
Statistical Science
1997, Vol. 12, No. 1, 1–19

Burn-In
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Abstract. A survey of recent research in burn-in is undertaken. The
emphasis is on mixture models, criteria for optimal burn-in and burn-in
at the component or system level.
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0. INTRODUCTION

Burn-in is a widely used engineering method to
eliminate weak items from a standard population.
The standard population usually consists of various
engineering systems composed of items or parts, or
components which are assembled together into sys-
tems. The components operate for a certain amount
of time until they fail, as do the systems composed of
these components. The systems might be electronic
systems such as circuit boards and the components
would be various types of chips and printed circuits.
A typical mechanical system is an air conditioner
and the components are condensor, fan, circuits
and so forth. Usually within any population of com-
ponents there are strong components with long
lifetimes and weak components with much shorter
lifetimes. To insure that only the strong components
reach the customer, a manufacturer will subject all
of the components to tests simulating typical or
even severe use conditions. In theory, the weak
components will fail, leaving only the strong com-
ponents. This type of testing can also be carried out
on systems after they are assembled in order to de-
termine the weak or strong systems or to uncover
defects incurred during assembly. These tests are
known as burn-in. One important issue is to deter-
mine the optimal time for burn-in. Burn-in is more
typically applied to electronic than to mechanical
systems.

We give a survey of recent burn-in research with
emphasis on mixture models (which are used to
describe populations with weak and strong compo-
nents), criteria for optimal burn-in and whether it is
better to burn in at the system or component level.
After some background, we give a brief description

Henry W. Block and Thomas H. Savits are Pro-
fessors, Department of Statistics, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260 (e-mail:
hwb@stat.pitt.edu, ths@stat.pitt.edu).

of the types of statistical distributions which model
the lifetimes of components for which burn-in is rel-
evant. The remainder of the paper is devoted to ex-
plicating recent promising developments in burn-in.
Because of the authors’s interests, most emphasis
will be placed on probability modeling for burn-in,
but some statistical topics will also be covered. We
will not review the fairly extensive engineering liter-
ature on burn-in since this has been done in several
review articles which we cite at the end of Section 1.

Section 1 contains several illustrative examples
and an introduction to some references for addi-
tional background on burn-in. The distributions
which are used to describe the lifetimes of com-
ponents which can benefit from burn-in are given
in Section 2. An important family of distributions
is one in which the failure rate functions have a
bathtub shape. In particular, distributions which
arise as mixtures are singled out for emphasis since
many bathtub-shaped failure rates arise in this
way. In Section 3, various criteria are described
which have been used to determine optimal burn-in
times. Section 3.1 considers general criteria and
Section 3.2 covers various cost structures. Sec-
tion 4 discusses two recent mixture models. The
first of these (Section 4.1) examines a typical het-
erogeneous population to which burn-in is often
applied and how this translates into renewal in-
tensity behavior. The second of these proposes a
general mixture model. A related result involves
the asymptotic failure rate of a mixture model in
terms of the asymptotic failure rates of the compo-
nents of the mixture. The question of whether it is
better to burn in at the component or the system
level is discussed in Section 5. In Section 6, we con-
sider an important tool, the TTT transform, which
is used for approximating burn-in times. Section 7
gives a brief introduction to some recent sequential
burn-in procedures involving optimal control. Sec-
tion 8 gives a discussion with an indication of some
future research directions.

1



2 H. W. BLOCK AND T. H. SAVITS

1. BACKGROUND AND SIMPLE EXAMPLES

Many manufacturers and users of electronic com-
ponents and systems, as a matter of course, subject
these systems and/or components to initial testing
for a fixed period of time under conditions which
range from typical to those which approximate a
worst-case scenario. A typical regimen is to intro-
duce for a period of time some vibration and tem-
perature elevation for a device. In a particular con-
text this is sometimes known as “shake and bake.”
At the end of this period, those components and/or
systems which do not survive this period of testing
may be discarded (scrapped), analyzed for defects
and/or repaired. Those which survive this period
may be sold, placed into service or subjected to fur-
ther testing. Although these procedures have a va-
riety of names depending on the area of application,
we use the term burn-in to describe them all. The
time period will be called the burn-in period. We il-
lustrate some of these ideas with the following three
examples.

Example 1. Rawicz (1986) considers 30-watt long-
life lamps manufactured by the Pacific Lamp Cor-
poration (Vancouver, Canada) which were designed
“for 5,000 hours of constant work in severe envi-
ronmental conditions at 120 V.” These are installed
on billboards where it is difficult and expensive
to replace them. It turns out that a certain small
percentage of these lamps tend not to last the
requisite 5,000 hours but fail relatively early. Ob-
viously it would be beneficial if this subpopulation
of lamps could be identified and eliminated before
being placed on a billboard. The procedure rec-
ommended involves stressing all of the lamps at
a high voltage (240 V) for a short period of time,
which causes the weak lamps to fail rather quickly
while the stronger lamps do not fail during this
period. The lamps which do not fail are the lamps
potentially capable of surviving the 5,000 hours
of constant work. Often the burn-in weakens the
surviving devices. In this particular application,
however, the surprising result is that the surviving
lamps are actually improved. This was thought to
occur since the high thermal treatment seemed to
relax structural stresses caused by the fabrication
process.

Example 2. In the AT&T Reliability Manual
(Klinger, Nakada and Menendez, 1990) an elec-
tronics switching system (the 5ESS Switch) is
discussed. Immediately after manufacture this sys-
tem is operated at room temperature (25◦C) for
12 hours, during which “volume-call” testing is

performed; that is, 1,000 calls are simulated and
passed through each of the five to eight modules
of the switch. The system is then subjected for up
to 48 hours to the high temperature (50◦C) which
can occur within the switch if the air conditioning
should fail. The first part of this procedure is to
find and eliminate early system failures, and the
second part simulates use in an extreme case which
might occur. The objective of the second part is to
accelerate aging, so that weak systems fail. It also
provides data which can be used to see how this
equipment compares to certain standards set for it.

Example 3. Jensen and Petersen (1982) consider
a piece of measuring equipment made up of approx-
imately 4,000 components. They focus on several
critical types of these components. One of these,
called an IC-memory circuit, accounts for 35 of the
4,000 components. The bimodal Weibull distribution
(i.e., a mixture of two Weibulls) is used to model this
type of component and has the following survival
function:

F̄�t� = p exp�−�t/n1�β1� + �1− p� exp�−�t/n2�β2�:

From the data, the values p = 0:015, β1 = 0:25,
n1 = 30, β2 = 1 and n2 = 10 have been determined,
but an explicit method is not given.

We illustrate the results of Block, Mi and Savits
(1993) (which is discussed in Section 4.2) to obtain
the optimal burn-in time for a reasonable cost func-
tion (we use CF1 of Section 3.2 in this example).

Assume that we would like to plan a burn-in for
components of this type so that those surviving
burn-in should function for a mission time of τ = 60
units. If a circuit fails before the end of burn-in a
cost c0 = q0C, where 0 < q0 < 1, is incurred. If it
fails after burn-in but before the mission time is
over, a cost of C is incurred. If an item survives
burn-in and the mission time, a gain of K = kC
is obtained. For illustrative purposes, we choose
q0 = 0:5 and k = 0:05.

We apply Theorem 2.1 of Block, Mi and Savits
(1993). Let f be the density of the bimodal Weibull
given above. It is not hard to show that g�t� =
f�t + τ�/f�t� is increasing in t (either directly or
by standard results) and goes from 0 (as t→ 0) to 1
(as t→∞). By the cited results an optimal burn-in
time 0 < b∗ <∞ exists and satisfies

g�b∗� = C− c0

C+K:

For the values above we obtain the equation g�b∗� =
0:476, and solving graphically yields b∗ = 102:9.



BURN-IN 3

Even though we present Example 2 as an ex-
ample of burn-in, in the AT&T Reliability Manual
(Klinger, Nakada and Menendez, 1990), Example
2 is called a system reliability audit. Other terms
which are often used are “screen” and “environ-
mental stress screening” (ESS). The AT&T Manual
(Klinger, Nakada and Menendez, 1990, page 52) de-
fines a screen to be an application of some stress
to 100% of the product to remove (or reduce the
number of) defective or potentially defective units.
Fuqua (1987, pages 11 and 44) concurs with the
100% but states that this may be an inspection
and stress is not required. Fuqua (1987, page 11)
describes ESS as a series of tests conducted un-
der environmental stresses to disclose latent part
and workmanship defects. Nelson (1990, page 39)
is more specific and describes ESS as involving ac-
celerated testing under a combination of random
vibration and thermal cycling and shock.

