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Sensitivity Analysis as an
Ingredient of Modeling
A. Saltelli, S. Tarantola and F. Campolongo

Abstract. We explore the tasks where sensitivity analysis (SA) can be
useful and try to assess the relevance of SA within the modeling process.
We suggest that SA could considerably assist in the use of models, by

providing objective criteria of judgement for different phases of the
model-building process: model identification and discrimination; model
calibration; model corroboration.
We review some new global quantitative SA methods and suggest that

these might enlarge the scope for sensitivity analysis in computational
and statistical modeling practice. Among the advantages of the new
methods are their robustness, model independence and computational
convenience.
The discussion is based on worked examples.

Key words and phrases: Global sensitivity analysis, quantitative sensi-
tivity measure, screening, numerical experiments, predictive uncertainty,
reliability and dependability of models, model transparency.

1. INTRODUCTION

We illustrate here some uses of uncertainty and
sensitivity analysis (SA), by anticipating some of
our worked examples.
Our first example (Figure 1) is a study of model

quality assessment in environmental policy, based
on data of the European Environment Agency
(EEA) for Austria in 1994. The model assists a
hypothetical policy maker in selecting, on the basis
of their environmental impact, between incinera-
tion and landfill for the disposal of solid waste.
The model reads emission data from the EEA-
CORINAIR database and supplies a pressure index
(PI) for each policy option. The PI is proportional
to the overall hazard to the environment of the cor-
responding option. The model output Y, called the
pressure-to-decision index, is defined as a suitable
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combination of these PI’s and is aimed at quanti-
fying the convenience of disposing Austrian solid
waste by landfill versus disposal by incineration.
The model for Y is described in detail in Section 3.
A Monte Carlo input generation process is taken

to estimate the distribution function ofY (Figure 1).
Several input factors are sampled from distributions
derived from the literature or expert opinion. Also
sampled are “structural” modeling elements, such as
the choice of the system of environmental indicators
used to build the pressure indices.
Figure 1 represents an example of Monte Carlo–

based uncertainty analysis, whereby we can appre-
ciate the following:

• the bimodal nature of the output;
• the fact that apparently no clear choice is dic-

tated by the model Y;
• the fact that, according to the captions, inciner-

ation is preferred by the EUROSTAT set of indica-
tors while landfill is supported by the Finnish set.

Figure 2 represents a decomposition of the vari-
ance of the output Y of interest according to source.
The decomposition procedure will be detailed in
Section 2. It suffices here to note that various
groups of simulated input (sampled from their
respective pdf ’s) have different impacts on the vari-
ance of Y. In particular, as mentioned before, we
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Fig. 1. Uncertainty analysis for the environmental indicators
test case.

now see clearly how much of the variation in Y is
driven by the choice of the set of indicators (the
factor [E/F]).
Figure 2 is a sensitivity analysis. It complements

Figure 1 (uncertainty analysis) by coloring the grey
uncertainty area around the sample mean for Y
with colors that identify the contributors to the
uncertainty (the variance) of Y. Roughly speaking,
the slices of the pie in Figure 2 give an idea of how
much the variation of Y could be reduced if we
could fix some of the uncertain inputs.
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Fig. 2. Results of SA for the first exercise: both the Finnish and the EUROSTAT sets of indicators have been used, driven by the factor
[E/F] acting as a switch. The other (groups of) factors, and their dimensions, are as follows: TU, territorial unit, two levels of spatial
aggregation for collecting data are possible �1 factor to select which one�� DATA �in total 176 factors�� made up of activity rates (120
factors), emission factors (37 factors) and national emissions (19 factors); GWP, weight for greenhouse indicator (in the Finnish set), 3
time-horizons are possible (1 factor to select which one); W E� weights for EUROSTAT indicators (11 factors); EEC, a single factor that
selects the approach for evaluating environmental concerns [Target values (Adriaanse, 1993) or expert judgement (Puolamaa, Kaplas and
Reinikainen, 1996)]; STH, a single factor that selects one class of Finnish Stakeholders from a set of 8 possible classes.

An analyst would read Figure 2 as: “At the
present stage, money should not be spent to improve
the quality of the data (e.g., emission factors), but
to reach a consensus among experts about standard
indicator systems.”
Our next example is a case of model build-

ing under uncertainty (Saltelli and Hjorth, 1995).
Figure 3 shows a chemical reaction scheme for the
oxidation of a climatically active trace gas (dimethyl
sulphide). The scheme in the figure is to a large
extent speculative; that is, it reflects the present
understanding of the system favored by a particu-
lar team of investigators. Uncertain are the value of
the kinetic coefficients involved and their temper-
ature dependence. Also uncertain is the existence
of some of the reaction branches. The model KIM
computes time histories for all trace gases in the
system given the input thermodynamic and kinetic
data (the k’s) and the initial conditions. Because
the uncertainty in the k’s is large and can span
orders of magnitude, a Monte Carlo analysis is also
performed here. For each chemical species and time
point, the analyst can build a histogram (uncer-
tainty analysis) as well as a pie chart (sensitivity
analysis).
One of the questions asked of the KIM model in

