test with size 1/(m+ 1).

3. THE ADVERSARIAL ENVIRONMENT

The environment that faces the statistician involved
in these problems seems not to have been dealt with.
The most relevant discussion I have seen is in a pa-
per by Mann (2000). Mann pointed out the distinc-
tion between a “testifying expert” and a “consulting
expert.” The former prepares a report and appears be-
fore a court (or commission) to defend it. He may
be cross-examined by the opposing attorney. He may
not be aware of the existence of a consulting expert,
whom the attorneys may rely on for technical ad-
vice, but are reluctant to put forward as a witness.
Mann (and other authors in the same volume) dis-
cussed the ethical issues that arise. One quotation must
suffice:

One question that should arise in the mind
of the statistician . . . is what happens if
their analysis does not produce results that
retaining counsel and client would like.
. . . the answer is that if timing permits,

you will in all likelihood be replaced. To
the extent that your analysis is proper and
thorough, this should not be a professional
concern. Regrettably, many attorneys act
as if they believe they will eventually find
a statistician to defend whatever position
they have taken. More regrettably, they may
often be correct (Mann, 2000, page 253).

Most companies do not maintain an in-house team
of statistical experts, and so need to hire consultants to
advise them and to testify before the commissions. My
own experience has been untypical in that I worked in
an established research laboratory (funded by AT&T)
and had no direct responsibility for arguing the CLEC
case. It has been my view (and this view was met with
approval by the lawyers at AT&T) that my most pro-
ductive role is to give advice to my employer regarding
the statistical issues, to propose effective and ethical
methods for dealing with the issues, and to provide crit-
icism of proposals submitted by our adversaries. I tried
(not with complete success) to avoid testifying as an
AT&T advocate. In my view it is important that the role
of statistical experts should be kept separate from that
of advocates, since their effectiveness depends in large
measure on whether their comments are seen as being
based only on technical issues and not on the desires
of their employers. On the few occasions when I had to
testify, I found the experience to be much more stress-
ful and less rewarding technically. Much more enjoy-
able and, I think, effective, have been appearances be-
fore staff employed by the commissions, whose role
is to advise the commissioners on technical issues. In
these sessions there is opportunity for interaction be-
tween the opposing experts.

Commissions are reluctant to accept arguments that
cannot be found in standard references (e.g., Finkel-
stein and Levin, 1990; a referee remarks that almost all
judges will have access to the Federal Judicial Center’s
Manual on Scientific Evidence, which cites several sta-
tistics texts). This causes difficulty since many of the
problems that arise are not treated in such works. The
use of likelihood and of Bayes’ theorem [which is dis-
cussed in detail in several papers in Gastwirth (2000)
in the context of DNA evidence] will not be appropri-
ate because the ILEC will not agree to any nonzero
prior probability of violation. The confrontational pro-
cedures that are employed make it very difficult for the
opposing technical experts to discuss their views freely,
although on at least one occasion the parties were in-
structed by a state commission to produce a joint state-
ment summarizing the statistical issues and proposing
resolutions. This exercise was very productive techni-
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cally and resulted in resolution of almost all the out-
standing points of disagreement.

4. TESTING

For the rest of this paper we accept the straightfor-
ward statistical view of the problem, so that the ob-
servations of any SQM in any month are random vari-
ables X1 ≤ X2 ≤ · · · ≤ Xm and Y1 ≤ Y2 ≤ · · · ≤ Yn
drawn from distributions FA and FB for the customers
of company A and company B, respectively. The ob-
servations may have range {0,1}, for example, when
we are counting missed installation appointments, in
which case FA and FB are simply binomial distribu-
tions. First we consider the problem of testing the hy-
pothesis that the two distributions FA and FB are the
same.

The problem has several nonstandard aspects. First,
at least for some measures, company B can control (at
some expense to itself) both FA and FB . Each company
can propose a test procedure and can attempt to con-
vince the commission, which is concerned with pro-
tecting the public interest, that its proposal is fair and
reasonable. Company A’s proposal will be based on in-
complete knowledge of FB and of the strategies com-
pany B might be able to employ. Company A wants
the test procedure to be such that company B cannot
manipulate the two distributions to company A’s disad-
vantage without being detected. Company B’s interests
are exactly the opposite. Once a procedure has been ac-
cepted, it will be execute in good faith, but within the
limits of the law each company will attempt to do what-
ever is necessary to serve its shareholders. For exam-
ple, company B will always find it uneconomic to at-
tempt to give very high quality service to all customers:
there is no reason why company B cannot arrange to
give poor service to some fraction of A’s customers and
equally poor service to the same fraction of its own cus-
tomers, if by so doing it can cause migration of “good”
A customers and “bad” B customers. This strategy re-
quires company B to be able to identify good and bad
customers. This may be easy; for example, business ac-
counts are typically more profitable than residential ac-
counts. To combat this strategy, it is necessary to disag-
gregate the data, comparing business A only with busi-
ness B. There are other reasons for disaggregating; see
below.

Another peculiarity is the nonstandard form of the
alternatives that are of most concern. What company A

wants to avoid is having some large fraction of its cus-
tomers getting poor service, even if some other frac-
tion receives unusually good service. Suppose that un-
der standard conditions some SQM has (at least ap-
proximately) a Gaussian distribution. Then alternatives
of high concern would include Gaussians with larger
means, larger variances or both. A “slippage” alterna-
tive [FA(x)= FB(x − a)] or a “stochastic dominance”
alternative [FA(x) < FB(x) for all x] may not be ap-
propriate, since neither considers the “increased vari-
ance” possibility.

5. SOME HYPOTHESES AND TESTS

Let us consider just one type of service and mea-
surements taken in just one month, namely Xi , i =
1, . . . ,m, and Yj , j = 1, . . . , n. Suppose that the
standard ILEC procedures make FB approximately
Gaussian, with mean µB and variance σ 2

B . A standard
one-sided two-sample t-test would reject the null hy-
pothesis FA = FB when Z > c, where c is some criti-
cal value and

Z = (X̄− Ȳ )/S,

where X̄ and Ȳ are the sample means for observations
on company A and company B, respectively, and S2 is
one of

S2
1 = S2

pooled

(
1

m
+ 1

n

)
,

S2
2 = s2

X

m
+ s2

Y

n
,

where s2
X and s2

Y are the two sample variances.
According to most textbooks, S1 is appropriate if

we can assume that (under the alternative hypothesis)
σ 2
A = σ 2

B ; otherwise, S2 should be used. However, S2 is
used in a test of whether the means are equal, allowing
the variances to be different under the null hypothesis.
Our null hypothesis requires both the means and the
variances to be equal, while allowing both to differ
under the alternative. So in our situation, neither of
these classical tests is appropriate.

The statistic Z depends on five quantities: the two
sample numbers, the two sample means and the esti-
mate of the variance of the difference between these
means. Company B is highly motivated to make some
fraction of the company A measurements large if it can
do this without making Z large or giving poor service
to its own best customers. It can achieve this by any or
all of the following measures:
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1. Keeping X̄ small by making some of the com-
pany A measurements small.

2. Increasing Ȳ (by giving poor service to some of its
own customers, perhaps those it would least mind
losing or whose loyalty is sure).

3. Increasing either or both of sX and sY .

Company A cannot do anything about options
1 and 2, but it can remove option 3 by proposing to
use, instead of S1 or S2, the nonstandard

S2
3 = s2

Y

(
1

m
+ 1

n

)
.

With this choice for S, the statistic Z still has a
t-distribution under the null hypothesis (with n degrees
of freedom), but now Company B can get no advantage
by increasing the variance of FA.

This asymmetric form of Student’s t was suggested
by Brownie, Boos and Hughes-Oliver (1990) for use
in designed experiments where there is reason to
expect the application of a treatment to increase both
the mean and the variance of the response. They
showed that in this situation the modified form is
more powerful than the classical “pooled” t . This
increase in power is balanced by a decrease in the
chance of detecting alternatives where the variance has
decreased. In the present context, this is acceptable
because such alternatives do not imply that many
customers of company A will receive bad service. Use
of this “modified t” has been accepted by several state
commissions and the FCC.

Another way to detect an increase in the variance
is to employ a separate test, using the two sample
variances. However, since we need to make a single
decision, we have to combine this test with the test
of means in some way to arrive at a composite test.
While such a composite test would be effective in
detecting an increase in the variance unaccompanied
by a change in the mean, in the present context we
judged that this would reduce the power against shift
alternatives too much. Also, use of a nonparametric
test (based on ranks) was judged to throw away too
much power (this may have been a mistake) and
also to be hard to sell to commissions and to the
companies concerned. Note that the modified test
described above does have some useful power for
detecting variance increases even when the mean has
not changed.

Podgor and Gastwirth (1994) have reviewed 14 al-
ternative tests for this situation, including the Brownie,
Boos and Hughes-Oliver test, a composite test ow-
ing to Lepage (1971) and several rank-based tests.

They found that some rank tests have reasonable power
against a variety of alternatives. Also of course t-tests
are not robust. Is there a useful rank-based analog of
our modified t?

6. PERMUTATION TESTS

Permutation tests are attractive, since (one can ar-
gue) they test exactly the right hypothesis, namely that
the ILEC and CLEC observations are exchangeable,
without relying on any shape assumptions. However,
if thousands of tests need to be applied each month,
the computations are daunting. When there are many
observations, the modified t-test (see above) gives ad-
equate accuracy. For smaller numbers, an adjustment
has been developed (Balkin and Mallows, 2001, fol-
lowing the method of Johnson, 1978) that allows for
skewness in the populations. In one application, this
adjustment worked adequately down to samples of
size 10. For samples smaller than this, exact calcula-
tion of the permutation test may be feasible. Of course,
for counted measures there is no need for permutation
calculations, since the exact hypergeometric probabil-
ity can be calculated readily.

We have found that for small samples, modified t

sacrifices too many degrees of freedom to be useful.
In permutation calculations with small samples, it
is preferable to use classical two-sample t , which
cuts down the computing considerably, since for each
permutation it is necessary to compute only the sum of
the selected CLEC sample values.

The following questions relating to the use of permu-
tation tests have been studied to some extent, but elude
satisfactory answers.

1. If we compute both a t-test and a permutation test,
and are allowed to use the result we like best, what
will be the true type-1 error?

2. How far apart can the two tests be? What is the
mean square difference between the p values?

3. Can useful permutation p values be approximated
using some cleverly designed set of permutations?

4. The permutation test based on the standard
t-statistic is equivalent to that based on X̄. Can a
useful approximation to the permutation p value be
obtained from the moments of the permutation dis-
tribution of X̄? [These moments can be obtained di-
rectly from the moments of the combined samples;
formulas through degree 4 can be found in Kendall
and Stuart (1963).]
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7. CORRELATION

The statistical approach runs into difficulty because
of the possibility of correlation. We can identify at least
four kinds of correlation.

1. Correlation between different measures. This is
sometimes built into the definitions of the measures
themselves; for example, we may record both the
average number of days it takes for some operation
to be executed and the proportion of cases that take
longer than 10 days. These measures are clearly not
independent.

2. Correlation over time. A slow drift over several
months can be interpreted either as a realization of
a highly correlated but stationary process or as a
deterministic drift in an independent process.

3. We can have within-measure correlation, some-
times called the backhoe effect. A single mechan-
ical fault (perhaps a cable cut caused by a careless
backhoe operator) can cause several customer com-
plaints, all of which will be resolved at once. If these
complaints are counted as if they were independent,
their effect is inflated.

4. Records are kept in distinct geographic areas and
there may be correlation between these areas, for
example, due to effects of climate.

8. DISAGGREGATION AND REAGGREGATION

To avoid Simpson’s paradox, it is necessary to disag-
gregate each SQM into homogeneous cells. Otherwise,
a spurious signal of lack of parity for one class of cus-
tomers (one market) might be generated or a genuine
lack-of-parity effect may be canceled out. For exam-
ple, data for business and residential customers may
be systematically different, and if the mix of activity
is different for the two companies, naive pooling could
lead to an indication of apparent discrimination even if
we have parity everywhere. Also pooling may lead to
an important effect being swamped.

It may be necessary to disaggregate into very many
cells; in one region, for the SQM order completion
interval, which counts the number of days it takes to
service a customer’s order, it was found appropriate
to define as many as 72 cells for each of 221 wire
centers (roughly, a wire center corresponds to a three-
digit exchange) so that there are 221 × 72 = 15,912
possible cells. Many of these cells will contain no data,
but there can easily be as many as 1000 occupied
cells. If we want a single statistic to summarize the
performance on this SQM, we need to consider how

to test at the cell level and how to aggregate into an
overall statistic. The individual cells may have very
small numbers of observations, so we cannot rely on
normality assumptions. A referee has remarked that the
problem of incorporating two tests of significance into
a single overall test has arisen in other legal cases. An
elementary discussion of the Environmental Protection
Agency’s use of both t and sign tests appears in
Gastwirth (1988), and this case is also mentioned by
Finkelstein and Levin (1990).