Burn-in is described by the AT&T Manual
(Klinger, Nakada and Menendez, 1990, page 52) as
one effective method of screening (implying 100%)
using two types of stress (temperature and elec-
tric field). Nelson (1990, page 43) describes burn-in
as running units under design or accelerated con-
ditions for a suitable length of time. Tobias and
Trindade (1995, page 297) restrict burn-in to high
stress only and require that it be done prior to
shipment. Bergman (1985, page 15) defines burn-in
in a more general way as a pre-usage operation of
components performed in order to screen out the
substandard components, often in a severe envi-
ronment. Jensen and Petersen (1982) have more or
less the same definition as Bergman.

For the purposes of this paper we use the term
burn-in in a general way, similar to the usage of
Jensen and Petersen (1982) and of Bergman (1985).
We think of it as some pre-usage operation which
involves usage under normal or stressed conditions.
It can involve either 100% of the product or some
smaller subgroup (especially in the case of complex
systems as in Example 2) and it is not limited to
eliminating weak components.

Many of the traditional engineering ideas con-
cerning burn-in are discussed in the handbook of
Jensen and Petersen (1982). This book is intended
as a handbook for small or moderate-size electronics
firms in order to develop a burn-in program. Conse-
quently the book should be viewed in this spirit. Em-
phasis is on easy-to-apply methods and on graphi-
cal techniques. One important contribution of the
book is to popularize the idea that components and
systems to which burn-in is applied have lifetimes
which can be modeled as mixtures of statistical dis-
tributions. Specifically components either come from

“freak” or “main” populations and their lifetimes can
be modeled as mixtures of Weibull distributions.
Systems are assumed to inherit this dichotomous
behavior, but the weaker population is called an “in-
fant mortality” population. This population arises
partly because of defects introduced by the manu-
facturing process.

Most reliabilty books familiar to the statistics
community do not discuss burn-in. We mention
three applied reliability books which discuss this
topic. The first of these is the book by Tobias and
Trindade (1995), which has a section on burn-in cov-
ering some basics. An engineering reliability book
by Fuqua (1987) delineates the uses of burn-in (see
Section 2.4 and Chapter 14) for electronic systems
at the component, module (intermediate between
component and system) and system level. Most
useful is the AT&T Reliability Manual (Klinger,
Nakada and Menendez, 1990), which discusses a
particular burn-in distribution used at AT&T along
with a variety of burn-in procedures and several
examples of burn-in. Two papers which review the
engineering literature on burn-in are Kuo and Kuo
(1983) and Leemis and Beneke (1990).

2. BURN-IN DISTRIBUTIONS

For which components or systems is burn-in ef-
fective? Another way of posing this question is by
asking, “For which distributions (which model the
lifetimes of components or systems) is burn-in effec-
tive?” First, it seems reasonable to rule out classes of
distributions which model wearout. The reason for
this is that objects which become more prone to fail-
ure throughout their life will not benefit from burn-
in since burn-in stochastically weakens the residual
lifetime. Consequently, distributions which have in-
creasing failure rate or other similar aging proper-
ties are generally not candidates for burn-in.

For burn-in to be effective, lifetimes should have
high failure rates initially and then improve. Since
those items which survive burn-in have the same
failure rate as the original, but shifted to the
left, burn-in, in effect, eliminates that part of the
lifetime where there is a high initial chance of fail-
ure. The class of lifetimes having bathtub-shaped
failure rates has this property. For this type of dis-
tribution the failure rate starts high (the infancy
period), then decreases to approximately a constant
(the middle life) and then increases as it wears
out (old age). As suggested by the parenthetical
remarks, this distribution is thought to describe
human life and other biological lifetimes. Certain
other mechanical and electronic lifetimes also can
be approximated by these distributions. This type
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Fig. 1. Burn-in improvement example �K = 1;000 hours; PPM/K = parts per million per 1;000 hours�.

of distribution would seem to be appropriate for
burn-in, since burn-in eliminates the high-failure
infancy period, leaving a lifetime which begins near
its former middle life (see Figure 1).

It turns out that there are reasons why many sys-
tems and components have bathtub-shaped failure
rates. As described by Jensen and Petersen (1982),
many industrial populations are heterogeneous and
there are only a small number of different subpopu-
lations. Although members of these subpopulations
do not strictly speaking have bathtub-shaped fail-
ure rates, sampling from them produces a mixture
of these subpopulations and these mixtures often
have bathtub-shaped failure rates. For a simple ex-
ample, assume that there are two subpopulations of
components each of which is exponential, one with
a small mean and one with a large mean. Sam-
pling produces a distribution with decreasing failure
rate which is a special case of the bathtub failure
rate. An intuitive explanation of why this occurs is
easy to give. Initially the higher failure rate of the
weaker subpopulation dominates until this subpop-
ulation dies out. After that, the lower failure rate
of the stronger subpopulation takes over so that the
failure rate decreases from the higher to the lower
level. This type of idea, about the eventual domina-
tion of the strongest subpopulation, carries through
for very general mixtures. See Block, Mi and Savits
(1993, Section 4). A subjectivist explanation of the
fact that mixing exponentials produces a decreasing
failure rate distribution was given by Barlow (1985),
who argued that even though a model may be expo-

nential, information may change our opinion about
the failure rate.

The mixture of two exponentials mentioned above
produces a special case of the bathtub failure rate
where no wearout is evident. Models of this type
with no wearout are thought to be sufficient for mod-
eling the lifetimes of certain electronic components,
since these components tend to become obsolete be-
fore they wear out. Mixing two distributions which
are more complex than exponentials yields distri-
butions with more typical bathtub-shaped failure
rates, as can be seen in the following example. A
typical bathtub curve is given in Figure 8.2 of To-
bias and Trindade (1995, page 238) which we repro-
duce in Figure 1.

This distribution is realized as a mixture of a log-
normal and a Weibull distribution (both of which are
used to model defectives) and another distribution
(which models the population of normal devices),

F�t� = 0:0028
(

ln�t/2;700�
0:8

)

+ 0:001
(

1− exp
[
−
(
t

400

)0:5])

+ 0:997
(

1− exp �−10−7t�

·
[
1−8

(
ln�t/975;000�

0:8

)])
;

where 8 is the standard normal cdf. Notice that
the left tail of the distribution is very steep. This
tail represents the period where many failures oc-
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cur. Burn-in is utilized in order to remove this part
of the tail. The dotted line represents the result-
ing distribution after a burn-in of several hours at
an accelerated temperature. The point at which the
curve flattens out and stops decreasing is at about
20K. This is called the first change point.

Many papers have appeared in the statisti-
cal literature providing models and formulas for
bathtub-shaped failure rates. See Rajarshi and Ra-
jarshi (1988) for a review of this topic and many
references. One easy way of obtaining some of these
is by mixing standard life distributions such as the
exponential, gamma and Weibull. See Vaupel and
Yashin (1985) for some illustrations of various dis-
tributions or Mi (1991) for an example of a simple
mixture of gammas which has a bathtub-shaped
failure rate. The AT&T Reliability Manual (Klinger,
Nakada and Menendez, 1990) gives another model
(called the AT&T model) for the failure rate of an
electronics component. The early part of the fail-
ure rate is modeled by a Weibull with decreasing
failure rate, and the latter part is modeled by an
exponential (i.e., constant). It does not have a part
describing wearout since the manual claims that
the AT&T electronic equipment tends not to wear
out before it is replaced. The AT&T model has been
used extensively by Kuo and various co-authors
(e.g., see Chien and Kuo, 1992) to study optimal
burn-in for integrated circuit systems. This model
is also called the Weibull–exponential model in the
statistical literature (e.g., see Boukai, 1987).

