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Instability of Least Squares, Least Absolute
Deviation and Least Median of Squares
Linear Regression
Steven P. Ellis

Abstract. Say that a regression method is “unstable” at a data set if
a small change in the data can cause a relatively large change in the
fitted plane. A well-known example of this is the instability of least
squares regression (LS) near (multi)collinear data sets. It is known that
least absolute deviation (LAD) and least median of squares (LMS) linear
regression can exhibit instability at data sets that are far from collinear.
Clear-cut instability occurs at a “singularity”—a data set, arbitrarily
small changes to which can substantially change the fit. For example, the
collinear data sets are the singularities of LS. One way to measure the
extent of instability of a regression method is to measure the size of its
“singular set” (set of singularities). The dimension of the singular set is a
tractable measure of its size that can be estimated without distributional
assumptions or asymptotics.
By applying a general theorem on the dimension of singular sets, we find
that the singular sets of LAD and LMS are at least as large as that of LS
and often much larger. Thus, prima facie, LAD and LMS are frequently
unstable. This casts doubt on the trustworthiness of LAD and LMS as
exploratory regression tools.
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1. INTRODUCTION

Small changes to a nearly collinear data set
can cause wild swings in the fitted least squares
regression (LS) plane. (Recall that a data set is
(multi)collinear if all the k-variate predictor vectors
lie in a linear manifold (affine space) of dimension
less than k. This paper considers linear regression
as a multivariate technique, that is, with the pre-
dictors as well as the responses free to vary. An
intercept is also included.) This is illustrated by
Figure 1. The figure shows two nearly collinear syn-
thetic data sets that are very close to each other.
(All data sets discussed in this paper are listed in
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Ellis, 1997.) The solid lines are the fitted LS lines,
which are drastically different even though the
data sets are nearly identical. (We will discuss the
dashed and dotted lines later.)

In this paper, we say that a statistic is “unstable”
(or exhibits “instability”) at a data set if a small
movement of the data can produce a relatively large
change in the statistic. So, “instability” is a form
of sensitivity, but sensitivity to outliers is not our
concern here. Thus, LS fitted planes (and, a fortiori,
estimates) are unstable at nearly collinear data. We
discuss presently regression methods that can be
unstable at data that are far from collinear.

Since we prefer that the regression describe the
overall pattern, not the last few significant digits, in
the data, unstable behavior by a regression method
is undesirable. That, in practice, measurement and
computation are not infinitely precise makes insta-
bility more of a concern. Instability can greatly am-
plify even small measurement and rounding errors.

Two linear regression methods often recom-
mended as robust or outlier-resistant alternatives
to LS are least absolute deviation (LAD) or L1-
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Fig. 1. Two only slightly different; nearly collinear data sets: �solid lines� least squares lines; �dotted lines� least absolute deviation
lines; �dashed lines� least median of squares lines.

Fig. 2. �Solid lines� LAD lines for data plotted; �dashed lines� LAD lines for data sets obtained by moving observations next to tips of
arrows a tiny amount in the directions shown by the arrows.

regression (Gentle, 1977; Bloomfield and Steiger,
1983; Dodge, 1987, 1992; and Birkes and Dodge,
1993) and least median of squares regression (LMS)
(Hampel, 1975; Rousseeuw, 1984; and Rousseeuw
and Leroy, 1987). Recall that a coefficient vector is
an LAD estimate if it minimizes the sum of the ab-
solute values of the residuals. A coefficient vector is
an LMS estimate if it minimizes the median of the
squared residuals.

LMS and LAD may reduce the danger from
outliers, but they can be unstable at data sets
that are far from collinear (see Ellis, 1991, Exam-
ple 2.3; Hettmansperger and Sheather, 1992; and
Rousseeuw, 1994). Davies (1993) and Ellis (1995a)
offer some theoretical insight into the instability of
LMS.

Figure 2 shows two real data sets at which LAD
is unstable. (See Hettmansperger and Sheather,
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Fig. 3. (a) �Solid line� LAD line for data plotted; �short crossed lines� 95% confidence interval for slope; �dashed line� LAD line for a
slightly perturbed data set; (b) �solid line� LMS line for data shown �arrow indicates five coincident points); �dashed line� LMS line for
a slightly perturbed data set.

1992, for an LMS example.) These data come from
the Mental Health Clinical Research Center for
the Study of Suicidal Behavior at the New York
State Psychiatric Institute. Figure 2a shows age
at first psychotherapy versus height for a group of
16 research subjects. (This is not as odd a pair-
ing of variables as it may at first appear. See Pine,
Cohen and Brook, 1996.) Figure 2b shows blood
fenfluramine level at hour 4 versus blood norfenflu-
ramine level at hour 3 for a group of 99 research
subjects in a fenfluramine challenge experiment.
(See Mann et al., 1995, and Malone, Corbitt, Li
and Mann, 1996.) In each plot, the solid line is
the LAD fit to the data shown. The dashed line
is the LAD line for a slightly different data set.
(The LAD lines were computed using the S-PLUS
function l1fit.) In each case, the perturbed data
set differs from the original by a change in the x-
value (predictor) in only one observation by a mere
1/20,000th of the interquartile range of the xs. The
arrows in the figure indicate the observations that
are perturbed and the direction of their perturba-
tion. Note that these data sets are clearly far from
collinear.

In the examples of Figure 2 and in the example in
Figure 3a below, the perturbation consists of moving
just one observation. In fact, I was able to recognize
the instability of LAD at the data sets in Figure 2
by perturbing each observation in turn by a small
amount and then fitting an LAD line. However, the
notion of instability allows small perturbations of
any number of the observations, even all of them.

This makes it challenging, in general, to spot unsta-
ble behavior.

In Figure 2 and other examples in this paper,
my purpose is to illustrate instability by showing
what great effect truly tiny modifications in data
can have. Of course, real data is of limited precision
so very tiny perturbations may be unrealistic. How-
ever, one would expect that a large perturbation in
the data would cause at least as large a displace-
ment in the fitted regression as a tiny perturbation
would. For example, in the data in Figure 2a, height
and age are measured to the nearest inch and year,
respectively. If, instead of a perturbation of less than
1/2000th of an inch as in Figure 2a, one changes the
same x-value by 1 inch in the same direction, the
LAD line also jumps.

More important, instability might make a regres-
sion method depend strongly on the precision of the
data. For example, with measurements only accu-
rate to the nearest inch or year, the discrepancy in
slopes shown in Figure 2a cannot be seen, because
round-off would yield the same vectors of predictors.