The need for care in this arena is evidenced by
the fact that a technique called the replicate variance
method, that can be found in a standard sample survey
text (Wolter, 1985) and that seems at first sight to
offer a straightforward approach to the aggregation
problem, turns out to be completely inappropriate.
In the sample survey context, one selects a large
number (perhaps 200) of primary units and assembles
them into 30 groups. Within each primary unit, one
draws a random sample of secondary units, measures
some attribute (in our case the difference between
ILEC and CLEC performance) and computes weighted
averages within each group. A weighted average of
these attributes is an overall estimate. An estimate of
the variance of this overall estimate is obtained from
the dispersion of the within-group averages. Hence an
overall t-statistic can be formed. Some parties have
suggested that this technique should be used here,
treating the primary units (here the complete set of
wire centers in the geographical region) as if they
had been drawn randomly from some superpopulation
of wire centers and the secondary units (here the
various cells within wire centers) as if they had
also been drawn randomly from superpopulations.
However, in our context, the wire centers were not
drawn randomly; they are simply all the wire centers
that exist in a geographical region. Similarly, the cells
were not drawn randomly; they are the subcategories
of service into which the wire centers have been
disaggregated.

The replicate variance methodology assumes that all
differences between wire centers and between cells
within wire centers are random, and all this random-
ness is allowed to contribute to the final variance esti-
mate. The result is that systematic effects, if they exist,
are allowed to cancel out and are allowed to inflate the
variance estimate. Numerical calculations show that if
large systematic differences occur in only a few cells,
the power of the final t-test can be smaller than its size.
This is because both the numerator and denominator of
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the t-statistic are increased, so that, in the limit, t ap-
proaches unity and the power approaches zero (pro-
vided the critical value is greater than 1). We need a
different approach.

In work with data from one ILEC, it was found
feasible to proceed as follows. First, we obtain for each
cell a variable that should be (approximately) standard
normal under the parity hypothesis. Here is a procedure
for doing this.

PROCEDURE. When the number of observations is
sufficiently small, perform an exact permutation test
using complete enumeration of the permutation distrib-
ution. (For counted variables this reduces to the hyper-
geometric distribution, which can be applied exactly
for all sample sizes.) For intermediate sample sizes on
measured variables, perform an approximate permu-
tation test by sampling the permutation distribution.
Transform the p values obtained from these permuta-
tion tests into normal quantiles. For large sample sizes,
calculate the modified t-statistic described above, find
the p value from the t-distribution and convert to a nor-
mal quantile.

These calculations give us a set of statistics, one for
each cell, that under the null (parity) hypothesis have
approximate standard normal distributions. We call
these the cell Z’s. How should we aggregate them into
a single statistic to measure the overall performance of
the SQM? We want the method to have the following
properties:

(a) The method should provide a single index,
which is on a standard scale.

(b) If the entries in the cells are exactly proportional,
the aggregate index should be very nearly the same as
if we had not disaggregated.

(c) The contribution of each cell should depend on
the numbers of ILEC and CLEC observations in that
cell.

(d) As far as possible, cancellation should not be
allowed to occur.

(e) The index should be a continuous function of the
observations.

The motivation for requirement (d) is that, for example,
the ILEC should not be able to discriminate against
CLEC business customers while avoiding detection by
discriminating in favor of CLEC residential customers.
The motivation for requirement (e) is that we do not
want the final result to depend on minor details in the
data. A small change in the data should induce only a
small change in the result.

One approach would be simply to count how many
of the cell Z’s exceed some chosen critical value,
perhaps 1.96 or 3.09. This method satisfies require-
ments (a) and (d), but not (b), (c) or (e). Another pos-
sibility is to form a weighted average of the Z’s. The
weights should depend on the sample sizes. Require-
ment (c) will be satisfied if we take

aveZ = ∑
wZ

/√∑
w2,

where

w = 1/
√

1/nILEC + 1/nCLEC .

This average Z statistic is on a standard normal
scale (approximately) and satisfies all the requirements
except (d). To meet this requirement, we perform a
truncation operation in which Z is replaced by

Z∗ = max(0,Z)

and the final aggregate is adjusted appropriately:

Z∗ =
(∑

wZ∗ −M
)/
V,

where

M = ∑
w

/√
2π, V = (

1/2 − 1/(2π)
)∑

w2.

The final statistic Z∗ is only approximately Gaussian,
but if there are many cells, the approximation will be
good. The exact distribution could be derived if re-
quired. Mulrow (2001a) considered adjusting this pro-
cedure to allow for the skewness of the individualZ∗’s.

An alternative method for avoiding cancellation is
simply to discard cells for which Z < 0 and to form
an adjusted weighted average of the remaining cells.
This gives much greater power for detecting violations
in a small number of cells at the cost of violating
requirement (e). This method also has the defect that
the final statistic cannot be assigned the full weight
associated with all the measurements.

9. BALANCING

A subject that has been discussed at great length in
several jurisdictions is that of choosing the appropriate
size of the test. Appeals to the authority of textbooks
have not resolved the issue. The ILECs want the
type-1 error probability, α, to be small, to avoid
incurring unfair penalties when they are providing
parity service, while the CLECs want the power
(= 1 − β , where β is the type-2 error probability) to
be large to ensure that violations, if they occur, are
detected with high probability. These desires are in
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direct conflict. Progress toward agreement has been
made by introducing a balancing concept, to which
both parties have agreed, at least in some jurisdictions.
The idea is that the parties should agree to define some
particular nonnull hypothesis, say H1, that represents a
“substantial” degree of departure from parity, and then
choose the test to equate α to β for this alternative.
The choice of H1 is clearly of critical importance
and ideally would be made only after careful study
of the response of customers to various degrees of
violation. Such studies have not been made. It may
be possible to accumulate such data when the market
has become truly competitive. It is to be hoped that
eventually data will be collected and analyzed, so that
the choice of H1 can be based on real experience. At
present we must rely on the judgement of telephony
experts.

To facilitate the choice of H1, we define a standard-
ized shift, δ, which measures the difference between
the two distributions FA and FB . For measured vari-
ables, where we propose to use modified t as defined
above, this is taken to be simply

δ = (
mean(FA)− mean(FB)

)
/s.d.(FB).

Then agreement will be attainable if the parties can
agree on what value to take for δ, which may be an
easier task than choosing H1 directly.

What should δ be? This is not a question that a
statistician can answer, but statisticians can perform
computations to aid in such judgements. Here is one
such aid. Assume FB is standard Gaussian, FB(·) =
%(·), and suppose FA(·) is simply shifted by an
amount δ [i.e., FA(·) = %(· − δ)]. Consider the level
of service that is enjoyed by all but a small fraction
of company B’s customers, say 1% of them; these
customers all have SQM< 2.33. Then with a shift of δ,
the proportion of company A’s customers who receive
service beyond 2.33 is 1 − %(2.33 − δ) and we can
tabulate this as in Table 1.

TABLE 1
Effect of various values of δ

P (> 2.33)

δ (%)

0 1.000
0.125 1.286
0.25 1.893
0.5 3.390
1.0 9.076

For counted variables, such as missed appointments,
we can use the arcsin–square-root transform to get to
an approximate “normal shift” scenario. This suggests
that for such SQMs we should take

δ = 2
(
arcsin(

√
pCLEC)− arcsin(

√
pILEC)

)
.

Now we can calculate what various values of delta
imply. Calculations such as these can help to calibrate
the level of violation described by δ and so help to
judge what value of delta should be chosen.

Difficulties arise when we try to apply the balancing
idea to an aggregated statistic. Suppose we have N

measures, with sample sizes mi and ni for the ILEC
and CLEC, respectively, with everything Normal, with
known variances, so that we may ignore small-sample-
size issues. For the ith measure we have a test sta-
tistic

Zi = (ILECmeani −CLECmeani)
/
σi

√
(1/mi +1/ni).

We aggregate these by forming

Zagg = ∑
i

wiZi

/√∑
w2
i ,

where wi = 1/
√

1/mi + 1/ni (we ignore the cancella-
tion effect).

Let us consider only shift alternatives. Then a typical
hypothesis is described by a set of shifts δiσi , i =
1, . . . ,N . The statistic Zi is then Normal with mean
−wiδi and variance 1, and the aggregate statistic Zagg
is Normal with mean

E(Zagg)= −∑
w2
i δi

/√∑
w2
i

and variance 1.
How should we define the meaningful alternative?

The difficulty is that now the alternative must be
specified not by a single δ, but by a whole vector of
Nδ’s. The power of the aggregate test depends only on
E(Zagg). One possibility is to take

δi = δ, i = 1, . . . ,N.

For this alternative, the mean of Zagg is −δ
√∑

w2
i . If

mi is large for each i, then wi is approximately
√
ni

and the mean ofZagg is about −δ√∑
ni . This is clearly

the right answer for this case, since we have effectively
a single set of data with sample sizes

∑
mi and

∑
ni .

For a numerical example, suppose N = 100, and
take δ = 0.1. If each mi is very large and each ni
is 100, we have a total sample size of 10,000: E(Zagg)

is 100δ = 10, ζ is about −5 and α is about 3 × 10−7.
This is not a sensible result.
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Other sets of δ’s are relevant. We could argue that the
CLEC is hurt when any delta is positive, so a relevant
alternative might be

δ1 = δ, δi = 0, i = 2, . . . ,N,

or any permutation of this. For the numerical example
above, E(Zagg) = δ1 = 0.1 and we get α near 0.25.
This also seems unreasonable. We could get a more
reasonable answer by arguing that to be meaningful,
the single nonzero δ needs to be rather larger than when
this is the only test that is being made. If we say it has
to be N times larger, we get back to the previous result
(because the average delta is again 0.1), but we could
argue (arbitrarily) that δ1 needs only to be as large as
0.1

√
N to be meaningful, which leads to E(Zagg)= 1

and ζ = −0.72, α = 0.24.
Alternatively, we could look at cases where, say,

M of the δ’s are zero, while the remaining N −M are
all equal to some common value. All such arguments
seem arbitrary and unconvincing. As yet there is no
agreement on how to handle this aggregated case.

10. BENCHMARKS

When no ILEC analog exists for some CLEC mea-
sure, it is necessary to set up a benchmark level of per-
formance. We should remark that some parties have ar-
gued (and this argument has been accepted by some
commissions) that setting a benchmark does not re-
quire any probabilistic argument. Here we will con-
tinue to work within the standard statistical framework
in which observed irregularities are modeled as a ran-
dom process. We need to consider separately the case
where an SQM is an actual measurement or merely a
proportion.

10.1 Measured Variables

An example of a measured variable for which it
has been determined (in Louisiana) that no suffi-
ciently close ILEC analog exists is “firm order con-
firmation timeliness (mechanized only),” for which
the parties have agreed that a benchmark of 95%
within 4 hours is appropriate. This criterion has two
components, a value (here 4 hours), which relates to
a standard of performance, and a percentage (here
95%) that specifies how frequently the standard must
be met.

Usually benchmarks are not based on careful study
of data, but are arrived at by compromise and intuition
on the part of the experts doing the formulation. It may
be that any quantitative analysis will give undue weight
to what are essentially arbitrary numbers.

There is a divergence of opinion as to what the
benchmark value and benchmark percentage represent.
One view is that the value is a limit such that any per-
formance that fails to reach this level is unacceptable.
In this view, the ILEC should be aiming at perfect per-
formance (all cases dealt with in less than 4 hours); the
benchmark percentage is set somewhat below 100% as
a concession, to allow (informally) for random varia-
tion. An alternative view is that the benchmark value
and percentage together set (implicitly, see below) a
level of performance that is a “target” for the ILEC, and
that probabilistic arguments are appropriate to evaluate
where the percentage should be set. In my view, how-
ever the benchmark rule is interpreted, probabilistic ar-
guments are relevant, because the observed data exhibit
irregular variability which can only be discussed using
a probability model.

10.2 Counted Variables

Some variables are not based on measurements,
but simply on counts; for example, “percent of due
dates missed,” for which the agreed benchmark (in
Louisiana) is less than 10%. For such a measure the
benchmark has only one component: there is no value,
only a percentage. Of course, one could formally agree
to record a nonmiss as 0 and a miss as 1, so that the
value would be 1, but it is not appropriate to regard
this value as a limit, since an attempt to attain perfect
performance would incur unreasonable expense. (The
ILEC would have to assign unreasonably many work-
ers to handle the CLEC requests.) Nevertheless, we
can discuss both the measured and the counted cases
at the same time by concentrating on the percentage
component of the benchmark rule, assuming the value
(for a measured variable) has been set using engineer-
ing judgement. This type of benchmark is reminiscent
of the four-fifths rule of the U.S. EEOC (1987) which
tests for evident discrimination (in employment, e.g.)
against any group by checking whether the observed
rate for that group is less than 4/5 of the rate for the
group with the highest rate. A referee has remarked
that a recent case illustrating the use of a test of signif-
icance rather than a benchmark rule is Bew v. City of
Chicago (252 F. 3d 89; 7th Circuit, 2001). The effect
of sample size has been discussed in the legal litera-
ture.