Since mixtures are emphasized in this review we
point out one apparent anomoly mentioned by Gur-
land and Sethuraman (1994). In that paper it is ob-
served that when even strongly increasing failure
rate distributions are mixed with certain other dis-
tributions, their failure rate tends to decrease after
a certain point. This is not surprising in the light
of the previously mentioned result of Block, Mi and
Savits (1993), which gives that asymptotically the
failure rate of a mixture tends to the asymptotic fail-
ure rate of the strongest component of the mixture.
Since the failure rate of the strongest component is
the smallest, the failure rate of the mixture is often
eventually decreasing to this smallest value.

Most definitions of bathtub-shaped failure rates
assume the failure rate decreases to some change
point �t1�, then remains constant to a second change
point �t2�, then increases. The case t1 = t2 (i.e., no
constant portion) is often adequate as an assump-
tion in some theoretical results. We give the defini-
tion below.

Definition 1. A random lifetimeX with distribu-
tion function F�t�, survival function F̄�t� = 1−F�t�,

density f�t� and failure rate r�t� = f�t�/F̄�t� is said
to have a bathtub-shaped failure rate if there exist
points 0 ≤ t1 ≤ t2 ≤ ∞, called change points, such
that

r�t� is





decreasing for 0 ≤ t < t1;
constant for t1 ≤ t < t2;
increasing for t2 ≤ t <∞:

We have restricted the above definition to continu-
ous lifetimes, but discrete lifetimes can be handled
similarly (see Mi, 1993, 1994c). Further we often
shorten the phrase bathtub-shaped failure rate to
bathtub failure rate or even bathtub distribution. A
bathtub curve is called degenerate if either the de-
creasing or increasing part is not present (i.e., it is
either always increasing or always decreasing).

3. OPTIMAL BURN-IN

In this section we consider some basic criteria for
determining the optimal burn-in time for a lifetime.
In general, we consider lifetimes with a bathtub-
shaped failure rate having change points t1 and t2
(see Definition 1). As exemplified in Figure 1, burn-
in often takes place at or before the first change
point t1. In fact, in the following, various optimality
criteria lead to such a burn-in time. In Section 3.1
we focus on performance based criteria. The more
realistic situation involving cost structures is con-
sidered in Section 3.2 and these are based in part
on the criteria of Section 3.1.

3.1 Performance-Based Criteria

In this section we consider the problem of
performance-based criteria in which the more
general assumption of a cost structure is not made.
Many of these criteria are basic concepts which
can and should be incorporated into a general
cost structure. Cost structures are considered in
Section 3.2.

The paper of Watson and Wells (1961) was one
of the first statistical papers to study the question
of burn-in. These authors were interested in con-
ditions under which the mean residual life (after
burn-in) was larger than the original mean lifetime.
Maximizing the mean residual life is one of the cri-
teria we examine in this section. We now list sev-
eral criteria for determining burn-in. Criteria C1,
C2 and C4 deal with only one component. Crite-
rion C3 deals with components which are replaced
at failure with other identical components.

C1. Let τ be a fixed mission time and let F̄ be the
survival function of a lifetime. Find b which
maximizes F̄�b + τ�/F̄�b�, that is, find b such
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that, given survival to time b, the probability of
completing the mission is as large as possible.

C2. Let X be a lifetime. Find the burn-in time b
which maximizes E�X− b�X > b�, that is, find
the burn-in time which gives the largest mean
residual life.

C3. Let �Nb�t�; t ≥ 0� be a renewal process of
lifetimes which are burned in for b units of
time (i.e., where F is the original lifetime dis-
tribution and the interarrival distribution has
survival function F̄b�t� = F̄�b + t�/F̄�b��. For
fixed mission time τ, find b which minimizes
E�Nb�τ��, which is the mean number of burned-
in components which fail during the mission
time τ.

The next criterion involves the α-percentile resid-
ual life function. The α-percentile residual life is
defined by

qα�b� = F−1
b �α� = inf�x ≥ 0x F̄b�x� ≤ 1− α�

(see Joe and Proschan, 1984, for further details).

C4. For a fixed α, 0 < α < 1, find the burn-in time
b which maximizes τ = qα�b�, that is, find the
burn-in time which gives the maximal warranty
period τ for which at most α% of items will fail.

Criterion C2 has been studied by several authors.
The first of these, Watson and Wells (1961), ex-
amined various parametric distributions. Lawrence
(1966) obtained bounds on the mean residual life.
Park (1985) gave some results on the mean residual
life for a bathtub distribution. One result was that
the optimal burn-in time b∗ occurs before the first
change point t1. Mi (1994b) obtained the same re-
sult for criteria C1 and C3, that is, b∗ ≤ t1. Launer
(1993) introduced criterion C4 and also showed that
the optimal b∗ occurs before t1. This type of result
is important since it provides an upper bound for
burn-in.

The fact that optimal burn-in for a bathtub dis-
tribution takes place before the first change point
is not unusual. In fact, it is intuitive that burn-in
should occur before this change point since this is
where the failure rate of such a lifetime stops im-
proving. We shall see in Section 3.2 that the result
also holds true for many cost structures.

In another direction, Mi (1994b) compared opti-
mal burn-in times for two mission times τ1 ≤ τ2
for criterion C1. He showed the intuitive result that
b∗2 ≤ b∗1. An extension to random mission times was
also considered.

In criterion C3, a burned-in unit that failed dur-
ing field use was replaced with another burned-in
unit. If instead of replacing this unit, a minimal re-

pair is performed (see Barlow and Proschan, 1965),
then the total number of minimal repairs is a non-
homogeneous Poisson process with mean function
− ln�F̄�b + τ�/F̄�b��. Thus if we want to minimize
the expected number of minimal repairs in the in-
terval �0; τ�, it suffices to maximize the quantity
F̄�b+ τ�/F̄�b�. But this is just criterion C1.

3.2 Cost Functions and Burn-in

Several cost functions have been proposed to deal
with burn-in. A discussion of many of these is given
in the review papers of Kuo and Kuo (1983) and
Leemis and Beneke (1990). Also see Nguyen and
Murthy (1982). In this section we discuss a few of
the recent models involving cost functions for burn-
in. In all cases we are interested in finding the burn-
in time which minimizes the cost. Cost functions
CF1 and CF4 are used in subsequent sections. In
general these cost functions build upon and elabo-
rate the criteria of Section 3.1. Cost function CF1
is basic, while CF2 and CF4 incorporate C2; CF3
uses C1.

CF1. A component or system with lifetime X is
burned-in for time b. If it fails to survive b
units of time a cost c0 is incurred. If it sur-
vives b units of time, then it incurs a second
cost C, C > c0, if it does not survive past an
additional mission time τ or it incurs a gain
of K if it does survive τ. Consequently, if F is
the distribution function of the component or
system the expected cost as a function of b is

c1�b� = c0F�b�+C�F�b+τ�−F�b��−KF̄�b+τ�:
CF2. If instead of a mission time after the burn-in

we consider a gain proportional to the mean
residual life (with proportionality constant
K), the expected cost becomes

c2�b� = c0F�b� −K
∫∞
b F̄�t�dt
F̄�b�

:

The next criteria involve costs for in-shop repair.
If a device fails burn-in, it is scrapped at a cost
cs > 0 and another unit is burned-in. This process
is continued until a unit survives burn-in time b. A
device which survives burn-in is then put into field
use. The cost for burn-in is assumed to be propor-
tional to the time it takes to obtain a unit which
survives burn-in with proportionality constant c0.
Mi (1994a) derives the expression for the expected
cost as

k�b� = c0

∫ b
0 F̄�t�dt
F̄�b�

+ csF�b�
F̄�b�

:

The complete cost also includes additive field costs,
and this is reflected in the following cost functions.
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CF3. In this case, after a burned-in item is ob-
tained, a cost of C is incurred if the burned-in
device does not survive the mission time τ
and a gain of K if it survives the mission.
Thus the total cost function is given by

c3�b� = k�b� +C
F�b+ τ� −F�b�

F̄�b�

−K F̄�b+ τ�
F̄�b�

;

where k�b� is as above.
CF4. If instead of a mission time, a gain is taken

proportional to the mean residual time, the
cost function in CF3 is modified to

c4�b� = k�b� −K
∫∞
b F̄�t�dt
F̄�b�

:

The cost function CF1 was introduced by Clarotti
and Spizzichino (1990). These authors obtained con-
ditions for an optimal burn-in time b∗ and applied
their results to a mixed exponential model. See also
Section 4.2, where an extension of the mixed ex-
ponential model to a general mixture model is dis-
cussed. The cost function CF2 is a variant of CF1.
The cost functions CF3 and CF4 are discussed in
Mi (1991, 1995). As in Section 3.1, the respective
authors show that the optimal burn-in time b∗ sat-
isfies b∗ ≤ t1 for cost functions CF2–CF4, where t1
is the first change point for the assumed bathtub
distribution.