Saltelli and Hjorth (1995) was whether one of the
branches of reaction (k23) was making any signifi-
cant contribution to the direct formation of sulphate,
by direct decomposition of an intermediate (CH3
SO3·) to form SO3. Because all k’s are uncertain,
it is not sufficient to explore this system via what-
if simulations, changing only the value of k23. The
relevance of k23 as a pathway also depends upon
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Fig. 3. Scheme of KIM: the spheres indicate where the chemical species can diffuse to water droplets, where liquid phase chemistry is
at play. The scheme for the liquid phase chemistry is not given here.

coefficients that are upstream (such as k12, k17) or
are competing (such as k21). A Monte Carlo analy-
sis where all k’s were varied simultaneously allowed
the relevance of k23 to be assessed globally. Fur-
ther, sensitivity analysis allowed the identification
of the most influential k’s, so that further simula-
tions could be targeted to the objective to ascertain
under what conditions (what values of the influen-
tial k’s) could k23 become an important pathway for
the formation of sulphate. In the end it was found
that this pathway is not an efficient one for sulphate
production.
Our last example is the level E model. This model

is slightly more complex than KIM, being made up
of partial differential equations (PDE) rather than

ordinary differential equations (ODE) and describes
mass transfer with chemical reaction in a porous
medium. The migrating species are radioactive, and
the variable of interest Y is the total dose to man
resulting from all of the radionuclides, once these
reach the biosphere (Section 3). Figure 4e shows
how the total normalized variation of Y can be
decomposed into two sets of uncertain input factors:

• those pertaining to the engineered barriers
(such as the lifetime of the steel canister containing
the radionuclides);
• the natural barriers (such as the strength of

the chemical interaction between nuclides and the
porous medium).
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Fig. 4. Level E test case: the panels display the results as functions of time (years). (a) Each of the two curves represents the uncertainty
analysis on the total dose, performed on a set of 514 and 3,084 model evaluations, respectively. (b) The R2y estimate as obtained from the
set of model runs. (c) and (d) Time-dependent pie charts of the Si and the STi for the 12 factors of the model, as obtained from the set
of 3,084 model runs. (d) The four most influential factors. (e) The normalized STi for an analysis conducted on two groups of factors,
“natural barriers” and “engineered barriers.” (f) Pie chart of the results of the sensitivity analysis at a given time.

Also in this case the variance of Y has been
decomposed using quantitative methods. The anal-
ysis suggests (as practitioners know) that the safe
containment of the nuclides over a long time span
depends more on the geology and geochemistry of
the host formation, and less on the characteristics
of the disposal design. An upgraded version of the
level E model is treated in Draper et al. (1999),
where different scenarios for the release of radionu-
clides are visited. In this latter exercise, sensitivity
analysis allowed the importance of scenario uncer-
tainty to be contrasted with factor uncertainty
(Section 3).
The three examples above, and another presented

in Section 3, will be invoked to illustrate and defend
the following theses:

• Uncertainty and sensitivity analysis are an
integral part of the modeling process.

• Quantitative sensitivity analysis methods, able
to decompose the variance of Y, are useful and easy
to interpret. They contribute to the transparency of
the analysis.
• Sensitivity analysis can be employed also when

dealing with uncertain or competing model struc-
tures or scenarios, treating the choice of the model
as one of the sources of uncertainty. This pro-
cess contributes to the evaluation of model-based
inference.

In Section 2, we review some newly developed
global quantitative methods for sensitivity analysis.
In Section 3, our examples are presented and the
methods are applied to the examples. In Section 4
we discuss the examples and we also try to contrast
the variance-based methods introduced in Section 2
with other available approaches.
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2. METHODS

We introduce first the properties of the global
methods for sensitivity analysis that are the pri-
mary focus of this paper (Section 2.1). In Section 2.2,
we give computational details on two methods:
Sobol’ and extended FAST. In Section 2.3 we
contrast these methods against other available
techniques for sensitivity analysis.

2.1 Global Quantitative Methods

Partitioning the variance V of the objective
function Y is one possible way of performing
sensitivity analysis. To the reader of Statistical
Science this might recall classic regression anal-
ysis. If we have generated via Monte Carlo a set
of model evaluations yi� i = 1� 
 
 
 �N, correspond-
ing to N different sampled values xi of the vector
X = �X1�X2� 
 
 
 �Xk� of input factors, then we can
build a regression model for Y using standard least
squares analysis. The standardized regression coef-
ficients βj are a way to measure the sensitivity
of Y to the factors Xj. If the factors are indepen-
dent,

�
j β

2
j = V; that is, the βj’s give the fractional

contribution of each factor to the variance of Y.
However, the effectiveness of the βj’s as sensitiv-
ity measures is judged by the model coefficient of
determination