For both measured and counted variables, the bench-
mark rule claims violation if the observed proportion
of failures exceeds the specified percentage. (As in our
first example above, the rule may be stated in terms of
nonfailures rather than failures, in which case violation
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is claimed if this proportion falls short of the stated per-
centage.) While this rule is easy to state, it introduces
challenging difficulties. The benchmark rule does not
specify a null hypothesis or a type-1 error rate. Further,
in many cases benchmark rules will be applied many
times to different subcells of the data, and it will be
necessary to aggregate the results over many cells to
form an overall criterion. If all we have are the rules
themselves, it is not clear how this can be done to yield
an overall test with known properties.

A major weakness of the benchmark rule is that its
performance depends strongly on the number of cases
that enter into the observed proportion. For example,
if the benchmark proportion is 95% and n < 20, then
to avoid the violation result, there must be no failures.
If we assume that these n cases are independent,
so that the observed number of misses is Binomial
(n,p) for some p, then to achieve P (violation)= 0.01
when n = 20, the ILEC must aim at p = 0.99241;
when n = 100, the ILEC can relax to p = 0.98185;
and when n = 1000, the ILEC need only achieve
p = 0.96387. It is not clear that these requirements
correspond to the intended properties of the rule,
which says nothing about relaxing the standard when
more cases are considered. ILECs have complained
that applying the benchmark rule as stated imposes
an unreasonable burden when the number of cases is
small.

Here we will discuss the proportion kind of bench-
mark rule; the discussion applies also to the measured
case once the value is decided. To discuss the proper-
ties of such a rule, we need to distinguish several quan-
tities. First, the proportion of bad observations in the
data. Let us call this proportion SF (for sample frac-
tion) so that

SF =K/n= number of bad sample values

total number in the sample
.

The benchmark criterion says that SF should not ex-
ceed some specified value BP, the benchmark propor-
tion, which is usually taken to be some conventional
value such as 5 or 10%. Thus if SF ≤ BP, the bench-
mark rule says “no violation.” In the contrary case, if
SF > BP, it says “violation.”

We assume that the sample observations are random,
independent and have some probability p of being
bad. The benchmark rule, which uses the sample
fraction SF, can be thought of being a replacement for
a procedure that we would prefer to use, which would
decide between violation and nonviolation according
to whether p > BP or p ≤ BP. Since p is not

TABLE 2
Type-1 errors (α’s) for the benchmark rule with
BP = 0.10, with the null-hypothesis value of p0

determined so that α = 0.05 for N = 20 and 1000

N = 20 N = 1000
n p0 = 0.042169 p0 = 0.085714

10 0.06389 0.20921
20 0.05 0.24288

100 0.00335 0.23719
200 0.00013 0.19527

1000 10−15 0.05
2000 10−28 0.01138

observable directly, in using the benchmark rule we are
replacing p by SF and hoping for the best.

The final quantity to be considered is the probabil-
ity Pv that the benchmark rule says “violation.” Pv de-
pends on n, p and BP. Once these are given, Pv is sim-
ply a binomial probability, which can take only n+ 1
different values, and so (in general) cannot be made to
be close to some target such as 0.05.

The benchmark rule specifies only BP and does not
specify a null-hypothesis value of p. So we cannot state
the size and power of the procedure. The following
argument has been proposed for determining these
quantities. Pick a reference sample size, say N , and
a value for the type-1 error, α. Then determine p0 so
that

P (SF > BP |N,p0)= α.

The idea is that the benchmark rule implicitly defines
the null-hypothesis value p0. With p0 in hand, we can
now evaluate the type-1 error for other values of n and
the power for other values of p. Taking BP = 0.10 and
α = 0.05, with N = 20 and 1000, we get the values in
Table 2. We see that the value of α depends strongly
on n when n >N and is very small if n is much larger
than N . It is much less sensitive for n < N and is not
monotone in n. (This effect is in addition to those that
occur when n × BP is not an integer.) In using this
approach, it would seem to be important to choose N
near the typical values of n that occur.

11. UPDATING A BENCHMARK RULE

Once data have been collected for several months,
we may want to reconsider whether the benchmark
rule has been defined appropriately. If the rule has
resulted in many failures, the ILEC may complain that
it is too stringent and should be relaxed. (The CLEC
may disagree, claiming that the ILEC’s performance
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needs to be improved.) If the rule has been “passed”
easily every month, the CLEC may want to tighten
the rule so that the ILEC is not tempted to relax its
procedures. (The ILEC may disagree.) It seems clear
that there can be no automatic criterion for updating
the benchmark rule. Any argument for updating must
depend on engineering judgement, just as when the
rule was originally set up, but once data are available,
those judgements can be informed by analysis of the
data, which may lead to an understanding of why there
are so many failures or easy passes.

12. PAYMENT SCHEDULES

One can question whether any of these testing prob-
lems are relevant to the problem facing the commis-
sions. Once an ILEC has been found to be in viola-
tion, financial penalties must be assessed. These are of
two types: first, penalties paid to an individual CLEC in
recognition of damage to its operations. These are usu-
ally called Tier I payments. Second, punitive fines paid
to the state treasury when a pervasive pattern of vio-
lation, affecting the whole CLEC industry, is detected.
A direct attack on the problem of choosing the pay-
ment schedule seems more relevant than consideration
of tests without specifying how they are to be used, al-
though one can have sympathy for an attempt to split
the problem into manageable pieces. Given a specifi-
cation of an ILEC distribution, the relevant quantity
for judging a proposed payment schedule is the distri-
bution of the payment as a function of each possible
CLEC distribution. This is analogous to considering
the power function of a test, although here it may not be
sufficient to consider only the expected payment. For
an oversimplified approach to this problem, see Appen-
dix 1.

Many payment schedules have been proposed. Their
intent is to induce the ILEC management to alter its
practices, and this requires that the payments be large
enough to affect the ILEC’s bottom line. The prob-
lem of designing a payment schedule has many com-
plications. One of these is the choice between a per-
transaction rule, where the payment is proportional to
the number of CLEC customers who are hurt, and a
per-measure rule, where penalties are assessed as soon
as a statistically significant violation occurs, regard-
less of the number of customers involved. Another
factor is the desirability of making payments esca-
late when violations are chronic, occurring month after
month.

Some of the payment plans that have been proposed
are extremely complicated. Here is an example, which
at one time was endorsed by both sides in California
proceedings. Consider a single SQM, for which we will
obtain a Z-score each month. The plan involves three
critical values, which we call c1, c2 and c3. A month
in which the value of the Z-score is between c1 and
c2 is called a level-1 miss, between c2 and c3 is an
intermediate or level-2 miss, and greater than c3 is a
severe or level-3 miss. Three successive misses (at any
level) constitute a chronic miss situation.

The plan involves four payment amounts, which we
call a1, a2, a3 and a4 for (respectively) unforgiven
level-1 and -2 misses, level-3 and chronic misses
(which are not forgivable). The plan has a schedule for
issuing forgivenesses, namely one forgiveness is issued
every k months (k = 6 is suggested). Forgivenesses can
only be used for level-1 and -2 misses, and cannot be
used in any month if the previous month was a miss.
A forgiveness cancels the penalty for the month in
which it is used; it does not cancel the event that a miss
occurred. There is a cap (taken as two) on the number
of available forgivenesses.

The consequences of each plan can be studied
by making assumptions about the process P that
is generating the Z-scores. For example, we may
assume that the process is in parity or that we have
deviation from parity by any desired amount. Here
we consider only models in which successive months
are independent. A more relevant model would allow
for the possibility of correlation, specifically negative
correlation, which we expect would be introduced by
management’s actions following a missed month.

The consequences of the payment plan depend on the
scenario P and the eight parameters (c1, c2, c3, a1, a2,
a3, a4, k). For any given scenario, we can calculate the
probabilities

p0 = P (Z < c1) (probability of no miss),
p1 = P (c1<Z<c2) (probability of a level-1 miss),
p2 = P (c2<Z < c3) (probability of a level-2 miss),
p3 = P (c3<Z) (probability of a level-3 miss).

Then the consequences depend on (P, c1, c2, c3) only
through the values of (p0,p1,p2,p3).

For each set of values of (p0,p1,p2,p3, a1, a2, a3,
a4, k) we could simulate the payment scheme, obtain-
ing an estimate of the expected payout under one sce-
nario. This would allow us to estimate both the long-
run stationary behavior and the initial transient. How-
ever, obtaining results that are accurate enough to be
useful requires a large amount of computation. Since
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TABLE 3

State Current month Payment

x 0 0 i No miss No payment
x 0 1f i Forgiven level-1 miss No payment
x 0 1n i Not-forgiven level-1 miss Pay a1
x 0 2f i Forgiven level-2 miss No payment
x 0 2n i Not-forgiven level-2 miss Pay a2
x 0 3 i Unforgivable level-3 miss Pay a3
0 m 0 i No miss No payment
0 m 1 i Unforgivable level-1 miss Pay a1
0 m 2 i Unforgivable level-2 miss Pay a2
0 m 3 i Unforgivable level-3 miss Pay a3
m m 0 i No miss No payment
m m m i Chronic miss Pay a4

the process is a Markov chain (if we assume inde-
pendence between months), we can compute the exact
transition matrix and hence get exact results.

How many states can the system be in? We need
to keep track of the outcomes for three consecutive
months, including whether a forgiveness has just been
issued, the number of forgivenesses currently available
and the number of months since the last forgiveness
was issued. This makes a total of 4 · 4 · 4 · 2 · 3 · k
states, which is 2304 if k = 6. Fortunately we can col-
lapse these and work with no more than 36 states as
follows. In Table 3, the first three columns under the
“state” heading refer to the most recent three months:
0 means no miss, 1, 2 and 3 mean misses at the appro-
priate levels, x means anything, f and n mean that the
latest miss has been forgiven or not forgiven, respec-
tively, and m means a miss at any level. In the fourth
column, i stands for 0, 1 or 2, the number of forgive-
nesses currently available. If we ignore temporarily the
schedule for issuing forgivenesses, this gives 36 cases,
namely those shown in Table 3.

Let A be the 36 × 36 transition matrix that in the
(i, j ) cell gives the probability of being in state i at
month t , given that we were in state j in month t − 1
and that a new forgiveness is not due to be issued.
These probabilities depend on the chosen values of
p0, p1, p2, p3. It turns out that two states, namely
x 0 1n 2 and x 0 2n 2 are inaccessible, since if the
most recent level-1 or level-2 miss was not forgiven,
it must have been that no forgiveness was available;
since only a single forgiveness can be issued, there
is no way two forgivenesses could now be available.
Deleting these states,A is a 34×34 matrix of transition
probabilities.

Assume that the plan is started January 1. We
start with a clean slate—no history of misses and

no forgivenesses available. A forgiveness is issued
January 15, so we are now in state x 0 0 1. The initial
state vector v(0) has a 1 in the first position and zeros
elsewhere. At the end of January, a test result will
become available and the new state vector is given by
v(1)= Av(0). At the end of February, the state vector
will be v(2) = A2v(0). This goes on through the end
of June. On July 15 a new forgiveness is issued. We
can handle this by defining a new transition matrix B

which simply maps a state with, respectively, 0, 1 or 2
available forgivenesses into the corresponding state
with 1, 2 or 2 forgivenesses. Thus just before the July
result is processed, the state vector is Cv(0), where
C = BA6. After 6N months, the state vector will be
CNv(0). As N increases, this will converge to the
dominant right eigenvector of C, which we call v.

The system we are studying is not stationary, even
asymptotically, since the state vector depends on how
many months it is since the last forgiveness was issued.
Nevertheless, the average payment (asymptotically)
can be calculated as

v̄ = (
v +Av+A2v+ · · · +A(k−1)v

)/
k.

Once we have calculated v̄, we can apply any desired
schedule of payments and find the long-run average
payment. We could also calculate the initial transient
behavior.

Computations using this approach were carried out
for four versions of the parameters (c1, c2, c3), eight
scenarios and two payment schedules. The results were
very helpful in understanding the effect of the various
components of the plan. For example, the effect of
the “forgiveness” rule is to greatly reduce the average
payment when parity holds, while not affecting it very
much when consistent violations occur. The cap on
the number of forgivenesses prevents the ILEC from
accumulating credit to be used later. The definition and
the amount of the intermediate payments are not very
critical. Assessing small payments for small violations
will reduce the average payment for large violations.