4. MIXTURE MODELS

In this section we consider recent mixture mod-
els. This is the typical model described in Section
2 to which burn-in is applicable. In both Arjas,
Hansen and Thyregod (1991) and Block, Mi and
Savits (1993) an underlying mixture distribution
is used to model the life of components. The latter
paper discusses burn-in applications although the
former paper does not.

The paper of Arjas, Hansen and Thyregod (1991)
discussed in Section 4.1 is an interesting mix of
modeling and estimation and uses ideas and tech-
niques from the reliability theory, life testing (engi-
neering reliability) and survival analysis literature.
The methods developed are applied to an example
involving printed circuit boards. In Section 4.2 we
discuss results of Block, Mi and Savits (1993). A
more general mixture model than in Arjas, Hansen
and Tyregod (1991) is examined. A recent paper of
Spizzichino (1995) discusses another model for mix-
tures in heterogeneous populations.

4.1 A Reliability Growth Model

Arjas, Hansen and Thyregod (1991) consider a re-
newal process approach to reliability growth where
heterogeneity of the underlying part structure is
shown to translate into renewal intensity behavior.
Although burn-in per se is not discussed in this pa-
per, the lifetimes discussed are of the type to which
burn-in is typically applied. This section also pro-
vides a background for Section 4.2, which considers
mixed lifetimes.

The basic process involves the lifetimes of parts
placed in two or more sockets where, upon failure,
a failed part is replaced by a new part of the same
type. The first and subsequent lifetimes for one
socket are designated by X1;X2; : : : : These life-
times are assumed independent. The lifetimes are
also assumed to come from a heterogeneous popu-
lation. It is natural to model these lifetimes using
a random hazard rate so that the distribution of
the lifetime can be written as a mixed exponential,
that is,

P�Xk > x� =
∫ ∞

0
e−λx dφ�λ�;

where φ is the distribution of the random hazards.
The aim of the paper is to study the renewal process
of one socket or the superimposed renewal process
of several. As is well known, this mixed distribution
has a decreasing failure rate.

If N�t� is the renewal process for one socket, it
can be shown that V�t� = EN�t� is concave and
the rate of occurrence of failures for the renewal
process, v�t� = �d/dt� V�t�, is decreasing. Various
results for this type of renewal process can be ob-
tained, and comparisons can be made with processes
where sockets are minimally repaired rather than
replaced. For minimal repair, the associated pro-
cess is the nonhomogeneous Poisson process. (See
Block and Savits, 1995, for many comparisons of
this type.)

Parametric estimation is considered by these au-
thors for the bimodal (i.e., mixture of two) expo-
nential case. The bimodal Weibulls (and exponen-
tials) are the principal examples of the Jensen and
Petersen (1982) monograph on burn-in. The distri-
bution for the life length of the part is the three-
parameter mixture of two exponential distributions
with distribution function

F�x� = π �1− exp�−λ0x��
+ �1− π� �1− exp�−λ1x��; x > 0:

It is assumed that inferior parts cannot be distin-
guished from a standard part. Two cases are con-
sidered: (a) the case where sockets are observed in-
dividually and (b) the case where sockets are only
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Fig. 2. Comparing two estimates; the step curve comes from V̂N−A�t� and the smooth curve comes from V̄�t�.

observed as aggregated data. In case (a), the maxi-
mum likelihood estimation is straightforward. Right
censoring is permitted and the likelihood or log-
likelihood function is standard. In case (b), times
between failures are not independent and so either
(1) an approximation by a corresponding nonhomo-
geneous Poisson process is used or (2) it is assumed,
in the case when the number of failures is less than
the number of sockets, that each socket has experi-
enced at most one failure and so the techniques of
(a) apply.

An example is given where the system is a printed
circuit board consisting of 560 parts (sockets) and
there are 3,481 systems from which data was col-
lected for five years. Maximum likelihood estimates
were obtained computationally for the three pa-
rameters and were used to estimate the cumulative
number of occurrence of failures V̄�t� = EN̄�t�,
where N̄�t� is the superimposed renewal process.
The model can be assessed graphically by calcu-
lating N̄0�t�, the counting process obtained as the
sum of the individual system processes, and then
using the Nelson–Aalen estimate

V̂N−A�t� =
∑
s≤t

1N̄0�s�
R�s� ;

where 0 < T0
1 < T0

2 < · · · < T0
N̄0�t� < t are all

of the failure times, 1N̄0�s� is 1 for each T0
i and

R�s� denotes the number of active systems older
than s. This yields Figure 2, which compares these
two estimates. The step curve comes from V̂N−A�t�
and the smooth curve comes from V̄�t�. Confidence
bounds are also obtained in this paper using several
methods.

4.2 A General Mixture Model

As mentioned in Section 1, one explanation for a
bathtub-shaped failure rate that is often given by
engineers is that it is due to mixtures of popula-
tions, some weak and some strong. In Block, Mi and
Savits (1993), a general mixture model was investi-
gated. A goal of that paper was to determine opti-
mal burn-in for the cost function CF1 of Clarotti and
Spizzichino (1990). Some results of independent in-
terest, however, were also obtained. They are sum-
marized below.

For the general mixture model, it is assumed that
each member of the subpopulation, indexed by λ ∈
S, has a positive density f�t; λ� on �0;∞�. The den-
sity of the resulting mixed population is then given
by

�4:1� f�t� =
∫
S
f�t; λ�P�dλ�;

where P is the mixing distribution.
The first results concern the monotonicity of the

ratio g�t� = f�t + τ�/f�t� for a fixed mission time
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τ > 0. This is a new type of aging property that
seems appropriate for burn-in since it is related to a
notion of beneficial aging. More specifically, if we re-
quire the ratio f�t+τ�/f�t� to be increasing in t > 0
for each τ > 0, then f must be log-convex and hence
belongs to the class of distributions which have a
decreasing failure rate. Furthermore, certain bath-
tub failure rates which can be realized as mixtures
have this monotonicity property.

Before we can state this result, we recall the def-
inition of reverse regular of order 2 �RR2�. A non-
negative function k�x;y� on A×B is said to be RR2
if

k�x1; y1�k�x2; y2� ≤ k�x1; y2�k�x2; y1�
whenever x1 < x2 in A and y1 < y2 in B. Alterna-
tively, we require that the ratio

k�x+ 1;y�
k�x;y�

be decreasing in y ∈ B for each x ∈ A and 1 > 0.
The following is a preservation result for a mono-

tonicity property with a fixed mission time τ. Let
the family of positive densities �f�t; λ�x λ ∈ S� be
RR2 on �0;∞� × S and let τ > 0 be a fixed mission
time. Suppose the ratio

g�t; λ� = f�t+ τ; λ�
f�t; λ�

is increasing in t > 0 for each λ ∈ S. Then, for the
mixture density f given in (4.1), the ratio

g�t� = f�t+ τ�
f�t� =

∫
S f�t+ τ; λ� P�dλ�∫
S f�t; λ� P�dλ�

is increasing in t > 0. A more general result that
does not require the RR2 condition is given in Block,
Mi and Savits (1993, Theorem 3.1).

A second result of interest in the paper of Block,
Mi and Savits (1993) pertains to the limiting be-
havior of the failure rate for the mixed population.
Heuristically, it states that the failure rate of the
mixture tends to the strongest subpopulation. Un-
der certain technical conditions it is shown that the
failure rate of the mixed population converges to a
constant α as t → ∞. Here α = inf�a�λ�x λ ∈ S�
and a�λ� = limt→∞ r�t; λ� with r�t; λ� the failure
rate of the λ-subpopulation. (The discrete version is
considered in Mi, 1994c.)