R2
y =

�N
i=1�ŷi − 	Y�2�N
i=1�yi − 	Y�2


(1)

If R2
y is close to 1, then the regression model is

accounting for most of the varability in the yi, and
the βj can be used to gain insight into the rela-
tive importance of the input factors. Conversely, low
values for R2

y suggest that the model has nonlin-
ear behavior. Regression coefficients are described
in Draper and Smith (1981) and their application to
sensitivity analysis is reviewed by Helton (1993). In
the rank-based version of the standardized regres-
sion coefficients, both the input and the output val-
ues are replaced by their ranks (Iman and Helton,
1988). Rank-based βj’s can be used for the purpose
of model sensitivity analysis for nonlinear, albeit
monotonic, models. A drawback of rank-based sen-
sitivity measures is that the properties of the model
Y are grossly distorted by the rank transformation
(Saltelli and Sobol’, 1995).
Another class of sensitivity measures that also

express fractional contributions to the total (or
unconditional) variance of Y are those obtained
from extending classic experimental design (DOE,
Box, Hunter and Hunter, 1978) to simulation exper-
iments (Kleijnen, 1998). By varying the factors
among a set of preestablished values (levels), and

running the model with selected multivariate sam-
ples of the factors (a design), one obtains output
values that permit the estimation of individual
effects of the factors (main-order terms) as well as
of the interaction effects (second- and higher-order
terms).
Experimental designs can provide an estimate of

the first-order fractional varianceV
E�Y�Xi = x∗i�,
where E�Y�Xi = x∗i� denotes the expectation of Y
conditional on Xi having a fixed value x∗i , and the
variance is taken over all possible values of x∗i . The
conditional expectation is taken over all Xj�j �= i,
with Xi fixed to a given value x∗i (it involves hence
an integration over k− 1 dimensions), and the frac-
tional variance V is only computed over all the pos-
sible values of x∗i (integration over one dimension).
The usefulness of V
E�Y�Xi = x∗i� as a measure

of the sensitivity of Y to Xi is easy to grasp. An
influential factor Xi will be associated with a small
value of V�Y�Xi = x∗i� (i.e., fixing Xi to x∗i reduces
appreciably the variance of Y), as well as to a small
value of E
V�Y�Xi = x∗i�, the expected reduced
variance that would be achieved ifXi could be fixed.
Because

V�Y�=V[E�Y�Xi = x∗i�]
+E[V�Y�Xi = x∗i�]�(2)

a small E
V�Y�Xi = x∗i� is equivalent to a large
V
E�Y�Xi = x∗i� and the latter can be used as
a sensitivity measure. Estimation procedures for
V
E�Y�Xi = x∗i� are discussed in Section 2.2.
The V
E�Y�Xi = x∗i� estimate is a more general

sensitivity measure than a regression coefficient, as
it also works for nonlinear models. Yet this mea-
sure does not account for interactions among fac-
tors. V
E�Y�Xi = x∗i� is in fact the main effect
term of Xi on Y. In a full ANOVA-like decompo-
sition, the total variance V of the output is appor-
tioned to all the effects; that is, it is decomposed as
a sum of terms of increasing dimensionality:

V�Y�=∑
i

Vi +
∑
i<j

Vij

+ ∑
i<j<m

Vijm + · · · +V12···k�
(3)

where Vi = V
E�Y�Xi = x∗i�, Vij = V
E�Y�Xi =
x∗i , Xj = x∗j� − V
E�Y�Xi = x∗i� − V
E�Y�Xj =
x∗j� and so on. Decomposition (3) has a long his-
tory; see Archer, Saltelli and Sobol’ (1997) and
Rabitz, Alı̆, Shorter and Shim (1999) for a discus-
sion. Formula (3) only holds if the factors Xi are
independent of each other. As mentioned before,
straightforward variance decomposition for linear
additive models is provided by regression analysis,
using the standardized regression coefficients. In
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particular, for linear models, β2j = Vi/V (McKay,
1996, Saltelli and Bolado, 1998). The first-order
terms in (3) can be estimated for the purpose of
sensitivity analysis using methods such as the
Fourier amplitude sensitivity test (FAST Cukier
et al., 1973; see Saltelli, Tarantola and Chan, 1999,
for a review), the method of Sobol’ (1990) and oth-
ers (Iman and Hora, 1990; McKay, 1995, 1996). All
of these methods are referred to as variance-based
in our following discussion.
It is a fact known to both modelers and experi-

mentalists that the number and importance of the
interaction terms usually grows (a) with the number
of factors and (b) with the range of variation of the
factors. This means that if we were able to compute
all of the Vi terms, then most likely