A similar approach was applied to some Tier II
proposals. In one version, there were 344 states and
straightforward simulation would have been imprac-
tical, but an exact calculation like that above went
through without difficulty.

13. COMPUTATION

ILECs have complained that producing the neces-
sary monthly reports and analyses is an unfair com-
putational burden. Their procedures have developed
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over many decades to provide management with tech-
niques for efficient monitoring and control of their en-
terprises. The methods of statistical process control
(which were invented by Walter Shewhart at AT&T in
1925) are used very widely in the industry. However, it
is not clear that these techniques address the problem
of detecting violations of parity month by month. We
could have stationarity with parity being violated con-
sistently or nonstationarity with parity holding every
month.

The ILECs have little spare capacity for calculating
the thousands of tests that may be needed each month,
with reports being generated for each CLEC (there
may be dozens of these) and for the aggregate of the
CLECs. Clearly an automated system is needed; a
system that requires manual intervention at any stage
is not practical. In some cases major revision of the
recording processes is needed; for example, for some
SQMs the practice has been to record only averages,
and new programming is needed to obtain the sample
variances.

14. DISCUSSION

This paper has shown how intensive study of a prac-
tical and important problem can lead to novel formula-
tions and techniques. Several research questions have
been raised, including those listed at the end of the
“Permutation Tests” section and the problem of apply-
ing the balancing approach to an aggregated statistic.

APPENDIX 1. AN IDEALIZED PROBLEM

We formulate an idealized version of the problem of
choosing an optimum payment function. Our solution
will be obtained using a new variation on the Neyman–
Pearson lemma. We use the notation [A] for the
indicator function of the event A, so that [A] = 1
when A is true, and [A] = 0 when A is false. Also
the notation (x)+ stands for the function that equals x
when x is positive, and is zero when x is negative (or
zero).

Suppose we have an observation X, taking values in
an arbitrary space, a simple null hypothesis H0 [with
density f0(x) relative to some measure] and a simple
alternative H1 [with density f1(x)]. A protagonist
can control which hypothesis is true. We want a
nonnegative payment function g(x), representing a
penalty that must be paid when the observation is x,
such that when H0 is true, the expected payment is
small and when H1 is true, the expected payment

is large. Imposition of this penalty will provide an
incentive for the protagonist to make H0 true.

Formally, we require that for some given con-
stant m1,

E
(
g(X)|H0

)=m1(1)

while

E
(
g(X)|H1

) = maximum.(2)

Unfortunately, for most interesting specifications this
formulation makes no sense, because we can make
E(g(X)|H1) arbitrarily large by making g(x) huge
on a small set where the likelihood ratio L(x) =
f1(x)/f0(x) is large. For example, when f0 denotes
the standard Gaussian density and f1(x) = f0(x − 1)
denotes a unit shift alternative, if we take g(x) =
[x > ξ ]m1/(1 − F0(ξ)), we satisfy (1) and we can
make (2) arbitrarily large by taking ξ large. This pay-
ment function is not reasonable, because the probabil-
ity that the payment is incurred is very small under both
H0 and H1.

Suppose we impose a side condition, making
g bounded, by g1, say. Clearly g1 must not be smaller
than m1. Writing φ(x)= g(x)/g1 we have exactly the
setup of the classical Neyman–Pearson test, since now
we can interpret φ(x) as the probability that H0 is re-
jected. The Neyman–Pearson lemma shows that the op-
timal g is g(x)= [L(x) > c]g1 for some c. This is not
a satisfactory solution to our problem because g is not
continuous; a very small change in x can lead to a large
change in g(x).

We can get a different result by imposing a different
side condition, namely

E
(
g(X)2|H0

) =m2,(3)

where m2 is specified. This condition controls the
variance of g(X) underH0. A variational argument just
like that of Neyman and Pearson shows that there is an
optimal g, having the form

g(x)= k
(
L(x)− c

)+
(4)

for some k and c. This payment function is continuous,
is zero when x < c, satisfies (1) and (3) (if k and c

are chosen correctly), and maximizes (2). It is clear
that c depends only on the coefficient of variation of
g(X) under H0, CV =m2/m

2
1 − 1. We describe some

examples.
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Example 1: Monotone Likelihood Ratio

If x is one-dimensional and the likelihood ratio is
monotone (increasing), we can write

g(x)= k
(
L(x)−L(ξ)

)+
,(5)

where k and ξ are determined by the two conditions

k
(
α1 −L(ξ)α0

) =m1,(6)

k2(
α2 − 2L(ξ)α1 +L(ξ)2α0

) =m2,(7)

where

α0 =
∫ ∞
ξ

f0(x) dµ(x),

α1 =
∫ ∞
ξ

f1(x) dµ(x),(8)

α2 =
∫ ∞
ξ

f1(x)
2

f0(x)
dµ(x).

The optimal expected payment under H1 is

k
(
α2 −L(ξ)α1

) = m2

k +L(ξ)m1

=m1

(
α2 −L(ξ)α1

α1 −L(ξ)α0

)
.

(9)

The critical value ξ is determined by

m2

m2
1

= α2 − 2L(ξ)α1 +L(ξ)2α0

(α1 −L(ξ)α0)2
.(10)

Thus we can view g(x) as being determined by
the moments m1, m2, by the pair m1, ξ or by the
pair m1, α0.

Example 2: Exponential Scale

Some simplification occurs if we assume H0 is
exponential, f0(x) = e−x for x > 0, with a scale
alternative:

fθ = θe−θx.(11)

We suppose 0 < θ < 1, so that the mean is 1/θ > 1.
We have

α0 = e−ξ , α1 = e−θξ(12)

while α2 is infinite unless 1/2 < θ , in which case we
have

α2 = θ2

2θ − 1
e(1−2θ)ξ .(13)

The critical value ξ is determined by

m2

m2
1

= 2θ

2θ − 1
eξ(14)

so that ξ is not independent of θ . The optimal expected
payment under Hθ is

m1
θ

2θ − 1
e(1−θ)ξ .(15)

No comparable simplification occurs for the normal
shift model.

Example 3: The Binomial Case

Assume that K is binomial (p,n) with p = p0

under H0 and p = p1 under H1, with p1 > p0. This
is a model of the benchmark situation. The likelihood
ratio is monotone, so the optimal payment function is

g(k)= a(θk − c)+(16)

for some a and c [determined by the moment condi-
tions (2) and (4)], where θ = p1(1 − p0)/p0(1 − p1).

Example 4: Uniform, Linear Alternative

Assume that H0 specifies that X is uniform in (0,1),
while for some a in (0,2), Ha makes the density of X

fa(x)= 1 + a(x − 1/2).(17)

In this case the optimal payment function is piecewise
linear,

g(x)= ka(x − ξ)+,(18)

where k and ξ are determined from the moment
conditions

m1 = ka(1 − ξ)2/2,

m2 = k2a2(1 − ξ)3/3,
(19)

that is,

k = 9m2
2

8am3
1

, ξ = 1 − 4m2
1

3m2
.(20)

Notice that in this case ξ does not depend on a.
The payment function in (13) maximizes the expected
payment under all alternatives Ha , 0 < a ≤ 2. The
expected payment is

E
(
g(X)|Ha

) =m1

(
1 + a

(
1

2
− 4m2

1

9m2

))

=m1

(
1 + a

6
+ aξ

3

)
.

(21)
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Discussion

While this formulation is much too simple to be of
real interest, it does suggest some general principles.
For example, it turns out that when the observation
is real-valued, the optimal payment function will be
a continuous function of the observation. This is
clearly desirable. Second, the size of the payment
can and should increase (smoothly) with the size of
the violation. The solutions may suggest acceptable
approximations, for example, in the binomial case we
might choose to use a piecewise linear function

g(k)= a(k − c)+.(22)

Many questions remain, including extending the the-
ory to handle composite alternatives and the simul-
taneous consideration of several measures. We may
need to estimate an optimal payment function when
the densities are not known a priori. The relationship
of this approach to that used by economists needs to
be worked out. We leave all these considerations for
future work.

APPENDIX 2. SOME SERVICE QUALITY
MEASUREMENTS

Various sets of measures have been adopted in dif-
ferent jurisdictions. Some of the measures proposed
before the Louisiana PSC are given in the following
list. We will not attempt to explain the jargon. The
measures were classified into several sections, includ-
ing pre-ordering, ordering, provisioning, maintenance,
billing, trunk blockage, coordinated customer conver-
sions and collocation. Each measure may have several
components and is to be reported for each of several
hundred geographical regions.

• Examples of benchmarked measures include:
Ordering: Firm order confirmation timeliness,

95% within 4 hours
Collocation: Percent of due dates missed,

less than 10%
• Examples of measures where an ILEC analog could

be defined include:
Provisioning: Order completion interval

Percent missed installation
appointments
Percent provisioning troubles
within 4 days

Maintenance: Customer trouble report rate
Percent repeat troubles
within 30 days

Billing: Invoice accuracy
Mean time to deliver invoices
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Comment
Joseph L. Gastwirth and Weiwen Miao

Abstract. This valuable article by Dr. Mallows not only illustrates how
challenging new problems arise in real-world applications, it also shows how
constraints imposed by the adversarial process adopted by the regulatory and
legal system create substantial barriers to objective resolution of scientific
issues. The first part of our comment will briefly review the context of
the problem. Then we will comment on some of the interesting statistical
problems that are discussed in Dr. Mallows’ paper. The third section concerns
the difficulties statisticians and scientists face when they become involved
in the legal environment with its focus on “winning” rather than finding
the truth. The final section relates the relevance of the methods discussed
by Dr. Mallows to the March 4, 2002 decision of the U.S. Supreme Court
concerning competition in the power industry along with a few additional
remarks.

1. LEGAL BACKGROUND

The purpose of the 1996 Telecommunications Act
was to reduce the barriers to entry in various markets
of the industry. In a sense, it can be regarded as a
continuation of the government’s antimonopoly policy
that led to the consent decree in which AT&T was
split into various companies, including the “local” Bell
phone companies. Perritt (2000) quoted the purpose of
the Act summarized by the Federal Communications
Commission (FCC):

(1) opening the local exchange and ex-
change access markets to competitive en-
try; (2) promoting increased competition
in telecommunications markets that are al-
ready open to competition, including the
long distance services market; and (3) re-
forming our system of universal service so
that universal service is preserved and ad-
vanced as the local exchange and exchange

Joseph L. Gastwirth is Professor of Statistics and
Economics, George Washington University, Washing-
ton, DC 20052 and Visiting Scientist, Biostatistics
Branch, Division of Cancer Epidemiology and Genet-
ics, National Cancer Institute (e-mail: jlgast@gwu.
edu). Weiwen Miao is Assistant Professor, Depart-
ment of Mathematics and Computer Science, Maca-
lester College, St. Paul, Minnesota 55105 (e-mail:
miao@macalester.edu).

access markets move from monopoly to
competition.

The Act covers many aspects of the industry, in-
cluding billing practices and privacy issues, beyond the
scope of the article. Looking up the statute and related
background material, we found that its legislative his-
tory required 21 volumes and already there have been
several important legal cases, which are cited at the end
of this comment. We will focus on the sections imple-
menting the deregulation of the phone industry that led
to the statistical problems discussed by Dr. Mallows.

In return for opening up local markets to compe-
tition in a fair and nondiscriminatory manner [Sec-
tion 251(c)], the Bell companies [incumbent local ex-
change carriers (ILECs)] were given the opportunity
to offer long-distance service to calls originating in
their service area, subject to approval from the FCC
(Section 271). This approval depends in part on the
ILEC being in compliance with Section 251 and re-
lated parts of the statute. Section 251(c) (2) of the Act,
which defines the parity concept is augmented by Sec-
tion 251(c) (3), which states that the ILEC must pro-
vide to any requesting telecommunications carrier ac-
cess to network elements on an unbundled basis with
rates, terms and conditions that are just, reasonable and
nondiscriminatory (Perritt, 2001, page 95). An ILEC
shall provide such unbundled network elements in a
manner that allows requesting carriers to combine such
elements in order to provide such telecommunications
service.
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The fact that the word nondiscriminatory occurs
twice in this section suggests, albeit indirectly, that
methodology useful for examining “parity” may have
parallels in methodology that has been found useful in
examining data arising in equal pay and related cases
concerning discrimination. Several issues arising in
both applications will be discussed further in the next
section as the similarity between “benchmark” rules
and the Equal Employment Opportunity Commission’s
four-fifth’s rule is noted in the article.