Clarotti and Spizzichino (1990) also show for the
mixture of exponentials model that if one mixing
distribution P1 is less than P2 in the sense of likeli-
hood ratio ordering, then the optimal burn-in times
b∗i for the cost function CF1 are ordered as b∗1 ≤ b∗2.
The same result also holds for the general mixture
model. See Block, Mi and Savits (1993) for details.

5. COMPONENT VERSUS SYSTEM BURN-IN

In this section we deal with the important issue
of at which stage burn-in is most effective. Consider
a system composed of individual components. Is it
better to burn in all the components or is it bet-
ter to assemble the components and burn in the
system? If there are modules and subassembly sys-
tems similar questions can be asked. The component
level is usually the least expensive stage at which to
consider burn-in. Assembly of even burned-in com-
ponents usually introduces defects, so burn-in at
higher levels would seem to have some value. In this
section we consider some preliminary work in which
this question is considered, but under the simplify-
ing assumption that no defects are introduced upon
assembly. By a system here we mean a coherent
system in the sense of Barlow and Proschan (1981,
page 6).

There are three possible actions we want to
consider which constitute different methods for
burning-in the system:

(i) Burn in component i for a time βi, i = 1; : : : ; n,
and then assemble the system with the burned-
in components.

(ii) Burn in component i for a time βi, i = 1; : : : ; n,
assemble the system with the burned-in compo-
nents and then perform an additional burn-in
of the system for a time b.

(iii) Assemble the system with new components and
then burn in the system for a time period b.

Since (i) and (iii) are special subcases of (ii), we can
do no better than (ii). However, is it possible that
we can do just as well with one of the other two
actions?

In Block, Mi and Savits (1994, 1995), this question
was considered for three different criteria: (1) max-
imizing the probability that the system will sur-
vive a fixed mission time (or warranty period) τ;
(2) maximizing the system mean residual life; and
(3) maximizing the α-percentile (system) residual
life τ = qα�b� for a fixed α, 0 < α < 1. In each case
it was shown that one can do as well with burn-in
at the component level only.

This result can be extended to criteria which have
a type of monotonicity property. More specifically,
the result can be shown to hold for any criterion de-
termined by a functional φ defined on the class of
life distributions which is monotone in stochastic or-
der, that is, in the case of maximizing (minimizing)
the objective function φ, we require that φ�F� ≤
�≥� φ�G� whenever F ≤st G [i.e., F̄�t� ≤ Ḡ�t� for
all t ≥ 0]. Thus, for such criterion, burn-in at the
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system level is precluded by effective burn-in at the
component level.

It should be noted that this result does not apply
to the cost function criteria considered in Section
3.2 since they are not monotone in stochastic order.
Also, if the act of assembling the components de-
grades the system, an additional burn-in at the sys-
tem level might be required. Whitbeck and Leemis
(1989) have considered a model for dealing with this
problem.

6. TOTAL TIME ON TEST (TTT)

In this section we describe a primarily graphical
technique which has been useful in burn-in. One
consequence of this technique is in obtaining ap-
proximate burn-in times.

In a life test, failure times are observed until all or
some portion of the items fail. A way to summarize
the behavior is through the total time on test (TTT)
statistics. Let 0 = x�0� < x�1� < x�2� < · · · < x�n�
be an ordered sample from a continuous lifetime
distribution with finite mean. In this section, to
avoid technical problems, we assume the distribu-
tion function F is strictly increasing on �0;∞�. The
TTT statistics are defined by

Ti =
i∑

j=1

�n− j+ 1��x�j� − x�j−1��

and

ui =
Ti
n

for i = 1; : : : ; n:

Notice that un = x̄n. Moreover, ifFn is the empirical
distribution function and F−1

n �x� = inf�t � Fn�t� ≥
x�, then F−1

n �i/n� = x�i� for i = 1; : : : ; n. Conse-
quently,

∫ F−1
n �i/n�

0
F̄n�x�dx = ui; i = 1; : : : ; n:

This suggests a distributional analog called the TTT
transform, traditionally denoted by H−1

F . It is de-
fined by

H−1
F �t� =

∫ F−1�t�

0
F̄�u�du:

The scaled TTT transform is given by

φF�t� =
H−1
F �t�

H−1
F �1�

= H
−1
F �t�
µ

;

where µ is the mean of F. Although these con-
cepts were discussed earlier, one of the first sys-
tematic expositions was given in Barlow and Campo
(1975).

One of the principle uses of the TTT concept has
been in obtaining approximate optimal solutions for

age replacement and also in obtaining approximate
optimal burn-in times. We briefly describe the pro-
cedure for burn-in and note that the procedure for
age replacement is similar.

We consider the cost function CF4 of Section 3 as
an example and describe how an optimal burn-in
time b∗ can be obtained using the TTT transform.
This example is taken from Mi (1991). The cost func-
tion can be written as

c4�b� = −cs +
c0
∫ b

0 F̄�t�dt+ cs −K
∫∞
b F̄�t�dt

F̄�b�
:

The optimal burn-in is obtained by minimizing this
function. Letting u = F�b�, minimizing the above is
equivalent to maximizing

MF�u� =
α−φF�u�

1− u ;

where α = �−cs+Kµ�/�c0+K�µ and µ is the mean
ofF. The functionMF�u� is the slope of the line seg-
ment connecting the points �1; α� and �u;φF�u��.
Consequently we need only find the point on the
graph of φF, the scaled TTT transform, for which
the above slope is largest.

If n items with lifetime X are put on test, a
TTT plot (i.e., the graph of φFn

) can be obtained.
Since the TTT transform is the asymptotic version
of the TTT plot, an estimate of the optimal burn-
in can be obtained. If the point �i/n;Ti/Tn� maxi-
mizes MFn

�u�, then x�i� = F−1
n �i/n� is the ordered

value giving an estimate of the optimal burn-in. We
illustrate this in Figure 3. Other similar burn-in
applications can be found in Bergman and Klef-
sjo (1985). See also the review article by Bergman
(1985), which gives other applications of the TTT
transform.

7. SEQUENTIAL BURN-IN AND
OPTIMAL CONTROL

A theory of sequential burn-in has been proposed
in Spizzichino (1991), and some extensions of this
have been initiated by the same author and some
of his colleagues. This extends the previous ma-
terial which deals with mainly one component or
system, or components which are independent and
identically distributed. The more general situation
where the components are not assumed indepen-
dent is treated by Spizzichino and colleagues, who
assume components are exchangeable. A mixture
model for strong and weak exchangeable compo-
nents has been proposed by Spizzichino (1995). We
give a brief introduction to this work. Several rep-
resentative papers are contained in Barlow, Clarotti
and Spizzichino (1993).
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Fig. 3. Estimate of the optimal burn-in.

As background we mention a paper of Marcus
and Blumenthal (1974), who considered a sequential
burn-in procedure. The stopping rule they suggested
is as follows: observe failure times and stop when
the time between failures exceeds a fixed value. This
is reasonable for a lifetime which has a high initial
failure rate that becomes smaller. Properties of this
rule are studied and tables for its use are given.

In Spizzichino (1991), failure times of n compo-
nents which are assumed to be exchangeable are
observed. One burn-in time is chosen initially and
if all components survive it, they are put into field
operation. If there is a failure before this time, a
new additional burn-in time is chosen (which may
depend on the first failure) and the procedure re-
peats. A cost structure based on the one in Clarotti
and Spizzichino (1990), that is, CF1 from Section
3, is given. A sequential burn-in strategy is defined
and this is shown to be optimal. A particular case is
mentioned where the exchangeable distribution is
a mixture of exponentials. This case is further ex-
plored in Costantini and Spizzichino (1991), where a
strategy is proposed for reducing this to an optimal
stopping problem for a two-dimensional Markov
process. Further details are given in Costantini
and Spizzichino (1990) and in Caramellino and
Spizzichino (1996).

A related approach for optimal screening (a
type of burn-in) is given in Iovino and Spizzichino
(1993). A general unifying model is proposed by

Spizzichino (1993). Some very recent research on
optimal burn-in of software is given in Barlow,
Clarotti and Spizzichino (1994).