�k
i=1Vi would

still be lower than the total variance of Y. The dif-
ference V�Y� −�k

i=1Vi is a measure of the impact
of the interactions. Liepmann and Stephanopoulos
(1985) have argued that when the summation of the
first-order terms is as high as 65% of the total vari-
anceV, one should consider the analysis as satisfac-
tory. This rule of thumb was forced into the practice
of sensitivity analysis by the difficulty of comput-
ing the interaction terms, even when using straight-
forward design of experiment (DOE) methods. If a
model has k factors, the total number of terms in (3)
(including the first-order ones) is as high as 2k − 1.
This problem has been referred to as the curse of
dimensionality by Rabitz et al. (1999). This curse
can affect both experimentalists preparing an exper-
imental design and modelers, although for the latter
the problem is more acute. In models one wants to
explore more factors than one can control in field
or laboratory experiments. Factors are varied on a
wider scale in a numerical experiment than they
are in a physical one. Unfortunately, increasing the
number of factors, and their ranges of variation,
commonly results in more and larger interactions.
All this should suggest that, to be of practical use,
a global sensitivity analysis method should be able
to cope with the dimensionality problem.
In fact such methods have been recently devel-

oped. Among these, the extended FAST method
(Saltelli, Tarantola and Chan, 1999) and the method
of Sobol’ (Sobol’, 1990; Homma and Saltelli, 1996)
are capable of estimating the total sensitivity index
STi, defined to be the sum of all effects (first- and
higher-order) involving factor Xi. For example, in a
three-factor model, the three total effect terms are

ST1=S1 +S12 +S13 +S123�
ST2=S2 +S12 +S23 +S123�
ST3=S3 +S13 +S23 +S123�

(4)

where now each Si1� i2�


� is is simply Vi1� i2�


� is/V.
Direct estimates of STi can be obtained, which do
not require the estimation of the individual terms
in (4), thus making the computation affordable.
Whereas the Si can be defined as the expected

fractional reduction in variance that would be
achieved if Xi were known, the STi can be thought
of as the expected fraction of variance that would
be left if only Xi were to stay undetermined. Let
X−i be the vector made up of all xj� j �= i, and let
x∗−i be a specified value of X−i. It can be proven
that STi = E
V�Y�X−i = x∗−i�/V. The terms “bot-
tom marginal variance” and “inclusive variance”
have been used for STi; see Jansen et al. (1994).
Whereas the sum of the individual effect terms of

all orders add up to 1, the sum of the STi’s is in
general larger than 1, because each interaction of
order r is counted r times in it.

2.2 Computational Methods

We now offer some computational details on the
extended FAST and Sobol’ methods.
In extended FAST (Saltelli, Tarantola and Chan,

1999), the STi’s are evaluated by a search curve that
scans the space of the input factors, in such a way
that each factor is explored with a selected integer
frequency. Each uncertain input factor Xi is associ-
ated with a frequency ωi, and a set of standardized
parametric equations

Xi�s�=G�sinωis�

= 1
2
+ 1
π
arcsin�sinωis�

(5)

allows each factor to be explored globally across its
range of variation, as the parameter s is varied over
�−π�π�. Equation (5) describes a piecewise linear
wave function that systematically explores the unit
hypercube

� ≡ �X�0 ≤Xi ≤ 1� i = 1� 
 
 
 � k�(6)

from which standard samples of noncorrelated
input factors that are uniformly distributed in the
range 
0�1� can be generated. To compute a given
STi, the factor Xi is assigned a high scanning fre-
quency ωi, while the factors in the complementary
vector X−i are assigned low frequencies in the
range �1�ωi/2�. A Fourier analysis allows the sum
of all the Vi1� i2�


� is terms that do not include the
factor Xi (let us indicate it as V−i) to be recovered
at the low end of the spectrum (see equation (10)).
The quantity V − V−i is clearly the sum of all
effects involving Xi, that is, those effects needed
to compute STi. From the spectrum at higher fre-
quencies [see equation (9)] one can recover Vi, and
hence the first order term Si.
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In practice, the output Y = f�X1�s��X2�s�� 
 
 
 �
Xk�s�� is evaluated along the curve and is consid-
ered as a function f�s� of s. The output Y shows
different periodicities combined with the different
frequencies ωi, whatever the model f�·� is. If the
factor Xi is influential, the oscillations of Y at the
frequency ωi, and its integer multiples pωi, will be
of high amplitude. Such amplitudes are quantified
by the spectrum �2�ω� evaluated at those frequen-
cies, which represents the basis for computing the
sensitivity. The spectrum �2�ω� of f�s� at each fre-
quency ω is computed as �2�ω� = A2�ω� + B2�ω�,
where

A�ω� = 1
2π

∫ π
−π
f�s� cosωsds�(7)

B�ω� = 1
2π

∫ π
−π
f�s� sinωsds(8)

are the Fourier coefficients of f�s�. Such integrals
are computed using quadrature formulae that oper-
ate on a set of N points that are selected along
the curve and equally spaced; N is related to the
frequency ωi through the Nyquist theorem, N =
2Mωi + 1 (see Saltelli, Tarantola and Chan, 1999,
Appendix), where M is the number of harmonics
considered in the analysis (usually M is set to 4).
Hence, upon fixing ωi, the number of points along
the curve is determined. With N points on a curve,
it is possible to derive estimates for Vi, V−i and V:

V̂i = 2
M∑
p=1
�2�pωi��(9)

V̂−i = 2
[
�2�1� + �2�2� + · · · + �2

(
ωi
2

)]
�(10)

V̂ = 2
[
�2�1� + �2�2� + · · · + �2�Mωi�

]

(11)

Finally, the Ŝi and ŜTi for the factor Xi are
obtained, respectively, by V̂i/V̂ and 1 − V̂−i/V̂. If
we are interested in computing Ŝj and ŜTj for a
different factor Xj, we need to assign a high scan-
ning frequency to Xj, and low frequencies to the
complementary set. This has the effect of creating
a new sampling curve, which explores the space �
with different parametric equations. The model has
to be executed again N times over the new sample
points and formulae (7)–(11) have to be evaluated
for obtaining the new sensitivity estimates.
The extended FAST is a generalization of the

FAST method, which was introduced in the 1970s
(Cukier et al., 1973; Schaibly and Shuler, 1973;
Cukier, Schaibly and Shuler, 1975; Cukier, Levine
and Schuler, 1978) and computationally upgraded
by Koda, McRae and Seinfeld (1979). The main
limitation of FAST, in comparison to its extended

version, is in the impossibility of computing the
indices STi. The main peculiarity of the extended
FAST is in the way the frequencies ωi are associ-
ated with the factors Xi, and in the choice of the
function G�·�. In plain FAST, other functions G�·�
are employed, which do not guarantee that the
sample is uniformly distributed in �. Full technical
details on FAST and its extended version are given
in Saltelli, Tarantola and Chan (1999).
Using the method of Sobol’ (1990), the domain �

[equation (6)] is explored by multidimensional inte-
grals computed via Monte Carlo. In this case, V−i
is given by

V−i=E
(
f
(
x11�x

1
2�


�x

1
i−1�x

1
i �x

1
i+1�


�x

1
k

)
·f(x11�x12�


�x1i−1�x2i �x1i+1�


�x1k))−f20�(12)

where f0 is the mean, and the superscript index
(1 or 2) denotes different samples being used;
similarly the first-order term is computed as

Vi=E
(
f
(
x11�x

1
2�


�x

1
i−1�x

1
i �x

1
i+1�


�x

1
k

)
·f(x21�x22�


�x2i−1�x1i �x2i+1�


�x2k))−f20
(13)

In both cases the expectation is computed via
Monte Carlo using quasirandom numbers; that is,
the multidimensional integration is reduced to a
plain sum (Sobol’, 1990). A different set of simu-
lations is needed for each factor. The cost of these
computations can be expressed in terms of the num-
ber of model evaluations required (i.e., number of
times the model needs to be executed). The cost
depends upon the number of factors k and on the
sample size N used to compute Si or STi (the cost
is N per factor per sensitivity index using Sobol’).
The extended FAST method is numerically more
efficient than the method of Sobol’. FAST can com-
pute for the same cost N both Si and STi, that is,
the first order plus the total index for a given fac-
tor. The computational cost per factor, N, may be
of the order of 500 model runs or greater; that is,
obtaining a set of Si, STi is more expensive than
computing a set of βi’s using regression analysis
(see also examples in Section 3).
For both the FAST and Sobol’ methods f must

be square-integrable. Both methods only apply for
uncorrelated factors. The extension of variance-
based tests to correlated inputs is not an easy one,
because for nonorthogonal samples the variance
decomposition loses its uniqueness. Orthogonaliza-
tion procedures are discussed in Bedford (1998)
whereas McKay (1995) suggests a partial sensi-
tivity index that is the model-free generalization
of the partial regression coefficient. As in the
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stepwise regression analysis case, the order in
which the factors are entered into the analysis is
material.
A further step can be made to complete the pro-

cess of making the analysis of model sensitivity
more agile and easy to interpret. This is based on
the observation that in complex models with sev-
eral submodels, or modules, or simply with sets
of variables pertaining to different logical levels,
one might desire to decompose the prediction vari-
ance according to subgroups of factors (i.e., the
input factors might be multivariate). For example,
let us assume that the set X of the input factors
is partitioned in two groups W and Z such that
X = W ∪ Z. The variance V of Y is then decom-
posed as V = VW +VZ +VWZ, similarly to (3). For
the computation, via the extended FAST, of the first
order (SW, SZ) and the total effect indices (STW,
STZ), the procedure shown to select the frequen-
cies for Xi and X−i is here applied to W and Z. A
straightforward extension of (12) and (13) allows
the computation of the indices for groups of factors
using the method of Sobol’. The extension to more
than two subsets is trivial. An application example
of an analysis by groups is given in Figure 4e for
the level E model.