The article notes that the local companies have lit-
tle capacity to calculate the many statistical tests that
may be needed to monitor compliance. It would ap-
pear that provisions for sharing the cost of monitoring
compliance could be built into the system. Since these
costs were created by the Act itself, they might well
be included as an appropriate cost that may be used
by the ILEC in pricing its services to a competitive
local exchange carrier (CLEC). The Supreme Court
discussed these costs in AT&T et al. v. Iowa Utilities
Board (1999). The subsequent implementation of the
decision by the Eighth Circuit in GTE v. FCC (2000)
noted that state commissions have the authority to de-
termine pricing methods and they may include “recov-
ery mechanisms for legitimate costs.”

2. STATISTICAL ISSUES

The core of the problem is the translation of the
nondiscriminatory or parity requirement. Let X and Y
be a service quality measurement (SQM) to the CLEC’s
customers and the ILEC’s own customers, respectively.
Let X1 ≤ X2 ≤ · · · ≤ Xn and Y1 ≤ Y2 ≤ · · · ≤ Yn be
ordered samples from X and Y (where large values
are “bad”). Suppose that X and Y are continuous and
independent. Then when parity holds, that is, when
X and Y have the same distribution, by applying a the-
orem from Gnedenko and Mihalevic (1952) (see also
Drion, 1952; Takacs, 1964), we have

P (X1 < Y1,X2 < Y2, . . . ,Xn < Yn)= 1

n+ 1
.

Since X and Y are continuous, P (Xi = Yj )= 0 for
any i and j . So, if we adopt the rule of “company B
(ILEC) is in violation unless Xi ≤ Yi , for all i”
described in the article, then even when parity holds,
the probability of finding the ILEC in violation of
parity is 1−1/(n+1)= n/(n+1). Thus, as the sample
size n increases, the probability of finding a parity
violation goes to 1. Clearly this would be unfair to the
ILEC.

Dr. Mallows properly observes that the usual pooled
t-test and the Welch t-test are not appropriate for test-
ing parity because the null hypothesis requires the first
two moments of X and Y to be equal, but the alter-
natives allow both to change. We conducted a small
simulation to examine the comparative performance of
four parametric t-tests and four nonparametric tests.
The four parametric t-tests are the pooled t-test, the
Welch t-test, the modified t-test (Brownie, Boos and
Hughes-Oliver, 1990) and the adjusted t-test (Balkin
and Mallows, 2001). The four nonparametric tests are
the Wilcoxon test, the Savage scores test, the normal
scores test and a test that has high relative efficiency
for the gamma family, ranging from the exponential
to the normal (Gastwirth and Mahmoud, 1986). We
call it the GM test in our study. The results in our Ta-
ble 1 are based on 10,000 simulations. In the table, n1
refers to the sample size of X and n2 refers to the sam-
ple size of Y . As pointed out in Balkin and Mallows
(2001), the distributions ofX and Y are usually skewed
and the sample sizes are very different with n1 � n2.
Our simulation focused on the exponential distribution
and on the influence of the unequal sample sizes with
n1 + n2 = 100.

Table 1 clearly shows that unbalanced sample sizes
diminish the power of all tests considered. The greater
the imbalance in the sample sizes, the lower the
power of all the tests. Uneven sample sizes also
influence the type-1 error of the tests. For the pooled
t-test and the four nonparametric tests, the greater
the difference in sample sizes, the larger the actual
level. When the sample sizes are equal, the levels of
these five tests are very close to the nominal 0.05.
Even in unbalanced settings, the excess in their levels
over 0.05 is not great. The other three tests do not
perform well: the actual type-1 error of the modified
t-test and the adjusted t-test is higher than 0.05 for
all sample size combinations. The Welch t-test has
a size much smaller than 0.05 for uneven sample
sizes; consequently, its power is also much lower than
the other tests. The pooled t-test works well when
sample sizes are equal, but its type-1 error is larger
than 0.05 for unbalanced sample sizes. Among the
four nonparametric tests, the Savage test and the GM
test have the highest power, but their sizes slightly
exceed 0.05. When the sample sizes are not extremely
uneven, the size of the GM test is close to the
nominal level of 0.05. The GM test procedure, which
is designed to have high power relative to the optimum
tests for members of the Gamma family, achieves this
for exponential distributions. It loses a small amount
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TABLE 1
Type-1 error and power for various two-sample tests—exponential data

Parametric t-tests Nonparametric tests
(n1,n2) β Pool Welch Modified Adjusted Wilcoxon Savage Normal score GM test

(5,95) 1 0.072 0.012 0.077 0.096 0.055 0.069 0.055 0.062
1.5 0.301 0.062 0.313 0.355 0.205 0.289 0.231 0.269
2 0.542 0.118 0.554 0.599 0.370 0.520 0.421 0.482
2.5 0.710 0.193 0.719 0.750 0.506 0.685 0.580 0.650
3 0.820 0.252 0.829 0.852 0.616 0.801 0.698 0.765

(10,90) 1 0.066 0.016 0.075 0.094 0.052 0.064 0.053 0.060
1.5 0.405 0.156 0.430 0.477 0.286 0.388 0.313 0.357
2 0.721 0.382 0.739 0.776 0.542 0.698 0.598 0.669
2.5 0.883 0.581 0.895 0.910 0.727 0.865 0.783 0.839
3 0.955 0.720 0.960 0.967 0.839 0.943 0.883 0.925

(15,85) 1 0.062 0.021 0.072 0.090 0.051 0.060 0.051 0.056
1.5 0.475 0.259 0.507 0.549 0.346 0.453 0.378 0.422
2 0.825 0.601 0.844 0.867 0.673 0.807 0.718 0.779
2.5 0.948 0.815 0.955 0.964 0.845 0.937 0.887 0.921

(25,75) 1 0.059 0.033 0.074 0.094 0.050 0.057 0.052 0.056
1.5 0.582 0.437 0.629 0.673 0.444 0.562 0.477 0.533
2 0.911 0.834 0.929 0.944 0.800 0.901 0.839 0.885

(50,50) 1 0.050 0.049 0.080 0.104 0.050 0.050 0.049 0.048
1.5 0.642 0.641 0.736 0.786 0.545 0.635 0.566 0.616
2 0.961 0.960 0.977 0.985 0.906 0.957 0.918 0.946

of power compared to the Savage test and the pooled
t-test, but has greater level robustness.

We also ran simulations for normal data and obtained
similar results. In summary, our studies show that both
the Savage test and the GM test work reasonably well
in uneven sample size situations. The Savage test,
however, has less level robustness. In the problems
discussed by Dr. Mallows, the precise form of the
skewed distribution is usually not known and likely
varies by SQMs. Our simulations suggest that using
a robust nonparametric test such as the GM test or
the robust LePage-type tests described in Podgor and
Gastwirth (1994) should have type-1 error close to
the nominal level and still possess high power under
different situations.

Our simulation studies indicate that highly imbal-
anced sample sizes noticeably decrease the power of
statistical tests. Dr. Mallows kindly informed us that
the available data are really observational in nature.
Such data are often analyzed as though they arise from
a random process and possible effects of the devia-
tion from the assumed model are assessed by sensi-
tivity analysis (Rosenbaum, 2002). If the highly un-
equal samples sizes are due to the fact that the vast
majority of customers remain with the ILEC, that is,

the CLEC has a very small market share, then this im-
balance would be inherent in the data. On the other
hand, if the ILEC makes it difficult for its customers to
switch providers, then the small sample of the CLEC
customers in the available data actually reflects the
policy of the ILEC under scrutiny. Indeed, Young,
Dreazen and Blumenstein (2002) indicated that many
local phone companies (the ILECs) did that, for ex-
ample, one imposed a $111.86 fee (subsequently re-
moved after pressure from a regulatory commission).
Solomon (2002) reported that while the local compa-
nies (Bells) are anxious to crack the long-distance mar-
ket, they have been fined by both the states and the fed-
eral government for not first providing an equal playing
field to rivals for local service, as federal regulations re-
quire. As we have seen, such practices that are incon-
sistent with the requirements of Section 251(c) (3) also
make it difficult to detect parity violations. The same
problem arises in equal employment cases, where the
hiring process determines the samples of minority and
majority employees available to study fairness of pro-
motion. Examining these employment practices sepa-
rately can lead to anomalous results (Gastwirth, 1997).
Judge I. Goldberg’s dissent in Watson v. Fort Worth
Bank (1986), where he notes that an employer who dis-
criminates in hiring is unlikely to become a saint when
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making promotions, shows that courts are aware of this
problem, so regulatory authorities should also examine
the reasons for the highly imbalanced sample sizes.

Problems concerning differences in the “upper tail”
also arise in medical applications where a drug may
be effective only on a portion of the population. This
type of alternative is similar to the one here, that is, an
ILEC may provide poor service only to the desirable
customers of the CLEC. The methods reviewed by
Freidlin and Korn (2002) might also be explored.

The problem of balancing the type-1 and type-2
errors also has arisen in equal employment cases. In
that context, Dawson (1980) questioned the imbalance
in the choice of values for the two types of error and
recommended that they be equal. Dr. Mallows has
provided a more detailed analysis and discussed the
magnitude of the change (δ) that should be used to
calculate the type-2 error probability (β).

The author’s discussion of the inappropriateness
of the replicate variance (RV) method reminds us
that just because a method is readily available or a
computer program exists to implement it does not
mean that one should use it uncritically. The RV
method is used to obtain variances and covariances
for parameters estimated from complex survey data.
In that application, a jackknife-type estimator is used,
that is, one could sample from all primary sampling
units (PSU’s) and then reestimate them by deleting
one PSU at a time. The covariance matrix of these
estimates is calculated and used as the final estimate
of the covariance matrix.

A superpopulation model is appropriate when there
is an underlying variability in the process generating
the finite population sampled from. Then there is a
need to incorporate both the variability in the gener-
ation process and the sampling error from the sampled
finite population. The article by Graubard and Korn
(2002) describes procedures that have been developed
for superpopulation models. There is no superpopula-
tion in the problem Dr. Mallows discusses as the focus
is on deciding whether or not the CLEC is receiving
the same level of service as the ILEC in a particular
geographical area.

The question of which summary statistic to use is
very important and the author indicates why it has
been so difficult to come to an agreement. We only
wish to mention an additional complication, namely
that some of the various measures are dependent. This
may allow the ILEC more room to manipulate the data:
the ILEC can provide equal service to those measures
that are related and occur several times as components

of the summary test hoping that they will hide another
measure of poor service to customers of the CLEC.
Dr. Mallows also observed that correlation over time
as well as common causes of poor service need to be
accounted for in deriving the appropriate distribution
of the test statistics.

3. THE ADVERSARIAL ENVIRONMENT

The negative experience that Dr. Mallows had with
the legal and regulatory system unfortunately is all too
common. As statistical scientists, we are primarily con-
cerned with uncovering the actual facts and interpret-
ing them properly. This includes providing measures of
uncertainty and discussing various strengths and weak-
nesses of a study or analysis. The legal system restricts
the nature of the information it allows to be submitted
as evidence to ensure that it is reliable and relevant to
the case at hand. According to Burns (1999), the legal
system has developed its own concept of “legal truth.”
Trial procedures rely heavily on the ability of each side
to marshal the facts most favorable to its view of the
case and trusts that the truth will be brought out in
the process of cross-examination. Thus, the partisan-
ship noted by Dr. Mallows is an inherent part of the
legal system.

The ethical system that lawyers are taught also dif-
fers greatly from the scientific ideal. Burns (1999,
page 76) described a sample case often used in the pro-
fessional responsibility class in law schools. Briefly,
the lawyer believes her client is innocent of the mur-
der of his ex-wife. The man’s landlady saw him re-
turn home shortly before the shooting and he was in
his room when the police came shortly afterward. The
client does inform his lawyer that he did leave his room
for a few minutes to get some fresh air. If the client
does not take the witness stand, his lawyer is free to
argue that the evidence will show that the man never
left his room and therefore could not have committed
the crime. Burns then says that his lawyer may con-
duct a destructive cross-examination on any witness,
however truthful, who testifies that they saw her client
outside his room during the relevant time. While Burns
is bothered by this, many nonlawyers might conclude
that teaching lawyers that such practices are “ethical”
and “responsible” contradicts the claim made by the
legal community that the adversarial process is another
approach to finding the truth.

The nation’s most cited legal scholar, Judge Posner
(2001), observed that the significance and social value
of cross-examination is often misunderstood. He ob-
serves that although “cross-examination can destroy a
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witness’s credibility, it rarely does so.” The reason is
that the individuals whose credibility would be seri-
ously tarnished are not likely to be called to testify.
The implication of Judge Posner’s view is that cross-
examination is a deterrent to people who would lie or
try to cover up evidence on the stand. The example
from legal ethics classes, however, is likely to deter
honest citizens who are eyewitnesses to a crime or de-
struction of evidence from testifying.