8. DISCUSSION AND AREAS
FOR DEVELOPMENT

In this review of recent developments in burn-in
we have discussed a variety of problems. We reca-
pitulate some of these ideas in this section along
with some future research directions.

A basic assumption on a lifetime for which burn-in
is appropriate is that it has a bathtub-shaped fail-
ure rate. This type of lifetime often arises because a
population consists of a mixture of weak and strong
subpopulations. One question for which a satisfac-
tory answer has not been determined is for which
mixtures does the failure rate have a bathtub shape.

As described in Section 3, the intuitive result that
burn-in should occur before the first change point of
a bathtub failure rate has been demonstrated for a
wide variety of criteria and cost functions, but in an
ad-hoc way. The authors are currently working on a
unified result for an even broader class of objective
functions.

The handbook of Jensen and Petersen (1982)
presents a wide array of graphical and heuristic
statistical techniques for burn-in. Many of these are
applied to mixtures which model weak and strong
components. At the time the book was written,
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statistical techniques and procedures for mixtures
were less well understood than they are at the
present time. It would be useful if many of the intu-
itively plausible and useful techniques given in this
handbook were updated and put on a firmer statis-
tical foundation. One example of this is the paper
of Arjas, Hansen and Tyregod (1991) (see Section
4.1), who develop estimation techniques for renewal
processes where the underlying distribution is a
mixture of exponentials.

The material of Section 7 on sequential burn-in
and optimal control appears to be a fruitful area of
research. It seems evident that this direction should
be expanded and further investigated.

The development of new ideas on burn-in goes
hand-in-hand with developments in accelerated life
testing. In fact, burn-in is most often accomplished
in an accelerated environment. A related topic is
degradation, in which instead of the lifetime of a
component the emphasis is on a measure of the
quality of the component as it wears out. If the
environment is accelerated, the question of burn-in
in conjunction with this accelerated degradation be-
comes of interest. For recent developments on accel-
erated degradation, see Nelson (1990) and Meeker
and Escobar (1993).

An area of reliability where burn-in techniques
might be applicable and vice-versa is the topic of
software reliability modeling. In this area one prob-
lem involves removing errors (bugs) from the soft-
ware. An assumption which is made is that when
bugs are detected and removed no new bugs are in-
troduced. In this case the software is improved since
the number of bugs remaining is decreased. Conse-
quently, the rate at which bugs are discovered is
decreased. This rate is analogous to the left tail of
a failure rate with infant mortality present. Since
the time at which the testing should stop is of inter-
est, and this is analogous to the burn-in period for
a lifetime of the type discussed in this paper, there
should be some transfer between the ideas of both
of these fields. To date there have been a few appli-
cations of burn-in ideas to finding the time at which
to stop testing the software. The paper of Barlow,
Clarotti and Spizzichino has been mentioned. See
also Section 6 of Singpurwalla and Wilson (1994),
who review the optimal testing of software.
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Comment: “Burn-In” Makes Us Feel Good
Nicholas J. Lynn and Nozer D. Singpurwalla

1. PREAMBLE

Block and Savits, henceforth BS, have made many
contributions to the mathematics of burn-in and are
eminently qualified to put together a review arti-
cle on this topic. Indeed, what they provide here is
an authoritative survey of the technical aspects of

Nozer D. Singpurwalla is Professor, Department
of Operations Research and Department of Statis-
tics, George Washington University, Washington,
DC 20052-0001 (e-mail: nozer@gwuvm.gwu.edu).
Nicholas Lynn works with Professor Singpurwalla.

the subject. All those who work in reliability should
thank them for this and their other writings in this
arena. Our intent here is not to challenge BS on
the mathematics of burn-in, which undoubtedly is
their territory. Rather, we take exception to their
interpretation and their view of burn-in. Our main
concern is that BS view burn-in as a mathemati-
cal rather than as an engineering problem. The au-
thors are not to be faulted for this because their
perspective of burn-in is, regrettably, guided by en-
gineers who do reliability rather than by engineers
who do engineering! Consequently, this survey does
a good job of reporting that which is known and



14 H. W. BLOCK AND T. H. SAVITS

written on the topic; unfortunately, that which is
known is subject to debate. The result is that BS
have adopted a limited view of burn-in and have
refrained from a discussion of its foundational is-
sues. Our commentary—actually an article—is writ-
ten with the hope of filling these gaps and providing
an alternative perspective on burn-in; in the sequel
we provide some new results on mixtures of distri-
butions that are germane to burn-in.

“Burn-in” is commonly used in engineering relia-
bility, statistical simulation and medical sensitivity
testing. In this article we discuss the philosophical
underpinnings of burn-in, and make three claims.
Our first claim is that the main purpose served
by burn-in is psychological, that is, relating to be-
lief. Our second claim is that burn-in is dictated by
the interaction between predictive failure rates and
utilities. Consequently, burn-in may be performed
even if the predictive failure rate is increasing and
the utility of the time on test decreasing. An ex-
ample is the burn-in phase of statistical simulation,
which mirrors burn-in testing of engineering compo-
nents. Our third claim is that the famous “bathtub”
curve of reliability and biometry rarely has a physi-
cal reality. Rather, as shown in Theorem 2, it is the
manifestation of one’s uncertainty.

2. INTRODUCTION AND OVERVIEW

2.1 Background

What is “burn-in”? The answer depends on whom
you ask: an engineer, a simulator or a survivor (bio-
statistician). Each explains burn-in differently. Our
goal is to argue, using a minimum of mathematics,
that there is a unifying theme underlying burn-in
and, therefore, there must be a single answer to the
question that is posed.

First, let us see how engineers view burn-in. To
an engineer, burn-in is a procedure for eliminating
“weak” items from a population (cf. Block, Mi and
Savits, 1993). The population is assumed to con-
sist of two homogenous subpopulations: “weak” and
“strong.” Burn-in is achieved by testing each item in
the population for the burn-in period, and commis-
sioning to service those items that survive the test.
The items that fail the test are judged weak.

To a simulator, burn-in is the time phase during
which an algorithm, such as a “Gibbs sampler,” at-
tains its theoretical convergence (usually the weak
convergence of distributions); see, for example,
Besag, Green, Higdon and Mengersen (1995). Bio-
statisticians do not use the term burn-in, but the
notion of “sensitivity testing” a new drug for a short
period of time parallels the thinking of engineers.

2.2 Misconceptions about Burn-in

There appear to be at least two misconceptions
about the engineer’s view of burn-in. The first is
that items that are judged to have exponential life
distributions (or distributions that have an increas-
ing failure rate) should not be subjected to a burn-in
(cf. Clarotti and Spizzichino, 1990). The second mis-
conception is that the sole purpose of burn-in is the
elimination of weak items from a population.

The causes of the first misconception are a fail-
ure to appreciate the role of utility in burn-in and a
failure to distinguish between what Barlow (1985)
refers to as the “model failure rate” and the “predic-
tive failure rate.” Burn-in decisions should be based
on the predictive failure rate, not the model failure
rate. In fact, if the predictive life distribution is a
mixture of exponential distributions, then burn-in
must be contemplated; it should be performed if the
costs of testing compensate for the avoidance of risk
of in-service failures.

The cause of the second misconception is a failure
to appreciate the fact that, fundamentally, there are
two reasons for performing a burn-in test: psycho-
logical (i.e., those pertaining to belief) and physical
(i.e., those pertaining to a change in the physical or
the chemical composition of an item).

2.3 Objectives

The aim of this article is to argue that the two
reasons given above cover the entire spectrum of
burn-in, be it in engineering reliability, in simula-
tion or in sensitivity testing. Also, fundamentally,
since the concepts of physics, chemistry and biology
influence belief (or psychology), there is only one
reason for burn-in, namely, psychological. In what
follows (see Section 4), we will attempt to justify
our point of view. We will also point out that in
one’s day-to-day life, the psychology of burn-in is
routinely practiced. In Section 5 we give examples of
circumstances which provide a physical motivation
for burn-in. Section 6 explores the role of utility in
burn-in, and Section 7, entitled “An anatomy of fail-
ure rates with decreasing segments,” leads us to a
discussion of optimal burn-in times. A consequence
of the material of Section 7 is our claim (Theorem
2) that the famous “bathtub curve” of reliability is
rarely a physical reality; rather, it is often the man-
ifestation of one’s subjective belief. This may come
as a surprise to many.