2.3 Comparison with Other Approaches

The variance-based methods discussed so far are
not the most widely used in engineering, physics
or chemistry; neither are the regression methods
described in Section 2.1. What one meets most often
in articles of physics or chemistry is the so-called
one factor at a time (OAT) approach, where infer-
ence about the behavior of Y is made by changing
one factor at a time and investigating the change
in Y or by computing, for example, via the so-called
direct method, sets of partial derivatives of Y with
respect to Xj, such as

Sj =
∂Y

∂Xj

(14)

These are computed at a point x0 = �x01� x02� 
 
 
 �
x0k�, where all the Xj’s are fixed to their nominal
values x0j. In other words, the quantity Sj is the
local sensitivity index measuring the effect on Y of
perturbing Xj around the nominal value x

0
j. Popu-

lar alternatives to (14) are

Sj =
x0j

Y0

∂Y

∂Xj
�(15)

measuring the effect on Y of perturbing Xj by a
fixed fraction of Xj’s mean value, and

Sj =
σ�Xj�
σ�Y�

∂Y

∂Xj
�(16)

measuring the effect on Y of perturbing Xj by
a fixed fraction of Xj’s standard deviation. Local
sensitivity analysis is typically encountered in the
solution of inverse problems, that is, a class of
estimation problems where the model is generally
noninvertible and the parameters to be estimated
are not directly observable; an example is the deter-
mination of quantum mechanical potentials from
yield rates of chemical reactions (Rabitz, 1989).
Local approaches have been used in chemical kinet-
ics, to determine kinetic coefficients of complex
systems from measured data (Turanyi, 1990), or
in hydrogeology (Smidts and Devooght, 1997). For
a review of local methods, showing how these can
be coupled with multivariate statistical methods,
such as principal component analysis, see Turanyi
(1990). When contrasted with these other meth-
ods, the variance-based measures of Sections 2.1
and 2.2 display a number of useful properties for
sensitivity analysis:

1. These measures take into consideration the
whole range of input variation and the form
of its probability density function (pdf). Local
methods only look at a neighborhood of x0.

2. The effect ofXj is averaged over the entire range
of Xj, as well over X−j; that is, the space of all
factors butXj. By contrast, in the local approach
the effect of the variation of Xj is measured
when all other Xr, r �= j, are kept constant at
their nominal values.

3. These measures can identify interaction effects
(as in standard ANOVA) and take them into
account when assessing the overall influence of
Xj on Y.

4. These measures are model independent in the
sense that, unlike linear or rank regression anal-
ysis, their performance is not conditional on the
additivity or linearity of the model.

5. They can cope with the curse of dimension-
ality, thanks to the possibility of estimating
the STi’s.

We would like to end this section devoted to the
methods by pointing the reader to alternative orig-
inal approaches to sensitivity analysis that are not
treated in the present work:

• A very elegant method for sensitivity analysis,
used in reliability problems, is the first-order relia-
bility method (FORM; see Cawlfield and Wu, 1993).
This method focuses on extreme percentiles of the
distribution of Y that are of relevance in risk anal-
ysis, and identifies factors that are most responsi-
ble for Y assuming values in a specified forbidden
region.
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• Sacks, Welch, Mitchel and Wynn (1989) sug-
gest a method of sensitivity analysis that is based
on decomposing Y itself into terms (functions) of
increasing dimensionality, and look at these as mea-
sures of sensitivity (see also an application in Welch
et al., 1992). This method has much in common with
the work of Sobol’ (1990), described in Section 2.2.
A comparison of analysis of variance in classic fac-
torial design with the method of Sobol’ is given in
Archer, Saltelli and Sobol’ (1997).
• A decomposition of Y into finite differences

is proposed in Rabitz et al. (1999). The procedure
relies on assumptions on the order of the highest
nonzero terms in (3). An approximation to Y is built
by knowing its value on lines, planes and hyper-
planes that pass through a given selected point in
the space of the input factors.
• The projection pursuit regression is a nonpara-

metric regression technique developed by Friedman
and Stuetzle (1981). The usual regression model
is generalized by replacing the linear manner in
which the factors Xi enter the prediction process
by arbitrary nonlinear functions of the Xi deter-
mined nonparametrically. The technique permits
discovery of interaction and highly nonlinear rela-
tionships between Y and the Xi. However, the user
must choose the number of the nonlinear func-
tions through a compromise between parsimony,
interpretability and explanatory power. An appli-
cation is given in Draper, Saltelli, Tarantola and
Prado (2000).
• In generalized sensitivity analysis (see