I stress that, at least for LS and LAD, variation
of the predictors is essential for instability to occur.
Consider the general linear model, y =Xβ+ error,
where y is a column vector of responses, X is a fixed
design matrix of full rank, and β is the column vec-
tor of regression coefficients. First, consider the case
in which X is a column vector of 1’s. In that case, an
estimate of β is a location estimate for the univari-
ate data set y. In particular, the LAD estimates of
β are precisely the medians of y. The LAD estimate
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of β may not be unique, but suppose one adopts the
usual convention and defines the median β̂�y� of y
to be the midpoint of the set of medians, that is, the
midpoint of the set of LAD estimates. Then β̂�y�
is a Lipschitz function of y and, hence, exhibits no
instability. (Recall that a function is “Lipschitz” if
the distance between the values of the function at
two points is bounded above by a constant multiple
of the distance between the two points.) For general
X, providing we generalize “midpoint of the set of
LAD estimates“ appropriately, the LAD estimate of
β is still Lipschitz in y and, therefore, not unstable
(Ellis, 1995b). The same is obviously true of the LS
estimate of β. (I do not know if this is true of LMS.)

However, if there is an intercept in the model and
the other predictors are allowed to vary freely, then
the situation is completely different. Now LS, LAD
and LMS will all exhibit instability. Moreover, as we
will see in Section 3, there is no way to remedy the
problem by careful choice of an estimate when it is
not unique. (Probably the presence of an intercept
is not essential here.)

To recapitulate, it is known that LS, LAD and
LMS all exhibit instability. This paper looks more
deeply into the phenomenon by asking, for each of
the three methods, how common are data sets at
which the method is unstable? Answering this ques-
tion will suggest if instability is common enough to
be of relevance to data analysis and will allow us to
compare the three methods in terms of instability.

In this paper, we focus on the clear-cut form of in-
stability found at “singularities.” A “singularity” is
a data set, arbitrarily small changes to which can
substantially change the fit. (See Section 2 for the
formal definition.) For example, the collinear data
sets are the singularities of LS. A regression method
will be unstable near its singularities. I expect, in
fact, that for regression methods used in practice,
the only place instability will occur is near a sin-
gularity. (For example, in Figure 1, each data set is
near a collinear data set, i.e., a singularity of LS. In
Figure 2, each data set is very near a singularity of
LAD. See Ellis, 1997, Remark 2.4.)

We get information about how often instability of
LS, LAD or LMS will occur by measuring, or at least
bounding, the sizes of their “singular sets” (sets of
singularities). The idea is that the more singulari-
ties there are, the more likely one is to get a data
set near one of them and, therefore, encounter in-
stability.

One way to measure the size of the singular set of
a regression method is by its dimension (“degrees of
freedom,” in statistical parlance). For example, the
dimension of a smooth curve is 1. The dimension of
a smooth image of an open subset of a plane is 2,

and so on, but one can assign a dimension to any
metric space. In this paper, we bound below the di-
mensions of the singular sets of LAD and LMS and
compare the bound to the (known) dimension of the
singular set of LS (the collinear data sets). Our ap-
proach will require no asymptotics or distributional
assumptions. We will find that the dimensions of
the singular sets of LAD and LMS are always at
least as large as that of LS and often larger. We will
see that, surprisingly, the large size of the singu-
lar sets of LAD and LMS follows from the fact that,
in terms of fitted planes, the two methods are quite
stable near most collinear data sets! The methods
of analysis applied here for LAD and LMS may also
prove useful for studying other regression methods.

Thus, while LAD and LMS are more resistant to
outliers than is LS, they are apparently more often
unstable as well. This calls into question the su-
periority of LAD and LMS over LS as exploratory
regression techniques. Data analysts should be on
the alert for instability when using any of the three
methods. Good methods for detecting instability in
LAD and LMS regressions are needed.

Another issue is the size of the displacement in fit
associated with instability. For example, the insta-
bility portrayed in Figure 2b is not very troubling
because the displacement in fit caused by perturb-
ing the data is small.

On the other hand, Figure 3 shows synthetic ex-
amples of instability with very large displacements.
In Figure 3a, the regression method is LAD. The
short crossed dashed lines indicate a 95% confidence
interval for the slope based on the asymptotic distri-
bution of the LAD estimate (Bloomfield and Steiger,
1983, Theorem 1, page 64). (Specifically, the slopes
of the short line segments are the endpoints of the
interval.) The long dashed line is the LAD line for
a data set only a tiny bit different from the one dis-
played.

This example suggests that confidence intervals
based on standard asymptotics may not be good di-
agnostics for recognizing instability. On the other
hand, it turns out that a simple bootstrap inter-
val for the slope (not shown; see Efron and Tibshi-
rani, 1993, Chapter 9) is so wide that it includes the
slopes of both fitted LAD lines. (See Ellis, 1997, for
details.)

In Figure 3b, the regression method is LMS. The
data set plotted consists of nine points lying exactly
on a line. The arrow indicates five of the nine points,
which coincide. The solid line is the fitted LMS line
to the data shown. The dashed line is the LMS line
fitted to a slightly perturbed data set.

Now, instability does not have to be as extreme as
that portrayed in Figure 3 to be a concern in data
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analysis. However, it turns out that restricting at-
tention only to singularities with, roughly speaking,
90◦ displacements does not change the conclusions
of this paper (Ellis, 1997, Lemma 1.4).

In Section 2, we formally define singularity and
state a result bounding the dimensions of the sin-
gular sets of many multivariate procedures that fit
planes to data. In Section 3, we apply this result to
LS, LAD and LMS.

2. SINGULARITY AND PLANE-FITTING

Our strategy for studying the instability of LS,
LAD and LMS will be to focus on the extreme form
of instability I call “singularity.” It can be defined
for any statistical procedure, not just regression.

Let δ be a statistic defined on a sample space,
X; δ may not be defined at literally every point of
X. For example, if δ is LAD, LMS or LS, then δ�x�
is the solution to an optimization problem (Section
3), and it might not be clear how to define δ�x� if
the problem has no unique solution. However, as-
sume δ is at least defined on some dense subset,
X′, of X. A point x0 ∈ X is a singularity of δ with
respect to (w.r.t.) X′) if limx→x0; x∈X′ δ�x� does not
exist. (Strictly speaking, singularity is not the same
thing as discontinuity.) A crucial point is that a sin-
gularity x0 is a hazard to data analysis using δ even
if one never gets x0 as a data set. Small perturba-
tions of data sets near x0 can cause δ to change a
lot. (For example, as mentioned above, in Figure 2
each data set is very near a singularity of LAD.) The
set of all singularities of δ (w.r.t. X′) is the singular
set of δ (w.r.t. X′). Near its singular set, δ will be
unstable.