One of the difficulties scientists face in this system
is that the lawyers are under no obligation to inform us
of all the relevant data, who else they may have con-
sulted or whatever other information they have. This
asymmetry in disclosure of information is also noted
in a recent National Research Council report (2002).
During the discovery process, each side has the oppor-
tunity to depose or question each other’s witnesses in
preparation for the trial. This process is supposed to
reduce the possibility of unfair surprise and in cases
involving statistical evidence may encourage both par-
ties to agree on a common database. Unfortunately, the
discovery process allows the lawyers a great deal of
flexibility without judicial oversight. Depositions are
typically carried out in a law office, with only the wit-
ness and lawyers for both parties present. While the
lawyer who plans to use your testimony will try to be
of assistance, as Mann (2000) pointed out, their first
duty is to their client. Worse yet, there appears to be an
increase in problems with the discovery system. These
can readily occur in situations where one party has bet-
ter access to or possesses the information. Over the
last few years, the National Law Journal has published
articles concerning the possible destruction or hiding
of relevant information or documents by DuPont, Wal-
Mart and the auto manufacturers. As the local compa-
nies will collect the data in the application discussed
by Dr. Mallows, we describe similar problems occur-
ring when the needed information is under the control
of one party.

A recent toxic tort case involving polychlorinated
biphenyl (PCB) exposure illustrates the importance of
a full and fair discovery process and the incentive a
party that controls the information has to hide or de-
stroy it. At issue is whether a producer’s employees
or the surrounding community were exposed to toxic
chemicals. The time a producer knew or should have
known of a potential harm from exposure is of criti-
cal importance, because the law expects one to act pru-
dently in light of the state of knowledge at the time.
Monsanto and Solutia, the two companies that owned

the plant, were found liable for damages. The firms ar-
gued that the plant was shut down in 1971, immedi-
ately after it was concluded that PCBs were potentially
carcinogenic. Grunwald (2002) reported that in 1966
and 1969 Monsanto had observed that fish exposed to
the plant’s output died. The documents and testimony
about these pre-1971 events, clarifying when the firms
knew there was a risk from PCBs, was a factor in the
deliberations of the jury. Clearly, the defendants and/or
their lawyers had an incentive to destroy or hide this
early evidence.

Gastwirth (1991) described another issue we may
face as experts. After being deposed in an equal
employment case, “more” employment records were
found by the defendant and provided to the plaintiff.
It may be reasonable to assume that records and
documents that are missed during the first search by
a defendant are missing at random. After the defendant
knows the evidence that needs to be countered at trial,
for example, after deposing the plaintiff’s expert, it
is less plausible that unfavorable documents have the
same probability of being located than favorable ones.
The problems experts face in criminal cases can even
be more bothersome (Geisser, 2000).

We agree with Dr. Mallows that the adversarial and
confrontational process used in the legal system dis-
courages a scientific dialogue aimed at resolving the is-
sues. Indeed, it may well encourage unethical behavior,
especially as strong sanctions are rarely imposed (Nes-
son, 1991). We would be remiss, however, if we failed
to mention that our own profession might also benefit
from stronger ethical guidelines. Horton (2001) cited a
study of medical statisticians. While the response rate
was low (37%), half of the respondents knew of at least
one fraudulent project done in the previous 10 years,
26% described deceptive reporting of data and 19%
knew of data suppression. This should motivate our
profession to take action that would enable individuals
who observe such practices to come forward without
jeopardizing their livelihood.

4. FINAL REMARKS

Dr. Mallows has illustrated how a variety of criti-
cal statistical issues arose in an important application,
for example, multiple comparisons, dependent obser-
vations, the potential effect of change in the process
after the ILEC has been found in violation of parity
and the essential role that the power of a test has in
deciding which procedure should be used. Not surpris-
ingly, similar issues have arisen in the context of equal
employment litigation. For example, the loss of power
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in highly unbalanced samples for comparing SQMs
arose there. As the author’s discussion of the “repli-
cate variance” method demonstrates, one must think
carefully about the assumptions underlying a method
developed for one purpose before using it on data from
another one. Appropriate modifications may be neces-
sary.

At first glance, it might seem that the application dis-
cussed is unique. On March 4, 2002, the U.S. Supreme
Court decided another case that may well generate sim-
ilar problems. Two cases, New York v. Federal En-
ergy Regulatory Commission and Enron Power Mar-
keting Inc. v. Federal Energy Regulatory Commis-
sion, were consolidated. The issue concerned regula-
tions established to enhance “open access” in energy
transmission that the Federal Energy Regulatory Com-
mission (FERC) established. The purpose of the rule
was to encourage lower electricity rates by structuring
an orderly transition to competitive bulk power mar-
kets.

FERC ordered unbundling of wholesale and retail
generation and transmission, and required local power
companies to apply a single tariff for the transmission
of its own wholesale sales and purchases and those of
competitors. It also said that if a public utility voluntar-
ily offers or a state requires unbundled retail access, the
retail customer must obtain its unbundled transmission
service under a nondiscriminatory transmission tariff
on file with the Commission. FERC did not require lo-
cal utilities to separate generation from transmission
costs to retail customers if neither of the above situa-
tions applied. The court sided with the Commission on
both issues.

To implement the nondiscriminatory open access
provisions, it is reasonable that not only will the tariffs

need to be identical, but other measures of service
should also be equal. Thus, similar problems, albeit
with different SQMs, may require the same kind of
rigorous statistical investigation that Dr. Mallows and
his colleagues on both sides of the regulatory hearing
gave to assessing parity in telephone service.

Another important legal development that statisti-
cians thinking of participating in legal proceedings
should be aware of is the heightened scrutiny that
courts are giving to expert testimony. Three major
cases have dealt with the screening the trial judge
should give to proposed testimony to ensure its relia-
bility before admitting it into evidence. Good sources
for a description of these cases and their impact on ex-
pert testimony are Kaye (2001), who discussed econo-
metric testimony in an antitrust case, and Rosenblum
(2000), who focused on their effect on equal employ-
ment cases.
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Comment
Edward J. Mulrow

One wonders if the framers of the Telecommuni-
cations Act of 1996 realized the growth in statisti-

Edward J. Mulrow, formerly with Ernst & Young
LLP, is Senior Manager in the Statistical and Proba-
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cal thinking that would take place across the country
as state public service and public utility commissions
struggled with the task of implementation. Dr. Mallows
has certainly done an excellent job of describing this
process and of personally making major contributions
to it. It has been a great pleasure working alongside
him.

Dr. Mallows in his exposition ably tackles both the
application of statistical thinking and its context. In dis-



PARITY: TELECOMMUNICATIONS ACT OF 1996 277

cussing this challenge, he well describes the mathemat-
ical issues in framing the inference, the problems of es-
timation and a discussion of the distribution of the sta-
tistics, but he does much more too. He also discusses
what he described in his 1997 Fisher Memorial Lec-
ture as “the zeroth problem: considering the relevance
of the observed data, and other data that might be ob-
served, to the substantive problem” (Mallows, 1998).
I hope to maintain the same flavor with my comments,
and I will try to supplement Dr. Mallows’ discussion
with some of my own experiences and the reflections
on them.

1. BACKGROUND

I, along with colleagues at Ernst & Young (E&Y),
have been involved in several state proceedings on
the local exchange carrier service parity issue. We
were retained by an incumbent local exchange carrier
(ILEC) to act as an independent third party in deriving
a statistical approach that would meet with a state
commission staff’s approval. When the project began,
we requested two things from the ILEC:

1. That the team have access to the performance
measure data so that they could be explored before
a final methodology was chosen.

2. That the client allow the team to report its findings
to the regulatory bodies involved, even if they were
not flattering to the ILEC.

Our client agreed to these conditions, asking only
that we secure a level playing field for them. A natural
consequence of this client arrangement is that we were
able to proceed collaboratively—something that we
feel has led to a better understanding of both the data
and the issues than would otherwise have been the case.

Naturally, we did not always agree with Dr. Mallows,
especially at the beginning since we were coming at the
problem using somewhat different tools. Dr. Mallows
(1998) pointed out, “In a complex problem, it is
possible for ethical analysts to take opposing positions.
But this style of thinking is what statisticians should be
trained to do.” With the data as teacher, we narrowed
our differences by laying out the arguments on each
side of the issue and concentrating on what the data
implied. In the end, we believed that we had a statistical
solution that fairly addresses the concerns of all the
stakeholders: the ILEC, the competitive local exchange
carriers (CLECs), and the state commissions.

Philosophical differences of opinion still exist over
the appropriateness of some statistical techniques,

and I will briefly address these below. The approach
now agreed upon makes these differences largely
moot, however. A bigger issue has been differences
between the parties over subject matter input that
is needed to carry out the statistical methodology.
Dr. Mallows points out in the “Balancing” section
of his paper that statisticians cannot provide this
input, but they can perform analysis that describes the
consequences of different input choices. I will also
address these “subject matter” issues and suggest some
alternatives in ways to think about the problem to help
commissioners decide the issues.

2. STATISTICAL ISSUES

The most common way to deal with the analysis
of the data is to use all transactions that have been
completed in the month of interest. There is no sample
that is taken and there is no randomized assignment of
treatments to units. As Rubin (2000) stated:

The key problem for inference is that, for
any individual unit, we get to observe the
value of the potential outcome under only
one of the possible treatments, namely the
treatment actually assigned, and the poten-
tial outcome under the other treatment is
missing. Thus, under this straightforward
perspective, inference for causal effects is a
missing-data problem. When this definition
of causal effects is applied to a set of indi-
viduals, a complication is that the potential
outcomes for a particular unit may depend
on the treatments assigned the other units.

Thus, we have an observational study and we look at
the data as a sample of the service process—a process
that is very complex. When we (E&Y) initially exam-
ined what other jurisdictions were considering for data
analysis, we did not see anyone advocating a method-
ology that tried to take the complexities of the process
into account. Two things concerned us:

1. Identifying important covariates so as to reduce
bias.

2. Allowing for dependencies that may be present
due to the way in which the telecommunications
industry is structured.

The team proposed a random group replicate vari-
ance method at a Louisiana Public Service Commis-
sion workshop as a way to handle these concerns. As
Dr. Mallows points out, it is a technique that is of-
ten used for variance estimation with sample survey
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data. Since some members of the E&Y team come
from sampling backgrounds, this was a natural way
to think about the problem. After listening to objec-
tions from Dr. Mallows and others at the workshop,
the methodology was revised to jackknife the ran-
dom group estimates. Both approaches are described
in Wolter (1985). Jackknifing differs from the random
group variance method mainly in that jackknifing pro-
tects better against biases that can be important in small
samples.

An additional adjustment to the method is also
needed to satisfy Dr. Mallows’ property (d) in the
“Disaggregation and Reaggregation” section of his
paper. Once both these (minor) adjustments are made,
we argue that we have two models—both of which
might be considered adequate to test for parity. Now in
an observational study based on operating data, such as
we have in this context, there is no entirely satisfactory
constructive way to choose, as there would be in a
real experiment or sampling setting, between these
two competing models (or other plausible models that
might have been found by other researchers). Clearly
another less model-sensitive approach was needed.

The team felt that the balancing approach that
Dr. Mallows and others were advocating provided
such an alternative since it does not require that
pre-specified alpha levels be used. Without a doubt,
balancing makes the decision process less sensitive
to the choice of a model. By this I mean that the
hypothesis testing process will end up with the same
conclusion of parity or nonparity with a balancing
approach (under either model). The evaluation of the
type-1 and -2 errors does depend upon the model,
but the decision does not. The size of the test and its
power can be very different depending on the model
that underlies the inference, but not necessarily the
decision.

Consider for a moment how one would determine the
“balancing critical value” for a test statistic based on a
resampling method such as the jackknife. Our choice
was to employ a concept similar to that of a design ef-
fect in sampling (Kish, 1965). In this case, we would
calculate the standard error for the difference in the
ILEC and CLEC performance measures using the jack-
knife approach as well as the approach Dr. Mallows de-
scribes. We then calculate the balancing critical value
for the jackknifed test statistic by rescaling the balanc-
ing critical value for the truncated Z model using the
ratio of the jackknife standard error to the standard er-
ror of the truncated Z model. Now, the jackknifed test
statistic will be greater than the critical value (and we

would reject the null hypothesis) if and only if the trun-
cated Z-test statistic is greater than its balancing criti-
cal value.

Once we noticed this about the technique we were
advocating, we concluded that Dr. Mallows’ method-
ology was just as appropriate for the data as our own.
Furthermore, since our team strongly stressed from the
beginning the need for disaggregation to homogeneous
subgroups in making comparisons, we had real con-
cerns about the stability of a jackknife estimator em-
ployed directly for individual subdomains—something
the Public Service Commission wanted to do. It is also
the case that while the truncated Z methodology is
complicated, it is simpler to explain to commission-
ers and easier to implement than the jackknife method-
ology. Therefore, a compromise was reached with Dr.
Mallows, and we could move on to putting our energies
into creating a process that would be able to perform
all the necessary calculations in a timely manner. For
more details on this process see Balkin (2001).