Hornberger and Spear, 1981) the output real-
izations are classified as “behavior” (A) or “nonbe-
havior” (B). The “behavior” is often stipulated in
terms of how well model predictions fit available
data. For each input factor Xi, two subsamples are
identified: those that lead to acceptable behavior,
XAi , and those that lead to unacceptable behav-
ior, XBi . For factor Xi the Kolmogorov–Smirnov
two-sample hypothesis test is then applied to check
if the two subsamples can be considered as gen-
erated from the same statistical distribution (null
hypothesis). The factor Xi is regarded as impor-
tant when the null hypothesis is rejected. The
statistical test is then repeated for the remaining
factors.
• Bayesian sensitivity analysis is concerned

with decision-making under uncertainty, where
the interest is in selecting the optimal action
from a feasible set of alternatives (see Rios Insua,
1990). Sensitivity analysis is used in this context
to test the robustness of the dominating alter-
native with respect to uncertainties in the prior
beliefs, which are modeled with prior probability

distributions, and with respect to the process of
modeling the decision maker’s preferences among
consequences.
• The term “Bayesian sensitivity analysis” is

used by O’ Hagan, Kennedy and Oakley (1999) to
point to the approach where the model output Y
is treated as a random process, and hence esti-
mated by (hierarchical) modeling given a set of
points sampled from X. Then the same approach
as Sacks et al. (1989) is used for sensitivity
analysis.

Most of the material touched upon above is
described in a recent handbook for sensitivity
analysis (Saltelli, Chan and Scott, 2000).

3. APPLYING THE METHODS TO THE
EXAMPLES

This section treats seven worked examples. Of
these, the first two (Legendre polynomial and
Bateman equations) can be reproduced by the
reader based on the information provided here.
For the other models, the reader is referred to the
original references.

Legendre polynomial. This example is intro-
duced to illustrate the importance of accounting for
interactions in a model (McKay, 1996). Strongly non-
additive models are not necessarily complex ones.
This is a Legendre polynomial of order d,

Ld�x�=
1
2d

d/2∑
m=0

[
�−1�m d!

m!�d−m�!

× �2d− 2m�!
d!�d− 2m�!x

d−2m
](17)

taken as a function of x and of the integer number
d, with x ∈ 
−1�1 and d = �1�2�3�4�5�. The input
factors x and d are assumed independent and uni-
formly distributed. This model has only two nonzero
indices (analytically computed): Sx = 0
2 and the
second-order term Sxd = 0
8. Thus, Sd = 0, whereas
STd = Sd + Sxd = 0
8. This simple test case shows
that a factor may have zero first-order term and
nonzero interactions.

Bateman equations. This example introduces
time-dependent outputs and shows how the results
can be displayed in an intuitive fashion. The
Bateman equations describe a simple chemical
or radioactive chain where each element’s growth
rate is proportional to the father concentration,
and each element’s decay rate λi is proportional
to the concentration Ci of the element itself. The
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set of Bateman equations is given in Figure 5. Its
analytical solution is

Ci�t�=
i∑
m=1

[
C0m

i−1∏
r=m�m �=i

λr

×
i∑
n=m

e−λnt�i
l=m�m �=i� l �=n λl − λn

]



(18)

Here λi and C
0
i are, respectively, the decay rate and

the initial concentration of element i, and the prod-
uct

�
equals 1 when one of its indices becomes zero

or negative.
Four elements are considered in this example. The

model output is taken as the concentration of the
fourth element across time (Y�t� = C4�t�) and is
driven by eight, mutually independent, uncertain
factors: the four initial concentrations C0i and the

Fig. 5. Bateman test case: the panels display the results as functions of time (seconds). (a) The uncertainty analysis on the concentration
of the fourth element of the chain, performed on a set of 8,200 model evaluations. (b) The R2y estimate as obtained from the set of model
runs. (c) and (d) Time-dependent pie charts of the Si and the S

∗
Ti for the 8 factors of the model, as obtained from the set of 8,200 model

runs.

four decay (or reaction) coefficients λi. Their ranges
and distributions are given in Table 1.
Figure 5 displays the results as a function of

time. The curves displayed in (a) are the results
of 8,200 model evaluations and give a global view
of the uncertainty affecting the output at different
time points. The output dynamics occurs in the time
range from 104 to 108 s where the output shows a
peak and then drops down to zero. The values in (a)
have been used to estimate the model coefficient of
determination R2

y [panel (b)], which is evaluated at
each time point. The noncomputable region (shaded
area) is due to singularities in matrix inversions. It
can be noted that the regression explains approxi-
mately 80% of the output uncertainty up to 106 s.
At later times R2

y decreases rapidly, indicating the
presence of nonlinearities. The analysis at times
beyond 108 s is of no interest because the output
goes to zero, and correspondingly, R2

y = 0. The
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Table 1
Characterization of the input factors for the Bateman equations case

Notation Definition Range Units

C01 Initial concentration 1 0–1,000 moles
C02 Initial concentration 2 0–100 moles
C03 Initial concentration 3 0–10 moles
C04 Initial concentration 4 0–0.01 moles
λ1 Decay rate 1 1× 10−6–5× 10−6 s−1
λ2 Decay rate 2 1× 10−5–1× 10−4 s−1
λ3 Decay rate 3 1× 10−4–1× 10−3 s−1
λ4 Decay rate 4 2× 10−8–2× 10−6 s−1