3. NOTATION AND TERMINOLOGY

Suppose that T, the time to failure of an item,
has a distribution function F�t� = P�T ≤ t� and
a survival function F�t� = 1 − F�t�. Assume that
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f�·�, the probability density function of F�·�, ex-
ists. If F�·� is indexed by a parameter u so that
P�T ≤ t�u� = F�t�u�, then h�t�u�, the model failure
rate function of F�·�, is defined as

h�t�u� = f�t�u�
F�t�u�

; t ≥ 0:(1)

The function F is said to have an increasing (de-
creasing) model failure rate if h�t�u� is monoton-
ically increasing (decreasing) in t, where we use
increasing (decreasing) in place of nondecreasing
(nonincreasing) throughout. The function F is said
to have a constant model failure rate if h�t�u� is
constant in t. It is well known that h�t�u� is con-
stant in t if and only if F�t�u� = e−θt, an exponential
distribution.

In keeping with our claim to use a minimum of
mathematics, we will call h�t�θ� a bathtub curve if
it satisfies the following definition.

A function g�t� is said to be a bathtub curve if
there exists a point u > 0 such that g�t� is strictly
decreasing for t<u and strictly increasing for
t>u.

In the context of burn-in, which is de facto a lim-
ited life test, F having an increasing (decreasing)
model failure rate implies that burn-in results in a
depletion (enhancement) of useful life. When F has
a constant model failure rate, burn-in results in nei-
ther a depletion nor an enhancement of useful life.

Since the parameter u is always unknown, we
need to specify a distribution for it; let the density
of this distribution be denoted π�u�. Then h�t�, the
predictive failure rate function of F, is given as

h�t� =
∫
f�t�u�π�u�du

∫
F�t�u�π�u�du

=
∫
h�t�u�

(
π�u�F�t�u�∫
F�t�u�π�u�du

)
du:

(2)

Thus

h�t� =
∫
h�t�u�π�u�t�du;(3)

where π�u�t� denotes the density of the distribution
of u given that T ≥ t.

Note that, contrary to what many believe,
h�t� 6=

∫
h�t�u�π�u�du; also, if π�u� is degener-

ate, the model and predictive failure rates agree.
We conclude this section with a statement of the

following important closure (under mixtures) theo-
rem.

Theorem 1 [Barlow and Proschan (1975) page
103]. If the model failure rate h�t�u� is decreasing
in t; then the predictive failure rate h�t� is decreas-
ing in t; for any π�u�.

A consequence of this theorem is the result that if∫
F�t�u�π�u�du, the predictive life distribution, is a

mixture of exponential distributions, then the pre-
dictive failure rate will be strictly decreasing.

4. THE PSYCHOLOGICAL ASPECT OF BURN-IN

In this section, we argue that burn-in is a process
of learning, where by learning we mean a reduc-
tion of uncertainty. The optimal burn-in time is the
time at which the amount of information that is
gleaned from the test balances the costs of the test,
where costs include the depletion of useful life. We
are prompted to make this claim as a consequence
of observing that engineers subject every item that
they use to a short life test prior to commissioning.
This is true even of items that have an increasing
model failure rate. For such items, burn-in would
deplete useful life. When asked why every item is
subjected to a burn-in, the answer has been that
burn-in gives a “warm feeling” or “confidence” about
an item’s survivability. Thus engineering practice is
contrary to the statistical literature, which seems
to imply that only items having a strictly decreas-
ing model failure rate should be subjected to a
burn-in.

How can one explain engineers’s actions which
are contrary to the literature? Our explanation is
that, with burn-in, we are learning by observing, so
burn-in must be contemplated whenever we have
uncertainty about the model failure rate, be it in-
creasing, constant or decreasing. The depletion of
useful life which occurs is the price that we pay for
additional knowledge about the failure rate. The op-
timal burn-in time represents the optimal trade-off
between knowledge and cost, and it may be greater
than zero if the predictive failure rate is decreasing
or has a decreasing segment.

5. THE PHYSICAL ASPECT OF BURN-IN

Is uncertainty about the model failure rate the
only circumstance under which a burn-in should be
contemplated? The answer is no, because burn-in
may also be done in those situations wherein the act
of using the item physically enhances its survivabil-
ity. Examples include the work hardening of ductile
materials and the self-sharpening of drill bits. Un-
der such circumstances the model failure rate is de-
creasing, and one would contemplate a burn-in, even
if the model failure rate were known with certainty.
The predictive failure rate is of course decreasing
by Theorem 1.

To summarize, burn-in should be contemplated
for all items whose predictive failure rate is either
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monotonically decreasing or has a decreasing seg-
ment. Burn-in should be performed if the costs of
testing compensate for the avoidance of risk, either
because of our added knowledge or the physical en-
hancement of survivability, both of which make us
feel good; hence the title of this paper.

6. THE ROLE OF UTILITY IN BURN-IN

Implicit in everything we have said above is the
assumption that the event of interest is failure and
that there is a positive utility associated with sur-
vival. Thus, neglecting costs associated with testing,
a reduction in the predictive failure rate corre-
sponds to an increase in the expected life and,
therefore, the expected utility. Thus burn-in is
only considered when the predictive failure rate is
decreasing or has a decreasing segment.

However, the term “failure rate” is misleading,
since we never stipulate that T is the time to
failure. Indeed, T may represent the time to any
event of interest, and the utility associated with
the time before that event’s occurrence may be neg-
ative. One example arises in statistical simulation,
where an algorithm, such as the Gibbs sampler,
is subjected to a burn-in to ensure its (weak) con-
vergence. The idea here is that the algorithm
experiences a phenomenon that is akin to work
hardening, in the sense that each run is a stepping
stone toward convergence. However, in this exam-
ple, we define T to be the time until a specified
convergence criterion is met; the utility associ-
ated with this time is negative. Furthermore, the
model failure rate is increasing, since convergence
becomes increasingly likely with each step of the
algorithm.

Should we perform burn-in in this case? The an-
swer to this question comes from a consideration of
the costs. We conclude that burn-in should be con-
templated whenever the predictive failure rate has
an increasing segment; when the predictive failure
rate is increasing, we will burn in indefinitely (i.e.,
until convergence is achieved). Burn-in will not be
performed when the predictive failure rate is de-
creasing. These conclusions are opposite to those of
Sections 4 and 5. Indeed, the simulation problem
may be thought of as the dual (or “mirror image”)
of the usual engineering problem.

This scenario raises two important issues: (i) that,
in essence, burn-in is a decision problem and cannot
be answered without consideration of utility; and
(ii) that the material of this paper is not restricted
to the analysis of failure—rather, it applies to any
situation where we have uncertainty surrounding
the time of an event’s occurrence.

7. AN ANATOMY OF FAILURE RATES WITH
DECREASING SEGMENTS

7.1 Decreasing Failure Rates

We start off by asking the question, “What causes
F to have a monotonically decreasing predictive fail-
ure rate?” Three reasons come to mind. These are
(i) the physics of failure of an item, (ii) the physical
mixing of several items, each having a decreasing
but known model failure rate and (iii) the subjective
(or psychological) mixing of a decreasing but un-
known model failure rate. One may claim that (ii)
above is a special case of (iii); however, it is helpful
to distinguish between the two. We first elaborate
on each of these and then address the question of a
bathtub failure rate.

7.2 The Physics of Failure

The best examples of items whose time-to-failure
distribution F has a monotonically decreasing
model failure rate are those which experience work
hardening. Examples include the curing of concrete
slabs and the self-sharpening of drill bits. In all
the above cases, the chemical bonds which hold
together the atoms of a material strengthen over
time or with use, making their failure increasingly
unlikely over time.