We will treat regression as a form of “plane-
fitting,” the general class of statistical procedures
that, for example, also includes principal com-
ponents analysis. Consider fitting a k-dimensional
plane (“k-plane”) to n observations in �p�� = reals).
Write such a data set as an n×p matrix whose ith
row is the ith observation. Let Y denote the set of
all such matrices. We will assume n > p > k > 0.

Here, “plane” means “affine plane.” So a plane
does not have to pass through the origin. (Planes are
in �p.) The set of all k-planes that do pass through
the origin is the Grassman manifold G�k;p�. Thus,
we can write any k-plane in the form ξ + v, where
v ∈ �p and ξ ∈ G�k;p�.

The manifold G�k;p� is a compact k�p − k�-
dimensional manifold (Boothby, 1975, pages 63–64).
One metric generating the topology on G�k;p� is
the angle between two planes, defined as follows.
Let ξ; ζ ∈ G�k;p�. If x is a nonzero vector in �p, let
6 �x; ζ� be the angle between x and its orthogonal

projection onto ζ. (If the projection of x onto ζ is 0,
then 6 �x; ζ� = π/2.) Define the angle,

6 �ξ; ζ� = sup
{
6 �x; ζ�x x ∈ ξ; x 6= 0

}
y

6 �ξ; ζ� turns out to be a metric on G�k;p� which
generates its usual topology.

An important class of data matrices is the set Pk

of all Y ∈ Y such that (s.t.) the rows of Y lie exactly
on a unique k-plane. In other words, Y ∈ Y , with
rows Y1; : : : ;Yn, is an element of Pk if and only if

the matrix



Y2−Y1

:::

Yn−Y1


 has rank exactly k.(2.1)

Thus, the data sets in Pk are those to which there
is a perfect fit by a unique k-plane. For example,
Figure 3b shows a data set in Pk in the case k = 1,
p = 2, n = 9. If Y ∈ Pk, let 4�Y� be the element
of G�k;p� parallel to the k-plane on which the rows
of Y lie. In the notation of (2.1), 4�Y� is the vector
space spanned by Y2 −Y1; : : : ;Yn −Y1.

Example 2.1. In linear regression, there are p =
k+1 variables per observation (k predictors and one
response). Suppose Y ∈ Y and write the rows of Y
as Yi = �xi; yi�, where xi is a 1 × k row vector of
predictors and yi ∈ � is the response �i = 1; : : : ; n�.
Suppose these data are not collinear and there ex-
ists a p-vector �β0; β

T
1 �T �β0 ∈ � and β1 is k × 1;

“T” indicates transposition) s.t. yi = β0 + xiβ1, i =
1; : : : ; n. Then Y ∈ Pk and 4�Y� ∈ G�k;p� is the
k-dimensional subspace ��x; xβ1�; x ∈ �k�.

On the other hand, if x2 − x1; : : : ; xn − x1 do not
span �k, then Y is collinear; Y can still be in Pk,
however, because (2.1) can still hold. In that case,
4�Y� is the k-dimensional linear subspace, V × �,
where V is the span of x2 − x1; : : : ; xn − x1. (Note
that a necessary condition that a collinear data set
Y be in Pk is that V have dimension k− 1.)

If T is a technique for assigning k-planes to data
sets in (a dense subset of) Y , one can associate with
it the map 8 that sends every Y ∈ Y s.t. T�Y�
is defined, to the k-dimensional subspace 8�Y� ∈
G�k;p� parallel to T�Y�. For many of the T’s used
in data analysis, the map 8 turns out to be a “plane-
fitter,” defined as follows. Let Y ′ be a dense subset of
Y s.t. Pk∩Y ′ is dense in Pk. A map 8x Y ′ → G�k;p�
is a plane-fitter (on Y ′) if the following holds:

If Y ∈ Pk ∩Y ′; then 8�Y� = 4�Y�y(2.2)

that is, 8 fits the “obvious” plane to Y. (In robust-
ness terminology, the defining property of a plane-
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fitter is essentially that it have a positive “exact fit
point” (Rousseeuw and Leroy, 1987, page 123).)

Example 2.1 (Continued). Suppose T is a linear
regression technique. If Y ∈ Y and T�Y� is defined,
then, for some b0 ∈ � and k× 1 vector b1, the plane
fitted to Y by T is the set ��x; b0 + xb1�; x ∈ �k�.
Then 8�Y� = ��x; xb1�; x ∈ �k�. I expect that for
any regression technique T used in practice, 8 will
be a plane-fitter.

We will see presently that even without any fur-
ther assumptions, a plane-fitter 8 must have many
singularities. The topology of G�k;p� plays a crucial
role in this phenomenon (Ellis, 1991, 1995a, 1996).

Let R be a regression method with associated
plane-fitter 8. Let S be the singular set of 8. Any
singularity of 8 is a singularity of R, so near S the
regression method R will exhibit instability. Thus,
the size of the collection of data sets in Y near S
is a measure of the seriousness of instability of R.
However, it is not immediately clear how “size” or
“near” should be defined. Once that is settled, cal-
culating the size will be difficult.

On the other hand, it is clear that the bigger S
is, the bigger will be the size of the collection of data
sets in Y near S . The dimension of (i.e., “degrees
of freedom” in) S is a tractable, if crude, measure
of the size of S which can be related to the size
of the collection of data sets in Y near S . (See El-
lis, 1995a.) Denote the dimension of S by dim S .
[Technically, we have to specify what kind of dimen-
sion we mean by “dim.” In this paper, dim is Haus-
dorff dimension. It is defined for any metric space
and gives the correct values for the dimensions of
curves, surfaces, etc. See Falconer (1990), Morgan
(1988) or Ellis (1995a), for its definition and prop-
erties. Actually, I expect the results presented here
remain valid for any reasonable choice of dim.]

The following result gives lower bounds on the di-
mension of the singular set of a plane-fitter. In this
paper, we apply it to LS, LAD and LMS. (We define
“singular set” a little differently here than in Ellis,
1995a, but the difference is of no consequence.) The
theorem states that if a plane-fitter has few singu-
larities in Pk, then it must have many of them else-
where. (A plane-fitting technique can indeed have
singularities in Pk. For example, the collinear data
sets, many of which lie in Pk, are singularities of
LS. Figure 3b shows a data set in Pk �k = 1� which
is a singularity of LMS.)