To sum up the process, it was exploratory at the be-
ginning, choosing safe tools that are known to work in
complex data settings. Then there was a period of dis-
agreement and rethinking with the use of confirmatory
tools (some new). We did not fully explore alternatives
that were being suggested in regulatory workshops that
we were not involved with. Instead we concentrated on
adjusting the techniques that we had offered up. This
was followed by convergence, perhaps too quickly, to
an approach that we felt was robust against what we
know we do not know.

3. SUBJECT MATTER ISSUES

In the state hearings that I have been involved
in, the ILEC, the CLECs and the state commissions
have accepted the truncated Z statistical methodol-
ogy that Dr. Mallows describes in the “Disaggregation
and Reaggregation” section along with the balancing
methodology. However, there are two important sub-
ject matter decisions that need to be made to imple-
ment the methodology: (1) the reaggregation level for
the truncated Z statistic and (2) the alternative hypoth-
esis used to determine the balancing critical value.

With respect to the issue of the reaggregation level,
one needs to understand how the stakeholders are
thinking about the issues. It is quite natural for a sta-
tistician to consider using a “global” decision process
in the presence of multiple test results. Since we know
that testing error exists even when the null hypothe-
sis is true, we understand that it is very likely that a
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test failure will be observed when hundreds (or possi-
bly thousands) of tests are performed at the same time.
However, for the regulators the issue is one of deter-
mining discrimination that is harmful to local competi-
tion and they do not want to forgive a testing failure if
it truly represents poor service to a CLEC’s customers.

This would not be a big issue if the aggregate statistic
could not mask discrimination at lower testing levels,
but we have not found one yet that cannot be “gamed.”
Dr. Mallows has been very creative in deriving the
truncated Z statistic, yet it is still possible to provide
good service to a CLEC in enough cells that would
result in truncated Z scores of 0 so that they outweigh
one or two bad cells. For this reason, the CLECs have
voiced concern about letting the aggregation level of
the truncated Z get too high.

What this really boils down to is determining the dis-
aggregation level where it is important to detect dis-
crimination. In Georgia, the state Public Service Com-
mission has decided to determine discrimination based
on the type of business entry that a CLEC uses in the
marketplace. For instance, if a CLEC is reselling plain
old telephone service (POTS), then all cell results in-
volving these types of services, be they business cus-
tomers, residential customers or other types of special
services under resale POTS, are aggregated together
using Dr. Mallows’ truncated Z. In contrast, Florida
has decided that it wants discrimination determined
at much lower levels, for example, residential resale
POTS where a dispatch call is made to a customer with
less than 10 circuits.

In looking at the problem in this light, we are
really dealing with the issue of bias reduction in a
set of observational data. Many techniques exist to
reduce such bias; see Hinkins (2001) for a further
discussion of this issue. If a commission (or other
subject matter expert) determines that, in terms of
opening up the market to competition, the appropriate
place to monitor discrimination is at a much higher
level than where like-to-like comparisons need to
be made, then we may want to question whether
the computationally intensive truncated Z aggregate
test statistic that Dr. Mallows describes is necessary.
Would a simpler process suffice? In one jurisdiction,
a commission staff member rejected the idea that any
further disaggregation of the data is necessary even
though the ILEC was willing to perform the extensive
calculations. The main reason that the truncated Z was
rejected is that it was felt that the process would be
too hard for a commission to monitor. The potential
benefits in bias reduction that might be obtained do not,

in this particular staffer’s mind, outweigh the cost of
monitoring the system.

The most contentious issue, however, is the choice
of the alternative hypothesis for the balancing method-
ology. Dr. Mallows describes the situation quite well.
Mulrow (2001b) provided extra insight into the way a
balanced test works. In the simple situation where we
are using the modified t statistic described by Dr. Mal-
lows, a balanced parity test is equivalent to “bench-
marking” the effect size of the disparity. That is, the
null hypothesis of parity is rejected whenever

X̄− Ȳ

sY
>
δa

2
.

The left-hand side of this relationship is known as an
effect size called Glass’ d in the metaanalysis literature
(Hunter and Schmidt, 1995). On the right-hand side, δa
denotes the size of distribution shift that is assumed for
the balancing alternative hypothesis.

Note that sample size plays no role here (unless
we evaluate the size of the error probabilities). If the
estimated size of the disparity is less than δa/2, then
the difference between the average performance in
servicing CLEC and ILEC customers is considered
immaterial. In other words, the difference has no
practical significance.

This concept should be one that subject matter
experts can address. One of the problems though
is that these experts are not used to thinking about
standardized differences of this nature. As Dr. Mallows
suggests, statisticians can provide analyses of the
situation to see if they can bridge the gap between
the input the methodology calls for and the input with
which the subject matter expert is familiar. Another
possibility is to change the concept upon which the
methodology is based.

Many subject matter experts whom I have talked
with are used to thinking in terms of percent increase
(or decrease). In this case the effect size size would be
measured as

X̄− Ȳ

Ȳ
.

The concept of an immaterial difference in perfor-
mance can be restated as the difference in average per-
formance being less than a 100ρ% increase. Now if a
subject matter expert determines an appropriate value
of ρ, then we can determine the parameter of the alter-
native hypothesis by

δa = 2ρ

CVY

,
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where CVY is the coefficient of variation of the ILEC
distribution. One problem that this approach has is
determining the coefficient of variation for the ILEC
distribution. Should we use a value based on previous
knowledge of the process or should we estimate it from
the current data? If we choose the latter, should we
use a global value for the performance measurement
of interest or should we estimate the CV for each cell?
Another problem that arises is how we would translate
this type of approach to the case of counted variables.

4. OTHER ISSUES

Dr. Mallows has summarized a number of issues that
have arisen in the implementation of the Telecommu-
nications Act of 1996. I have focused on some of the
more contentious issues from my experiences. I do ap-
preciate the fact that Dr. Mallows has addressed issues
such as benchmarks and penalty payments. These are
topics that have been viewed by some as nonstatisti-
cal. Dr. Mallows’ treatment of benchmarks is very cre-
ative. It is unfortunate that, in all the proceedings that
I have knowledge of, parties have chosen to ignore the
statistical aspects of the benchmark comparison prob-
lem. Similarly, statisticians have not been asked to play
a role in the determination of penalty amounts. In my
view it is unwise to ignore the statistical methodology
being used to determine parity/discrimination when de-
riving the penalty payment mechanism.

Better solutions to such problems as determining the
alternative hypothesis for balancing might be found
if the penalty mechanism is also considered in the
solution. It is perhaps too simple an idea, but the
choice of δ may not be as contentious if payments for
statistical test failures are simultaneously considered.
If an ILEC wants δa large so that the probability of a
type-1 error is not very high for small samples, then a
high penalty when there is a failure may be reasonable.
Likewise, CLECs that want smaller values of δa should
be willing to accept smaller penalty payments. This
gets at the idea of balancing the expected loss to each
side when a testing error occurs.

Another issue is the way many of us have gone about
solving this problem. Of the hundreds of measures that
are being dealt with, only two or three are measured
variables; most are counted variables. However, almost
all of the analytic work and discussion has dealt with
measured variables. The assumption is that once we
solve the problem of comparing means, the solution
to the proportion or rate of a counted variable will be
immediate. However, it is not always the case that the

solution that is derived for a mean is readily applicable
to a proportion or rate. Dr. Mallows has given one ex-
ample in discussing the balancing alternative hypothe-
sis for a counted variable. We must take time to con-
sider the meaning of the alternative for a proportion
or rate. If we had first developed a methodology for
a proportion measure, would we immediately think of
using the arcsine–square-root transformation? Maybe
we should have concentrated on developing a counted
variable concept that is easier for a regulatory commis-
sioner to understand.

Similarly, we must be careful in applying the mod-
ified t statistic developed for mean measures to pro-
portion measures. The modified t uses only the ILEC
variance to determine the standard error of the differ-
ence in the ILEC–CLEC mean. Intuitively this is be-
cause there are two potential ways for an ILEC to dis-
criminate when looking at the length of time it takes to
complete an order. It is thought that the ILEC might be
able to independently control the location and spread
of the CLEC service time distribution, so the modi-
fied t provides a way to make a test of mean differences
more sensitive to situations where the CLEC variance
is larger than the ILEC variance. From a theoretical
perspective, the modified t is more powerful than the
pooled t against compound (mean and variance) dis-
criminatory alternatives.

Do we want to use the same idea with counted vari-
ables? There is only one parameter that the ILEC can
control here, and there are discriminatory alternatives
for which the modified t will have lower power than
a test statistic based on a pooled variance (a CLEC
proportion larger than the ILEC proportion which is
greater than 1/2). When sample sizes are small for
a proportion measure, the recommended “exact” test,
Fisher’s exact test, is a pooled test (Lehmann, 1986).
Why should we switch to a nonpooled test when sam-
ple sizes are large? I ask these questions because in
some jurisdictions, for example, New York, the modi-
fied version of the test statistic is used for proportion
measures. This does not seem right to me.

5. CONCLUSION

Dr. Mallows has made many significant contribu-
tions to solving the problem of implementing the
Telecommunications Act of 1996. He has been exem-
plary in the way he has handled himself in the adver-
sarial environment of regulation and he has been an
equally good collaborator. I thank Dr. Mallows for a
well thought out discussion of the statistical method-
ologies that have been considered and in some cases



PARITY: TELECOMMUNICATIONS ACT OF 1996 281

employed by jurisdictions across the country. On the
surface this problem seems simple, but due to the na-
ture of the data, the requirements imposed by many
regulators and the number of different stakeholders,
this problem has many complexities. For those who are
looking for examples of real-world problems to bring
to their students, this is one that illustrates many of the
challenges faced by our profession.

Even with all the work that has been done, there is no
sense in which we would claim to have fully captured

the operating complexity of the telecommunication in-
dustry, even for one ILEC. Still the methods described
by Dr. Mallows fit the principles agreed to by the par-
ties and hence can be considered acceptable, if not op-
timal. In our view they meet the dictum of Tukey of
being “roughly right.”

ACKNOWLEDGMENTS

I thank Sandy Balkin, Susan Hinkins and Fritz
Scheuren for their help in preparing my comments.

Comment
Daniel R. Shiman

Colin Mallows has played an important role in
the restructuring of the local telephone market. As
one who has followed developments in the industry,
I will provide some background information on the
regulatory environment in which this work has been
done, and then discuss some of the issues he raises and
some of the challenges facing statisticians in this area.

For most of the twentieth century the telephone
service market was treated as a natural monopoly:
prices and service quality were carefully regulated by
government agencies and competition was discour-
aged from entering the market. AT&T was the dom-
inant player in this market, owning most of the local
phone lines (about 80% of the nation’s lines), the lo-
cal exchanges serving those lines, and virtually all of
the long-distance market for connecting phone calls
between cities. AT&T’s monopoly position began to
crumble in the 1970s, due to MCI’s entry into the long-
distance market and the Department of Justice’s an-
titrust lawsuit against AT&T. Because of this pressure
AT&T agreed in 1982 to a settlement of the suit in
the modified final judgement (MFJ). Under the MFJ,
AT&T agreed to divest itself of its local exchange tele-
phone companies, which were considered the source
of its monopoly power, while it kept its long-distance

Daniel R. Shiman is an Economist in the Competition
Policy Division of the Wireline Competition Bureau at
the Federal Communications Commission, Washing-
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and manufacturing businesses. These local exchange
companies were organized into seven regional Bell op-
erating companies (known as BOCs, RBOCs or baby
Bells). The BOCs kept their monopoly in the local
exchange market, but were not permitted to enter the
long-distance market and had to provide equal access
to all long-distance carriers.

As a result of the MFJ, by the mid-1990s the long-
distance market, defined as calls made between local
calling areas called local access and transport areas
(LATAs), had become essentially a competitive mar-
ket. Entry was fairly easy and local phone companies
were required to provide equal access to their networks
to all long-distance carriers. Meanwhile local phone
companies, which controlled the local lines (called
loops) that allowed customers access to the phone net-
work from their telephones and the switches that routed
local phone calls, retained monopoly control of the lo-
cal exchange market. This split between local and long-
distance markets, each with its own set of companies
and regulations, is unique to the United States. Else-
where the local exchange provider also provides do-
mestic long-distance service on an integrated basis un-
der a single regulatory regime.