In Figure 1 we illustrate several forms of decreas-
ing model failure rates for an item and the resulting
predictive failure rate, which by the closure under
mixture theorem (Theorem 1), must also be decreas-
ing. If π�u∗� was degenerate at u∗, then there would
be only one model failure rate (corresponding to u∗)
and the corresponding predictive failure rate would
be u∗:

Fig. 1. Monotonically decreasing model and predictive failure
rates.
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7.2.1 Physical mixing. By “physical mixing” we
mean the act of physically putting together several
probabilistically heterogenous items that are oth-
erwise indistinguishable, and inquiring about the
stochastic behavior of an item picked (at random)
from the mixture. For example, suppose that a bin
contains n items, with the ith item having model
failure rate h�t�ui�, i = 1;2; : : : ; n, where ui is as-
sumed known. Suppose that the n items are oth-
erwise indistinguishable, so that the model failure
rate of an item picked at random from the bin is un-
known. However, if the ui’s have a probability mass
function P�ui�, then the predictive failure rate of
the item picked at random is given by the discrete
mixture

h�t� =
n∑
i=1

h�t�ui�P�ui�t�;(4)

where P�ui�t� is the probability mass of ui given
that T ≥ t.

Suppose now that each h�t�ui� is decreasing in t.
Then, by the closure under mixtures theorem (The-
orem 1), h�t� is also decreasing in t. In Figure 2 we
illustrate this phenomenon via model failure rates
that are constant. In fact, the closure under mix-
tures theorem was motivated by the physical mixing
of constant model failure rates.

7.2.2. Subjective �or psychological� mixing. The
notion of what we refer to as “subjective mixing”
parallels that of physical mixing, except that now
one does not conceptualize a mixing process that
is prompted by physically putting together several
heterogenous items. Rather, one acts as a subjec-
tivist (in the sense of de Finetti and Savage), and

Fig. 2. Monotonically decreasing predictive failure rate under
physical mixing.

Fig. 3. Monotonically decreasing predictive failure rate under
subjective mixing over the Weibull shape parameter θ.

mixes over the different model failure rates that are
suggested by an unknown u, via a prior π�u� over u:

Specifically, suppose that an item has a model fail-
ure rate h�t�u� with u unknown. Let π�u� reflect
one’s subjective opinion about the different values
of u; that is, π�u� is the prior on u. Suppose that
h�t�u� is decreasing in t for all values of u. Then,
by the closure under mixtures theorem, the predic-
tive failure rate of the item h�t� will also decrease
in t. For example, suppose that u = θ and that
F�t�θ� = exp�−tθ�, θ ≥ 0, t > 0, a Weibull distri-
bution with shape parameter θ. If θ = 1, h�t�θ� = 1,
a constant, whereas if θ < 1, h�t�θ� decreases in t.
Thus if π�θ� has support �0;1�, then h�t� decreases
in t; see Figure 3.

Thus in the two scenarios of physical and subjec-
tive mixing, the predictive failure rate is decreas-
ing in t, suggesting that burn-in should be contem-
plated.

7.3 Bathtub Failure Rates

We now ask the question, “What causes F to have
a decreasing and then increasing failure rate?” It is
difficult to think of an example from the physical sci-
ences for which one could come up with a convincing
argument about the changing behavior of chemical
bonds. That is, the bonds must initially strengthen
with use and then weaken. In the biological context,
it has been conjectured that the immune system ini-
tially improves with age but then gets worse, and so
a use of the bathtub curve in human mortality ta-
bles has a biological justification. However, the most
convincing argument—at least to us—is that of mix-
ing, either due to physical or, more likely, subjective
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Fig. 4. Subjective mixing of increasing model failure rates re-
sulting in bathtub-shaped predictive failure rate.

causes. As an example of the above suppose that F
is a Rayleigh distribution, truncated at the left at
zero, so that h�t�θ� = 2t + θ, with θ unknown. Let
π�θ� have support �0;∞�. Then it can be shown (see
Theorem 2 below) that the predictive failure rate of
F initially decreases and then increases, like a bath-
tub curve (see Figure 4). Gurland and Sethuraman
(1994, 1995), discuss other cases wherein the mix-
ture of increasing model failure rates could result
in decreasing predictive failure rates. Their results
suggest that in the presence of uncertainty, it is un-
usual for the predictive failure rate to be increasing.

The example depicted in Figure 4 suggests the
following theorem, which is a generalization of the
situation discussed.

Theorem 2. Suppose that h�t�θ� = α�t�+θ; where
θ ≥ 0 is unknown and α�·� is convex. Let π�θ� de-
scribe our uncertainty about θ; and let V�θ�t� denote
the variance of θ given T > t. Then h�t� has a bath-
tub shape if

Var�θ�0� > d

dt
α�0�;

in which case the minimum occurs when Var�θ�t� =
�d/dt�α�t�.

This result follows from the fact that h�t� = α�t�+
E�θ�t�, where E�θ�t� is a decreasing, convex function
of t. The above theorem, as well as the example,
show that the popular bathtub curve of reliability
is not necessarily physically realistic. Rather, it is
a consequence of belief produced by the process of
subjectively mixing increasing model failure rates
having certain properties. Note how the shape of

the predictive failure rate is directly linked to our
uncertainty, via the prior variance.

8. THE OPTIMAL BURN-IN TIME

The question, “When should we burn-in?”, leads
us naturally to the issue of an optimal burn-in
time. To address this issue, let us first put into
perspective the circumstances under which the pre-
dictive failure rate has a decreasing segment. These
are (i) mixing due to uncertainty about constant,
increasing or decreasing model failure rates and
(ii) model failure rates which are strictly decreasing
because of physical circumstances, but about which
we are certain.

Under (i) above, burn-in can be viewed as a pro-
cess of learning, that is, a reduction of uncertainty
about T. To see this, suppose that the optimal burn-
in time is τ ≥ 0. When the burn-in test shows that
T > τ, our predictive ability about T sharpens (via
added knowledge about u). If the burn-in test shows
that T ≤ τ, then F is degenerate at some t ∈ �0; τ�,
and the item tested is declared a weak one. Thus
for predictive failure rates given by mixtures, be
they decreasing or bathtub, burn-in gives us added
knowledge. The price we pay for this knowledge is
the cost of testing and the depletion of useful life if
the model failure rate is increasing in t. The optimal
τ is a trade-off between the costs and the utility of
reduced uncertainty (see Theorem 3, below). Clearly,
burn-in should not be done if (i) the predictive fail-
ure rate h�t� is increasing in t or (ii) our trade-off
calculations show that τ = 0; see Theorem 2.

8.1 The Scenario of Indefinite Burn-in:
Eternal Happiness

A situation of interest is that of h�t�u� strictly
decreasing in t, with π�u� being degenerate. If the
costs of burn-in are zero, then τ→∞, because burn-
in enhances useful life. This implies that indefinite
burn-in leads to eternal happiness! However, since u
is an abstraction (just a Greek symbol to de Finetti),
a degenerate π�u� is not realistic, and thus eter-
nal happiness is a myth. If the costs of burn-in are
greater than zero, then τ is the time at which the
costs of burn-in and the utility of enhanced life due
to burn-in balance out.

The above matters are summarized and quanti-
fied via the following theorem due to Clarotti and
Spizzichino (1990)—extended further by Block, Mi
and Savits (1993).

Suppose that F has a density f, and suppose that
g�t� ≡ f�t+ s�/f�t� increases in t for all s > 0. Let
c1 denote the cost if T < τ, let C be the cost if
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τ ≤ T ≤ τ+ s (where s can be viewed as the mission
time) and let −K be the reward if T > τ + s. Then:

Theorem 3 [Clarotti and Spizzichino (1990)].

(i) Burn in indefinitely, iff

lim
t→∞

g�t� < C− c1

C+K = v:

(ii) Do not burn in, iff g�0� ≥ v.
(iii) Burn in for time τ > 0, iff g�τ� ≡ v.

Note that the indefinite burn-in of (i) above is dif-
ferent from the indefinite burn-in of eternal happi-
ness discussed above. The former is based on costs
of testing and in-service failure; the latter assumes
that the costs of burn-in are zero.

9. CONCLUDING COMMENTS

Let us return to the original question: “What is
burn-in”? We argue that it is primarily a mechanism
for learning.

The model failure rate describes the physical pro-
cess of aging. The predictive failure rate describes
our changing beliefs about an item as we observe it

surviving. Since burn-in is performed for a psycho-
logical purpose, it is only natural to base burn-in cal-
culations upon the predictive failure rate. The mod-
eland predictive failure rates may have very differ-
ent forms. Indeed, while the famous bathtub curve
rarely has a physical motivation, it arises quite nat-
urally in our minds.
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