Theorem 2.2 (Ellis, 1995a, Theorem 2.2). Let 8
be a plane-fitter. If dim�S ∩Pk� < d ≡ dim�Pk�− 1;
then dim�S � ≥ np− 2.

Note that, since there are only np degrees of free-
dom available in Y , if dim�S � ≥ np− 2, S is very
high dimensional. It turns out that

d = nk+ �k+ 1��p− k� − 1:

Since n > p > k, we have np − 2 ≥ d. Thus, an
immediate corollary of the theorem is, we always
have dim�S � ≥ d.

3. SINGULAR SETS OF LS, LAD AND LMS

Now we restrict attention to the regression case.
Each of the n observations is a p-vector consisting of
k predictors and a univariate response. So p = k+1.
Continue to assume n > p and k > 0. If Y ∈ Y ,
generically write the ith row Yi = �xi; yi�, where
xi is 1 × k and yi ∈ �. Write regression coefficient
vectors b = �b0; b

T
1 �T �b0 ∈ � is the intercept, b1 is

k× 1). As mentioned above, we will be interested in
the case in which the predictors are not chosen in
advance, but vary freely. (In particular, functional
relationships among the predictors are not allowed.
For example, if t is a predictor, t2 may not be one.)

Let R = LS, LAD or LMS. If Y ∈ Y , let 8R�Y�
be the element of G�k;p� parallel to the plane fit-
ted to Y by R, providing it exists. As we shall see
presently, 8R is a plane-fitter. Let Y ′R be the set of
all noncollinear data sets in Y for which the ap-
propriate minimization problem (see below) has a
unique solution. (It is easy to see that, because of
this uniqueness, the points of Y ′R cannot be singu-
larities of R.) Let SR be the singular set of 8R w.r.t.
Y ′R. For example, SLS is precisely the set of collinear
data sets. The dimension of the set of collinear data
sets turns out to be d (Ellis, 1995a, Example 2.8);
that is, dim�SLS� = d, the smallest value possible,
as remarked at the end of Section 2.

Recall the definitions of LAD and LMS. Let Y ∈
Y . An LAD estimate for Y is any p-vector β̂ s.t.
�b0; b

T
1 �T = β̂ minimizes

n∑
i=1

∣∣yi − b0 − xib1

∣∣:(3.1)

An LMS estimate for Y is any p-vector β̂ s.t.
�b0; b

T
1 �T = β̂ minimizes

the median
{
�yi− b0−xib1�2; i=1; : : : ; n

}
;(3.2)

where “the median” is the midpoint of the interval
of medians. In general, if �n/2� ≤ k, where �n/2�
is the integer part of n/2, there is no unique LMS
estimate.

The following is the main result of this paper. The
basic idea of the proof is sketched below. See Ellis
(1997) for details. Note that, as remarked in Sec-
tion 1, how, or even whether, LAD (LMS) is defined
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at data sets where (3.1) [respectively, (3.2)] is not
uniquely minimized is irrelevant to the theorem.

Theorem 3.1. Suppose R=LAD or LMS. �Assume
�n/2� > k in the LMS case.� Then Y ′R is dense in Y ;
Pk ∩Y ′R is dense in Pk; �2:2� holds with 8=8R �so
8R is a plane-fitter� and dim�SR ∩Pk� < d. Hence;
by Theorem 2:2; dim�SR� ≥ np− 2.

Thus, LAD and LMS have very many singulari-
ties. Instability is apparently an important problem
for LAD and LMS. Because, in terms of dimension,
most collinear data sets are in Pk (again, in terms
of dimension) the vast bulk of the singularities of
LAD and LMS are at noncollinear data sets.

Now, as observed at the end of Section 2, np −
2 ≥ d. Moreover, in regression we typically have
n− k > 2, which implies np− 2 > d. (In the regres-
sion case, p = k + 1 and d = nk + k.) Hence, by
Theorem 3.1 and the fact that, as we just observed,
dim�SLS� = d, the dimensions of the singular sets
of LAD and LMS are always at least as large as that
of LS and typically strictly larger.

Some may object that it is not the fitted plane
that is of interest, but rather the estimated coef-
ficient vector, β̂R. However, the plane determined
by a coefficient vector b is a continuous function of
b. Therefore, any singularity of 8R is a singularity
of β̂R.

Hettmansperger and Sheather (1992) speculate
that LMS is unstable because (3.2) is not based on
a norm. However, (3.1) is based on a norm and LAD
is nevertheless often unstable.

In the k = 1 case the idea of the proof of The-
orem 3.1 is easy to describe. First, consider LAD.
We must show dim�SLAD ∩ Pk� < d. Clearly, the
noncollinear data sets in Pk are not singularities of
LAD, so any singularity in Pk must be collinear. The
data sets shown in Figure 1 are slight perturbations
of a collinear data set Y in which the responses are
distinct. The dotted lines in the plots in Figure 1
are the LAD lines. Notice that unlike the LS lines
in Figure 1, both LAD lines are nearly vertical and,
therefore, not far apart. In fact, Y is not a singu-
larity of the fitted LAD line. (On the other hand, Y
is a singularity of the LAD slope. Indeed, the LAD
slopes, −29:8 in Figure 1a and 123.5 in Figure 1b,
are quite far apart.)

It is easy to see why this is true. By Theorem 1 in
Bloomfield and Steiger (1983, page 7), the LAD line
for any data set in Y ′LAD must pass through at least
two data points (e.g., see Figure 1; recall that singu-
larity of LAD is defined in terms of Y ′LAD). Since the
responses in Y are distinct, in a slight perturbation
of Y the vertical separation between any two ob-

servations will be relatively large compared to their
horizontal separation. Therefore, any line passing
through two data points will be vertical or nearly
so. Thus, if the perturbed data set is in Y ′LAD, the
LAD line will be nearly vertical. Indeed, as Y′ → Y
through Y ′LAD, 8LAD�Y′� approaches vertical; that is,
limY′→Y;Y′∈Y ′LAD

8LAD�Y′� exists, so Y 6∈ SLAD. Thus,
the only possible singularities of LAD in Pk are
collinear with some responses equal. The space of all
such data sets has lower dimension than the space
C of all collinear data sets, but above we observed
that dim�C � = d; that is, dim�SLAD ∩ Pk� < d, so
the hypothesis of Theorem 2.2 holds.