The Telecommunications Act of 1996 (the Act)
called for a broad restructuring of the local telephone
exchange industry to open it to competition. Compa-
nies that had in the past provided local phone ser-
vice [known as incumbent local exchange carriers
(ILECs)] were required to open up their networks for
use by competitors attempting to enter the local ex-
change market [called competitive local exchange car-
riers (CLECs)]. Specifically, under Section 251 of the
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Act, ILECs are required, among other things, to inter-
connect with CLECs (so that CLEC customers could
call ILEC customers and vice versa), allow CLECs to
resell ILEC retail telecommunications services at a dis-
count and provide access to piece parts of their net-
works as separate unbundled network elements (called
UNEs) at cost-based rates. The Federal Communica-
tions Commission (FCC) and state public utility com-
missions have had to develop detailed regulations to
implement the Act, due to the extraordinary complex-
ity of the industry, the significant degree of restruc-
turing of the industry called for by the Act and the
natural reluctance of ILECs to negotiate interconnec-
tion agreements with CLECs and invest substantial re-
sources in changing their systems and processes to en-
able competitors to enter their market.

Thus Section 251 effectively provides for three
modes of entry for CLECs into the local exchange
market, depending on how much of their own facilities
they provide: full facilities, partial facilities and resale
of the ILECs’ services. Full facilities-based carriers
provide all of their own facilities and thus require only
interconnection with the ILEC. Partial facilities-based
carriers purchase use of parts of the ILECs network as
UNEs, usually the most expensive parts of the network
to duplicate such as the loop, and combine those with
elements of their own network that they have built.
Resale carriers resell the ILEC’s services at a modest
discount from the ILEC’s retail prices. CLECs are also
allowed to purchase from the ILEC all of the elements
of the network necessary to provide customer service,
without facilities of their own, which is called the
UNE platform (UNE-P). In a technical sense UNE-P
is identical to resale. UNE-P is especially popular with
CLECs, both because it is a faster and easier method
of entering the market than constructing their own
facilities, and because the price they pay the ILEC for
the package of service, which is based on the cost of
building the UNEs, is usually significantly lower than
purchasing the services through resale.

The three key facilities needed to provide local
phone service are the loop, the switch and transport.
The loop is the copper wire or optic fiber connection
running from the customer’s premises to the local
phone company’s central office. The switch, located in
the central office, is used to route traffic to the proper
destination. Interoffice transport, which is carried over
optic fiber running from the central office to other local
central offices or to long-distance carriers’ points-of-
presence (POPs), carries traffic destined to customers

served by other central offices or located in other
LATAs.

The Act places a particular focus on opening up the
networks of the largest local phone companies, the
BOCs, which were the local phone companies spun
off from the breakup of AT&T in 1984. After several
mergers there are now four BOCs, which control 93%
of the nation’s phone lines. Under Section 271 of the
Act, the BOCs are permitted to enter the long-distance
market in their region if they successfully demonstrate
to the FCC that they have met a series of legal re-
quirements, which effectively measure whether they
have opened up their local wireline markets to compe-
tition. Because they perceived that entering the long-
distance market would be profitable, the BOCs have
invested significant resources in making the necessary
changes to their systems, negotiating interconnection
agreements with CLECs and attempting to gain state
and FCC approval of their applications to provide long-
distance service. To demonstrate compliance with the
market-opening provisions of the Act to state and fed-
eral regulators, the BOCs have agreed to, among other
things, make UNEs and interconnection available at
state-approved cost-based rates; provide performance
metric data according to definitions and standards set
by the state commission, to demonstrate they are pro-
viding nondiscriminatory service to CLECs; abide by
a performance plan, set up by the state commission,
which provides for automatic payment of penalties if
the BOCs provide poor performance to CLECs, as
measured by the performance metrics; and submit to
a third party test, in which an independent evaluator
assesses whether the BOCs systems have been opened
to CLEC use. Much of this was set up by state commis-
sions in open proceedings and collaborative workshops
with BOC and CLEC participation.

Thus a new regulatory regime is being developed to
ensure ILEC compliance with their obligations under
the Act. A cornerstone of this new regime is the devel-
opment of an extensive scheme of performance met-
rics [called service quality measurements (SQMs) by
some]. The metrics measure the performance of ILECs
in handling a variety of tasks, such as how quickly
and efficiently they process and provision orders from
CLECs for service. These metrics have been devel-
oped at the state level and can vary substantially in
their definitions and standards from state to state (al-
though they are usually fairly similar for states in a re-
gion). Most state plans have about 40–70 metrics, and
most of these metrics are disaggregated by the different
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kinds of services provided, yielding 500–2500 submet-
rics (750 seems typical).

Much work has gone into creating a set of statistical
tests to help evaluate this large set of performance
metrics. Statistical tests have been developed for three
purposes: (1) to assist state regulators and the FCC
in evaluating the metric data measuring the ILECs’
commercial performance in providing services to the
CLECs; (2) for use in performance plans; and (3) to
help the third party tester evaluate the ability of
ILECs to process CLEC orders. The more intensive
negotiations have typically concerned the statistical
tests used in the evaluation of commercial data and in
the performance plan. Because the third party test is
similar to a controlled experimental study, the design
of statistical tests there tends to be less controversial
and often is left to the tester.

Dr. Mallows points out the importance of defining
“parity” before choosing a statistical test to determine
if parity has been violated. The Act requires the ILEC
to provide service “that is at least equal in quality to
that provided by the local exchange carrier to itself
. . . or any other party . . . on rates, terms, and condi-
tions that are just, reasonable, and nondiscriminatory”
[47 U.S.C. Section 251(c)(2)]. For services which the
ILEC provides to both CLECs and itself, such as pro-
visioning new phone service to CLEC and retail cus-
tomers, ILEC performance to CLECs can be compared
with the performance it provides to itself, to determine
that service to CLECs is at least equal in quality, that
is, there is parity. For services where there is no retail
analog, a benchmark is used to determine if the ILEC is
providing an acceptable level of performance [the FCC
adopted the standard that it should provide CLECs
“a meaningful opportunity to compete” in Ameritech
Michigan 271 Order, 12 FCC Rcd (1997) at 20618-19].

When designing statistical tests, it is also important
to understand how regulators intend to use the per-
formance metrics. In their evaluation of commercial
data to make a legal determination whether there is
discrimination, regulators have not generally adopted
the approach advocated by some to use an automatic
rule, relying heavily on statistical tests, to test for par-
ity. Instead statistical tests have been used mostly to
rule out that random chance caused an observed dif-
ference in performance for a parity metric. For exam-
ple, the FCC in its evaluation of BOC performance for
Section 271 applications has not relied solely on sta-
tistical significance in its determination whether there
is discrimination, but has also considered whether an
observed difference in performance would have been

“competitively significant,” that is, have a competitive
impact [Bell Atlantic New York 271 Order, 15 FCC
Rcd (1999) at 3976, paragraph 59].

The legal, informational and process constraints reg-
ulators labor under must also be taken into considera-
tion. Because analysis and decision-making will often
be vested in nonstatisticians, for the evaluation of com-
mercial data a regulator will often prefer a statistical
test that is easy to understand and apply. Tests involv-
ing a simple rule, with a straightforward and unam-
biguous result that laypeople can apply, while allowing
a clear interpretation of the original metric data, are
preferred. The widely used “modified Z test” has these
properties.

In the design of a performance plan, technical issues
must be dealt with up front, since there is ordinarily
no judgement involved in determining payments while
the plan is in operation. This requires more careful
thought on how to handle all the technical issues, but it
also gives more freedom to rely on complicated tech-
nical techniques that are difficult to explain to laypeo-
ple, such as the “balanced averaged disaggregated trun-
cated adjusted modified Z” plan (my name for it) that
Dr. Mallows describes in the disaggregation and bal-
ancing sections of his paper, which he helped develop
and is now in use.

Statisticians have to recognize that solutions must be
workable and easy to implement. I have seen proposed
solutions that were technically infeasible or required
too much information to be practical. Not all problems
can be solved by statisticians alone. For some problems
it is important to get input from people familiar with
the technical, business and legal sides of the issues,
such as in the choice of the alternative hypothesis in
a balancing approach.

Dr. Mallows points out the inherent conservatism of
commissions. Yet by necessity this regulatory arena is
fairly open to innovative statistical techniques, because
this is a new regulatory regime with its own set of stan-
dards, the problems encountered are unusual and of-
ten lack textbook solutions (partly because the data are
nonnormal, the sample sizes are often small and results
can be significantly affected by correlation and con-
founding factors) and the range of solutions to be con-
sidered must fit legal and process constraints. A variety
of state commissions are working on these problems,
suggesting there is room for different viewpoints and
experimentation. For many of the statistical techniques
he describes, Dr. Mallows played an important role
in their development and adoption. The nonstandard
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modified t-test has been used by most state commis-
sions and the FCC for parity metrics, under the name
“modifiedZ-test” since it is usually used for large sam-
ple sizes when the mean is approximately normally dis-
tributed [Bell Atlantic New York 271 Order, 15 FCC
Rcd (1999) at 4182, Appendix B].

There are many interesting challenges that remain
for statisticians. For example, there is the problem of
finding the right level of disaggregation. Too much can
lead to small sample sizes, inconclusive results and an
excess of information to evaluate, while too little can
lead to Simpson’s paradox (in which aggregation can
reverse the direction of the relationship between two
variables). Since many CLECs are located in particu-
lar niches of the market, such that the geographic and
product distribution of their customers is quite differ-
ent from that of the ILEC, Simpson’s paradox is a se-
rious concern here. Dr. Mallows’ solution of taking a
weighted average of truncated disaggregated Z scores
may work for a performance plan, but regulators may
not find it as useful for evaluating commercial data,
since it involves a significant transformation of the data
and is difficult to explain to laypeople.

In the design of performance plans one of the most
difficult problems has been the control of the over-
all type-1 error rate. Many plans attempt to min-
imize spurious payments by the ILEC for metrics
for which it is providing parity, either through re-
ducing the type-1 error rate for individual metrics

or by using a plan of forgiveness of a certain num-
ber of metric failures. The calculations usually as-
sume that under the null hypothesis µA = µB for
each metric, yet it has been pointed out (Initial report
on OSS performance results replication and assess-
ment, in proceeding R.97-10-016/I.97-10-017, Cali-
fornia PUC Telecommunications Division, June 15,
2001) that p values for many metrics for a given pe-
riod for an ILEC were not distributed as predicted,
even for metrics with good performance to CLECs.
It appears then that the correct null is µA ≥ µB . If
one of the goals of a plan is to avoid “cancellation,”
in which good performance on one metric cancels
out bad performance on another, then calculating the
proper number of forgivenesses becomes difficult if
the ILEC may be providing superior performance to
CLECs in a large number of less important areas of
service.

The choice of performance metrics and statistical
tests used could have a significant impact on the growth
of competition in this industry, and on hundreds of
millions of dollars in potential revenue (from CLEC
entry into the local market and BOC entry into long
distance) and possible penalty payments (from the
penalty plans). There is much room for innovative
work to find new methods of testing for parity under
the constraints described here and to better present the
data to decision-makers with new kinds of summary
statistics and graphs.

Rejoinder
Colin Mallows

I thank the discussants for their kind words, and for
the additional background and references.

Dan Shiman explains what the problem looks like
from the perspective of the FCC. While to the ILECs
and CLECs the commissions may seem to be all-
powerful, they also are subject to hobbling constraints.
I strongly endorse his final comment that there are still
many opportunities for innovative work in this area.

Gastwirth and Miao have performed an interesting
Monte Carlo study. Presumably their beta index gives
the scale of the alternative being considered. Unfortu-
nately legal proceedings have tremendous inertia, so
that once a procedure such as modified t has been ac-
cepted, it is difficult to make changes. (But not impos-
sible; the idea of using a permutation test was intro-

duced at a late stage. As Dan Shiman remarks, some
commissions do recognize that we are in uncharted ter-
ritory.)

Gastwirth and Miao’s remarks on the adversarial
environment are very much to the point. Regarding
the disclosure issue, ILECs routinely label their data
as “company private,” so that as a statistician working
for a CLEC, I had no access to it; this made it
difficult to identify the crucial technical problems and
to make reasoned arguments. An ILEC may have no
intention to deceive; it has sound business reasons
for being reluctant to share its data. At one stage the
Louisiana Commission recognized this difficulty and
I was allowed access to some BellSouth data, but only
after I had signed a nondisclosure agreement. No one
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else at AT&T was allowed to see the data or even
my report until it had been released by BellSouth, and
I had to work on a PC that was not connected to any
network, and was “scrubbed” when I was finished. It
was the experience of working with these data that led
to many of the ideas that I have described in the paper
and eventually to resolution of almost all the technical
issues in the Louisiana proceedings.

I welcome Ed Mulrow’s description of the stages he
and his colleagues went through in arriving at their
present positions. He and I started out as adversaries in
formal proceedings, but once we were able to work to-
gether in scientific mode we found it possible to agree
on almost all the technical issues. Our collaboration
has been enjoyable and productive.
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