Next, consider the LMS case. A complication is
that, as Figure 3b illustrates, not all elements of
SLMS ∩Pk are collinear. For simplicity, still assume
k = 1. It turns out that all noncollinear data sets
in Pk which are singularities of LMS must be like
the data in Figure 3b in that at least three obser-
vations must coincide, but the collection of all such
data sets has dimension less than d.

It remains to consider collinear data in Pk. The
argument proceeds as in the LAD case. In fact, in
Figure 1 the dashed lines are the LMS lines. They
show virtually no change from one data set to the
other. However, this time it is more useful to fo-
cus, not on the regression line itself, but on the two
lines parallel to it and separated from it by verti-
cal distances equal to the square root of the median
of the squared residuals. One checks that an ana-
log of Theorem 1 in Bloomfield and Steiger (1983,
page 7) holds here: If Y ∈ Y ′LMS then these two lines,
bracketing the LMS line, must, between them, pass
through at least three data points. The rest of the
argument proceeds as in the LAD case.

Thus, surprisingly, unlike LS fitted planes, LAD
and LMS planes are typically stable near collinear
data sets. Paradoxically, it follows that the two
methods are often unstable at noncollinear data
sets.
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Comment
Stephen Portnoy and Ivan Mizera

1. INTRODUCTION

The ideas presented by Ellis are extremely
thought-provoking, especially since the paper
makes clear claims contradicting our understanding
of LAD regression. As people who thoroughly enjoy
puzzles, we were very eager to resolve these contra-
dictions, and our remarks here will concentrate on
the stability or instability of LAD regression esti-
mators. The problem appears in the first sentence of
the abstract: Ellis defines “unstable” to mean that a
small change in the data can cause a large change
in the estimator. Since LAD has bounded sensitiv-
ity while LS does not, this would seem to contradict
the well-known robustness properties of LAD. We
were also somewhat uneasy about the measure of
stability proposed—the relative size of sets of mea-
sure zero would seem to have little applicability for
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Bratislava, Slovakia.

typical statistical models. After considerable con-
templation, we believe there are serious problems
with the author’s claims that LAD is less stable
than LS and with interpreting the author’s notion
of singularity as anything like stability.

First, we note that as the LAD estimator is de-
fined to be set-valued, it is continuous (in the ap-
propriate sense) on exactly the same set of nonsin-
gular designs where LS is continuous. Second, we
also argue that sensitivity requires specifying what
is “small” and what is “large.” We believe that if
“small” is with respect to variability in the data,
and “large” is with respect to the standard error
of the estimator, then the singularity used by Ellis
does not indicate instability. In particular, we will
show that the example in Figure 3 is not one where
LAD is highly unstable, and the extent to which it
may be more sensitive than LS is a reflection of the
ability of conditional quantile analysis to find struc-
ture in the data that is missed by LS analysis. Last,
we argue that the definition of stability in the pa-
per seems to confuse two rather different concepts:
design singularity and nonsingular nonuniqueness
of the estimator (the case where the estimator is
boundedly nonunique).
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CONTINUITY OF SET-VALUED ESTIMATORS

Despite the formal distinction between singular-
ity as introduced by Ellis (1995a) and discontinuity
(in the usual sense of calculus), it is continuity
which is of main theoretical concern here: if the
limit exists at a data point, why not (re)define
the estimator accordingly? According to its com-
mon definition as a minimizer, the LAD estimate
is nonunique for some data; that is, it sometimes
yields a set of solutions at some points. It turns out
that these points are exactly the “unstable” ones.
Does it mean that LAD is discontinuous at all these
points?

As is frequently the case, the truth is not that sim-
ple. In our setting, a natural question is: can a small
change in the data drive the LAD far away from
the original set of solutions? (This is the essence of
the formal notion of “upper semicontinuity” of set-
valued mappings; see Rockafellar and Wets, 1998).

The answer for LAD is no. Let us first view LAD
as a functional M on the space of the distribution
functions for the data; the specific estimator is then
M�Fn�, where Fn is the empiric distribution of
the data (generally, both x and y for regression).
If the design space is bounded, we observe the
above-mentioned continuity, with respect to weak
convergence. We know that the restriction on de-
sign space is inevitable, since weak continuity is
closely related to qualitative robustness—and we
know that LAD is qualitatively robust only with
respect to arbitrary departures in y, not in x (see
Mizera, 1998, for more details).

Ellis considers LAD simply as a function of the
data. In this case, the same type of continuity holds
as a consequence of the previous continuity of the
LAD functional. This was proved separately by
Dupačová (1992), who moreover gave a modulus of
continuity. Since at the points with unique LAD our
continuity reduces to ordinary continuity, we may
claim that LAD is continuous on exactly the same
set of nonsingular designs as LS.

It is important to remark that these continuity
properties do not arise automatically with the intro-
duction of the set-valued framework; the behavior of
LMS, for instance, is far from that straightforward
(see again Mizera, 1998).

At singular points, the LAD solutions are un-
bounded, as are those of LS; and LAD is then
continuous at these designs in the same sense as
LS: any limit point of solutions for perturbed data
tends to a solution for the original data (Rockafellar
and Wets, 1998, call this outer semicontinuity).

We agree that the insistence on picking a unique
solution from the set of LAD solutions may lead

to discontinuity. However, even this does not hap-
pen if xs are kept fixed (the setting appropriate in
“designed” or “ANOVA” situations): as shown by El-
lis (1995b) (see also Ellis and Morgenthaler, 1992),
the centroid or Steiner point of the solution set is
uniformly continuous as a function of ys when xs
are constant.

MEDIAN NONUNIQUENESS AND STABILITY

In comparing estimators, it is important to con-
sider their functional representation, not only for
applying statistical theory (e.g., classical sensitivity
analysis from robustness theory), but also to em-
phasize that estimators estimate different quanti-
ties. These population quantities coincide only in
very restrictive homoscedastic models (with sym-
metric error distributions). In heteroscedastic cases,
the values of M�F� for different functionals M at
the true model need not coincide; see Portnoy and
Welsh (1992) for examples of just how much con-
ditional means and conditional medians can differ.
Thus, a statistical theory suggesting conditional me-
dians should not be estimated would not be well re-
ceived by users who find such parameters natural
in their specific problems.

The use of the functional approach has a bonus
here: precisely the same type of instability pre-
sented in the examples occurs for the one-sample
median in even sample sizes. In particular, van-
ishingly small perturbations of the empirical dis-
tribution function can move the median to either
endpoint of its interval of definition. There are two
reasons why this is not generally considered a co-
gent criticism of the median. First, it can have no
inferential effect: confidence intervals for the pop-
ulation median must contain the entire interval of
median solutions. Contrary to the author’s claim,
this is also the case in Figure 3, as will be shown
below. Second, median statistical analysis is most
appropriate when the data is close to that generated
by a model with a continuous positive density at the
median. In such cases, the difference between suc-
cessive order statistics near the median is of order
Op�1/n�, and thus sensitivity must be rather small.
Results in Portnoy (1991a) suggest that this also
holds for multiple regression, although standard
asymptotics only provides Op�n−1/2�.

ON FIGURE 1.3

An especially troublesome feature of the paper
was the plot of the lines in Figure 3 correspond-
ing to the 95% confidence interval for the slope. In
analogy with the one-sample case, it is possible to
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use pairs of regression quantiles to get (simulta-
neous) confidence intervals for a conditional quan-
tile (Zhou and Portnoy, 1996, 1998). Although these
are not directly applicable to confidence intervals
on specific coefficients, they would yield confidence
bands that would have to include fitted values for
all solutions for moderately small x-values. Thus,
the extremely similar confidence lines in Figure 3
seem highly suspect. It seems clear from the plot
that data are from a mixture of two rather differ-
ent regression lines, and there is rather clear het-
eroscedasticity. It seemed likely that the LAD was
in fact nonunique, and that the two lines in the plot
(for the original data and the perturbed data) were
the regression quantiles at successive breakpoints
(up to perturbation). If this were so, then any con-
fidence set for the LAD would have to cover the
entire solution set (i.e., all convex combinations of
both lines).

Fortunately, Roger Koenker has developed regres-
sion quantile software that is available from Statlib
and from his web page:
http://www.econ.uiuc.edu/~roger/research

Use of the “rq” program in S-PLUS verified the
guesses above and provided confidence intervals for
the data of Figure 3. The two regression lines were
y = 0:000005− 0:49574x and −0:00087+ 2:08440x.
The default 95% confidence bounds for the intercept
and slope were �−3:988;3:610� and �−0:699;2:211�.
This last interval is much larger than that indi-
cated on Figure 3, and clearly includes both slopes.
Here one might argue that the change in the LAD
estimate, although not statistically significant, is
greater than that of the LS estimator. This possi-
bly greater sensitivity, however, seems to indicate a
useful sensitivity of regression quantile methods to
important data features to which LS is insensitive.
That is, the nonuniqueness and wide confidence in-
tervals might suggest the possibility of a mixture
model for the conditional median, while a naive LS
analysis (at least one not looking at the data) gives
a slope estimate of 0.803 with a SE of 0.309, which
would indicate a significant regression with a slope
corresponding to neither part of the mixture.

To try to clarify the discrepancy between these
results and the confidence intervals Ellis presents,
we would like to suggest some places where errors
may have occurred. First, the error density seems
to be quite small at the median, and thus esti-
mation of the sparsity function may be especially
problematic. More important, we believe Ellis used
the variance estimate for the i.i.d. model. In het-
eroscedastic cases, the appropriate variance is given
by a “sandwich”: �X′DX�−1X′X�X′DX�−1, where
D is a diagonal matrix of the density evaluated at

each observation (see Portnoy, 1991b). The use of
the i.i.d. variance estimate is not even consistent
in heteroscedastic cases. Koenker (1994) presents
several methods for generating asymptotically le-
gitimate confidence intervals for specific coefficients
in heteroscedastic cases, and he recommends the
one based on inverting a regression quantile rank
test for a coefficient. This is the default in the
software described above. It is interesting to note
that Koenker’s software permits the specification
of the confidence interval estimate based on the
i.i.d. model sparsity estimate. This method uses the
Hall–Sheather optimal estimate (with bandwidth
n−1/3) and gives �1:335;2:834� as an interval for the
slope. Although this estimate is also invalidated by
heteroscedasticity, it is still much larger than that
of Ellis. Use of a sparsity estimate different from
the optimal Hall–Sheather approach may have also
contributed to the discrepancy.

It is also legitimate to use the �x;y� bootstrap in
heteroscedastic cases. The example here seems to be
quite similar to that plotted in the figures in Spady
(1991). The bootstrap distribution appears to have
four modes: one at each of the solid and dashed lines
in Figure 3 and two less obvious ones. This multi-
modality might suggest inaccuracies in the naive
percentile method; but using the percentile �x;y�
bootstrap with 1,000 replications generated a 95%
confidence interval for the slope of �−0:783;2:274�,
corroborating the rank method. Last, it should also
be noted that the difficulty of forcing nonuniqueness
for a given quantile makes this data highly artifi-
cial.

DESIGN SINGULARITY AND
NONUNIQUENESS OF LAD

Finally consider the two types of singularity that
are combined in the dimension measure used by El-
lis. Design singularity is when the design matrix is
not of full rank. It is not a problem of sensitivity
or stability but of parameter identifiability. Identi-
fiability, of course, has a long and extensive (if not
always illustrious) history, especially in ANOVA. As
far as we know, identifiability has never been con-
sidered as a problem of stability (e.g., to be solved
by a statistical choice of an estimation method),
but as a problem in interpretation of parameters
(whose solution rightfully belongs in the domain of
the application). This form of singularity is exactly
the same for all estimators. In terms of statistical
stability, nearly singular cases have little informa-
tion concerning the parameters, and confidence in-
tervals must be rather large. In fact, it is easy to
check that, in simple linear regression, changes in
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the Studentized estimate of the slope coefficient can
be bounded independently of the design. In particu-
lar, if �x;y� and �x∗; y∗� are two pairs of vectors of
observations with �x − x∗� ≤ ε�x�, then the differ-
ence in Studentized slopes is bounded independent
of x and x∗; namely,

∣∣ �x− x̄��x− x̄�′y− �x∗ − x̄∗��x∗ − x̄∗�′y∗
∣∣

≤ �1− ε�
(
�y− y∗� + ε��y∗� + �y��

)
:

We believe a similar bound holds for the LAD es-
timator, but we do not know of a formal version of
this result.

The other form of singularity is the bounded
nonuniqueness of the LAD (or LMS) estimators.
However, this is just a reflection of the fact that
such estimators are set-valued. As shown above,
the sets tend to be small (at least in a statisti-
cal sense). Furthermore, the LAD is continuous
as a set-valued function in any case. Because of
continuity, this form of nonuniqueness is not neces-
sarily a case of instability; and so it does not seem
reasonable to combine these two concepts.

CONCLUSIONS

In summary, the LAD estimator does not appear
to exhibit extreme forms of sensitivity or instability.
Its bounded nonuniqueness has long been accepted
in one-sample problems, and there appear to be no
qualitative differences in this aspect arising in the
multiple regression problem. Contrary to the claims
of Ellis, statistical methods need not be unstable
or sensitive near a singularity, neither in absolute
terms at points of bounded nonuniqueness, nor in a
statistical sense at points of design singularity. We
believe that analysis of the size of a change induced
by a change in the data is intrinsically a metric
property, and that it should be measured by some
relative of a modulus of continuity (preferably ex-
pressed in terms of the natural statistical variation
in the data). The dimension measure of Ellis does
not appear to bear on any such metric criteria.
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Rejoinder
Steven P. Ellis

I thank Portnoy and Mizera for their thought-
provoking comments. Amazingly, they seem to deny
the very existence of the instability phenomenon in
LAD. Hopefully, this exchange will help clarify the
issues.

Let me restate the problem in the LAD case. Each
panel in Figure 2 in the paper shows two real data
sets that are virtually identical but whose LAD lines
are quite distinguishable. This is undesirable be-
cause a statistical data summary should detect im-
portant structures in the data, not trivial ones.

CONTINUITY AND SCALE

Portnoy and Mizera point out that LAD estimates
are not, in general, unique. They assert that, when
viewed as a set-valued function, LAD is actually
continuous. From this they conclude that LAD is
not unstable. In the Appendix to this rejoinder I
show that the claim that LAD, regarded as a set-
valued function, is literally continuous is dubious.
However, as a practical matter worrying about the

nonuniqueness of LAD is unnecessary. The collec-
tion of data sets for which the LAD estimate is
nonunique has Lebesgue measure 0. Therefore, un-
der a reasonable interpretation of the assumption I
make in the paper that the predictors as well as the
responses are free to vary, one will never get a data
set with nonunique LAD estimates. Such data sets
are important (they are the singularities!), but we
do not have to worry about how, or even if, LAD is
defined at them. So we need focus attention only on
those noncollinear data sets at which the LAD es-
timate is unique. In the paper I call the collection
of all such data sets Y ′LAD. If LAD performs poorly
on Y ′LAD, then, a fortiori, it will perform poorly on
the collection Y of all data sets or on the collection
of all noncollinear data sets. As a further simplifi-
cation, take the number k of regressors to be 1. If
Y ∈ Y ′LAD, let b�Y� be the slope of the, necessarily
unique, LAD line for Y.

In this simple context, the message of Portnoy and
Mizera concerning continuity appears to be: b is con-
tinuous on Y ′LAD. So, for example, if we perturb the
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original data set in each panel in Figure 2 by a
small enough amount, the LAD lines of the original
and perturbed data sets will nearly agree. However,
for these data sets, that perturbation would have to
be smaller than 1/20,000 of the IQR of x. I doubt
if most statisticians would find this acceptable. In
general we have the following:

�∗�
Given any δ > 0 one can find lots of data
sets Y ∈ Y ′LAD whose LAD slopes change
by a relatively large amount after moving
Y by less than δ units.

(Hint: Look near the singular set.) In particular, b
is not uniformly continuous on Y ′LAD. A worrisome
feature of �∗� is that it holds even when the scale of
Y is specified.

Let Y ∈ Y ′LAD and let Y′ ∈ Y ′LAD be a data set near
Y. The instability of LAD at Y has to do with the
distance between b�Y� and b�Y′� compared to that
between Y and Y′. Portnoy and Mizera suggest that
we should measure the distance between Y and Y′

relative to the spread inY and the distance between
b�Y� and b�Y′� relative to the standard error (SE) of
b�Y�. Actually, the distances should be measured in
units appropriate for the practical problem at hand.
Measuring distance�Y;Y′� in terms of the spread in
Y is often sensible. (I use that scale myself in Figure
2.) However, measuring distance�b�Y�; b�Y′�� rela-
tive to the SE of b�Y� represents the same mistake
as regarding the p-value as a measure of the im-
portance of an effect (Freedman, Pisani, Purves and
Adhikari, 1991, Chapter 29, Section 3). In particu-
lar, an SE that is gigantic in practical terms is a
poor yardstick.

In any case, no matter what (reasonable) scale
we choose for measuring perturbations of data and
slope, the LAD slope b is not uniformly continuous.
I give an analytical example of this in the Appendix
to this rejoinder. In fact, in the example I even im-
plement Portnoy and Mizera’s suggestion and mea-
sure perturbations in both Y and b�Y� relative to
estimates of spread.

The question of scale is part of a larger problem.
How should instability be measured? (See Belsley,
1991, Chapter 11 for a general examination of this
issue.) We have just seen that if one measures it in
relative terms, that is, by

distance�b�Y�; b�Y′��/distance�Y;Y′�;

then using any reasonable, even data dependent,
scales, the impact of perturbation can be arbitrarily
large.

However, the relative change,

distance�b�Y�; b�Y′��/distance�Y;Y′�;

is not the only measure of interest. The absolute
change in the slope, �b�Y�−b�Y′��, is also important.
As a practical matter, who cares if a microscopic
change in Y leads to a wildly disproportionate, but
still tiny, change in b�Y�? In the paper I take a first
step toward addressing this question by mention-
ing that if one restricts attention to displacements
in the fitted line of about 90◦, the conclusions of the
paper still hold. Even in SE units, a jump in the
LAD line of 90◦ will usually mean a large change in
the slope.

QUANTIFICATION

I agree with Portnoy and Mizera that instability
is ultimately a “metric property.” In my paper I fo-
cused on the most extreme situations: In relative
terms, a regression method is infinitely unstable at
a singularity; in absolute terms, 90◦ is as far apart
as two lines through the origin can be. For such ex-
treme instability, one need not be fussy about how
instability is measured.

The notion of singularity describes the behavior of
a regression method in metric terms “in the limit”
as the data approach the singularity. Another met-
ric property is the volume (or probability) of the
collection of data sets within δ of the singular set
S (and within a ball centered at the origin, say).
The Hausdorff dimension of S describes the lim-
iting behavior of this volume as δ ↓ 0. (See Ellis,
1995a.)

More careful investigation of the instability prob-
lem will require quantification of the nonlimiting
behavior of regression methods. When this quantifi-
cation is done, I expect the region of high instability
will be found to be near the singular set. In the case
of LAD and LMS, that region will be large.

FIGURE 3A

My purpose in creating Figure 3a was to show
an example of a data set at which the amplitude of
the instability of LAD is very large. It was also in-
tended to show that we cannot count on confidence
intervals based on standard asymptotics to serve as
diagnostics of instability. On the other hand, I men-
tion in the text that the bootstrap interval did detect
the instability.

Portnoy and Mizera do make a valid criticism of
the example in Figure 3a. Indeed, in constructing
the interval portrayed in the plot, I did use the
variance estimate for the i.i.d. model. I should have
pointed that out in the text. For the record, I com-
puted the confidence interval based on the asymp-
totic normal distribution (Bloomfield and Steiger,
1983, Theorem 1, page 64) using (5.5), page 137 in
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Venables and Ripley (1994) to calculate a bandwidth
for a Gaussian kernel estimate of the density of the
residuals at 0. I make no claims that this is opti-
mal, only that it is a fair interpretation of “standard
asymptotics.”

Portnoy and Mizera point out that the sensitivity
of LAD indicates a “useful sensitivity : : : to impor-
tant data features.” However, one must not form a
stereotype of singularities as data sets that have im-
portant data features like the data set in Figure 3a
of the paper. The nearly singular data sets in Figure
2 are ordinary-looking data sets without important
data features. Figure 2 also points up the fact that,
besides having a “useful sensitivity : : : to important
data features,” LAD also has an annoying sensitiv-
ity to unimportant data features.

COLLINEARITY

In the paper, I only mention collinearity in ref-
erence to LAD as part of describing the proof of
Theorem 3.1. In general, the collection of non-
collinear singularities of LAD dwarfs the collection
C of collinear data sets, so, except for discussing
the proof of the theorem, there is not much reason
to discuss the stability of LAD near C .

Portnoy and Mizera remark that, normalized by
the standard error, the LS slope is stable near C . I
refer the reader to my earlier comments about us-
ing the standard error as a unit of displacement of
slope.

APPENDIX

Continuity of LAD as a Set-valued Function

Portnoy and Mizera claim that if we regard LAD
as a set-valued function, then it is, in fact, “con-
tinuous.” For example, they write, “LAD is continu-
ous on exactly the same set of nonsingular designs
as LS.” I will interpret “nonsingular” here to mean
“noncollinear.” Let Ỹ ≡ Y \C denote the set of non-
collinear data sets. For the sake of completeness, let
us explore the possibility that LAD, regarded as a
set-valued function, is literally continuous on Ỹ . To
keep things very simple, I will consider simple lin-
ear regression �k = 1� with n = 5 observations. If
Y ∈ Ỹ is a data set, let B�Y� denote the collection of
the slopes in all solutions to the LAD minimization
problem (see expression (3.1) in the paper). Then
B�Y� is a bounded closed interval, though typically
of length 0.

The issue here is continuity of B. Let X be
the space of all bounded closed intervals. So each
bounded closed interval is a point of X and B maps
Ỹ into X. In order for B to be continuous, X must

be equipped with some topology. Which topology? It
is easy to prove the following.

Proposition 1. If X is equipped with a topology
that makes B continuous then that topology does not
satisfy the T1 separation property.

Recall that “X does not satisfy the T1 separa-
tion property” means that there are distinct points
x0; x1 ∈ X such that every neighborhood of x0 con-
tains x1 (Simmons, 1963, page 130). Now, the T1
separation property is probably the most basic sep-
aration property a topological space can have. So if
X lacks that property, it is a very strange space. In
particular, metrizability of X is out of the question.
Such a strange space is unlikely to have any mean-
ing for regression. Thus, it appears that B is not
literally continuous in any meaningful sense. (On
the other hand, Portnoy and Mizera mention semi-
continuity. I can accept semicontinuity of B, but not
continuity.)

Proof of Proposition 1. Remember that I am
taking k = 1 and n = 5. Consider the data set
Ys; t = ��1 + s;1 + s�T; �−1;1�T; �−1;−1�T; �1 +
t;−1 − t�T; �0;0�T�T, for some s; t. Thus, Y con-
sists of the origin together with the corners of
the square with sides of length 2 centered at the
origin with the two rightmost corners possibly dis-
placed diagonally. Temporarily set t = 0. If s > 0,
then B�Ys;0� = �1;1� = �1�; B�Y0;0� = �−1;1�
(Y0;0 is a singularity of LAD). Write x1 = �1� and
x0 = �−1;1�. So x1 6= x0.

Denote the topology of X by τ. Let sm, m =
1;2; : : : ; be a sequence of positive numbers decreas-
ing to 0. Then Ysm;0 → Y0;0 as m → ∞. Since,
by hypothesis, B is continuous, x1 = B�Ysm;0� →
B�Y0;0� = x0. Thus, if U ∈ τ is any neighborhood of
x0, then for m sufficiently large x1 = B�Ysm;0� ∈ U.
That is, any neighborhood of x0 contains x1.

Example of Arbitrarily Close Data Sets with
Far-apart LAD Solutions

I will reuse the data set from the preceding proof,
but this time I will make use of t. Let s; t > 0.
Then, as before, the LAD line of Ys;0 is unique and
has slope 1. Similarly, the LAD line of Y0; t is unique
and has slope −1. In particular, Ys;0;Y0; t ∈ Y ′LAD.

Let δ > 0 be given and let s = t = δ/4. Then in
the Euclidean norm, �Ys;0 −Y0; t� = δ/2 < δ. How-
ever, the slopes of the LAD lines of Ys;0 and Y0; t
differ by 2, independent of δ.

Actually, this example illustrates the scale invari-
ance of the instability of the LAD slope b measured
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in relative terms. Let sY�Y� be a measure of spread
in Y ∈ Y . Let sb�Y� be an estimate of the SE of b for
Y ∈ Y ′LAD. Suppose that sY and sb are sufficiently
well behaved that sb�Y� converges to a finite limit as
Y→ Y0;0 through Y ′LAD and sY is defined, finite and
continuous at Y0;0. Also suppose sY�Y0;0� > 0. (For
example, the standard deviations and interquartile
ranges of the predictors and responses in Y0;0 are
all positive. Both eigenvalues of the covariance ma-
trix of Y0;0 are positive.) The relative change in b
corresponding to the change from Yδ/4;0 to Y0; δ/4,
measured in sb; sY units, is

�b�Yδ/4;0� − b�Y0; δ/4��/sb�Yδ/4;0�
�Yδ/4;0 −Y0; δ/4�/sY�Yδ/4;0�

:

This goes to ∞ as d ↓ 0.
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