8,200 time-dependent curves displayed in (a) have
also been employed to run the extended FAST. Each
run of the extended FAST provides first-order (Si)
and total indices (STi) at a given time point. For
presentation purposes, we have divided each STi
by the summation

�
i STi, indicating the resulting

index, scaled between 0 and 1, as S∗
Ti. The sensi-

tivity indices are displayed as a time-dependent pie
chart. Any given vertical cut made either through
panel (c) or (d) of Figure 5 at a given time point
corresponds to a pie chart for that time point. The
length of the segments identified by the cut are
proportional to the areas of the sectors of the corre-
sponding pie chart. The colored region in (c), that
is, the sum of the Si, is an index of the model addi-
tivity. The model can be considered nearly additive
(up to 108 s), because

�
Si > 0
8. Panel (c) shows

that, in correspondence to the maximum of Y (at
time = 106 s), the driving factor is C01. At later
times (107 < time < 108 s), the most important fac-
tor becomes λ4. Comparing inserts (c) and (d) helps
to identify the factors involved in the interactions.
For example, the whole output variance at 107 s is
explained exclusively by λ4 and C01 [Figure 5(c)],
apart from a missing bit lower than 20%. Looking
at Figure 5(d) we see that for the same time point
all the variation (inclusive of interactions) is due
to exactly the same two factors. This tells us that
there must be a single interaction effect involving
λ4 and C

0
1 at this time point.

This analysis helps us understanding how sen-
sitive the model prediction is to its input factors:
output uncertainty could efficiently be reduced by
reducing uncertainty on the most important factors.

Level E model. The level E model involves
a system of PDE’s describing mass transfer with
decay and chemical reaction in a one-dimensional
multilayered geosphere. The output variable con-
sidered in this study is the total annual dose to man
due to all the migrating radionuclides. The reader
can replicate this test case by looking at the OECD
reference (OECD/NEA PSAC User Group, 1989).

The factors for the level E exercise and their
distributions (Table 2) were decided by a panel of
experts, who designed this exercise for a benchmark
of Monte Carlo methods (OECD, 1989). Also for this
test case the factors are assumed independent.
The rationale for examining this model is that

it has been also used for a benchmark of SA
methods (OECD, 1993). Further, it is a rather dif-
ficult example for SA due to its nonlinearity and
nonadditivity.
A standard numerical technique (Crank–

Nicholson) is used to integrate the system of
PDE’s. In Figure 4, the panels display the results
as functions of time (years). The two curves in
Figure 4a are the result of 514 and 3,084 model
evaluations, respectively. We discuss first the set
of size 3,084. This has been used for estimating
R2
y [panel (b)], the first-order Si and total indices
STi [panels (c) and (d), respectively] for all the 12
factors of the model. Figure 4(b) shows that the
underlying model is strongly nonlinear, as the R2

y

value is always below 0
2. The additive component
of the model, measured by the sum of the Si’s, is
shown by the colored region in (c), which is below
0
6 everywhere. This means that more than 40% of
the output uncertainty is due to interactions among
factors. A cumulative plot of the total indices for
the 12 factors is given in panel (d). The sum of the
total indices oscillates between 4 and 7 along the
time interval considered in the analysis, indicating
a large contribution of interactions to the output
variance (this sum should equal 1 for a perfectly
additive model). The most important factors can be
identified:

• V�1� = water velocity in the geosphere’s first
layer;
• L�1� = length of geosphere’s first layer;
• R�1� = factor to compute the retention coeffi-

cient for Np (first layer);
• W = stream flow rate.

Even for this test model, the analysis reinforces
our confidence in the understanding of the behav-
ior of the model. Note how, for this nonadditive test
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Table 2
Characterization of the input factors for the level E test case

Notation Definition Distribution Range Units

T Containment time Uniform 100–1,000 yr
kI Leach rate for iodine Log-uniform 10−3–10−2 yr−1
kC Leach rate for Np chain nuclides Log-uniform 10−6–10−5 yr−1

v�1� Water velocity in geosphere’s 1st layer Log-uniform 10−3–10−1 m yr−1

l�1� Length of geosphere’s 1st layer Uniform 100–500 m

R
�1�
I Retention factor for I (1st layer) Uniform 1–5 —

R
�1�
C Factor to compute ret. coeff.

for Np (1st layer) Uniform 3–30 —
v�2� Water velocity in geosphere’s 2nd layer Log-uniform 10−2–10−1 m yr−1

l�2� Length of geosphere’s 2nd layer Uniform 50–200 m

R
�2�
I Retention factor for I (2nd layer) Uniform 1–5 —

R
�2�
C Factor to compute ret. coeff.

for Np (2nd layer) Uniform 3–30 —
W Stream flow rate Log-uniform 105–107 m3 yr−1

case, several factors are simultaneously influential.
This derives from how the test case was designed,
as the experts in OECD (1989) were aiming for
a model “balanced” in all parameters. A practical
consequence is that, unlike the Bateman case, it
is not so easy to reduce the variance in the pre-
diction by just reducing uncertainty in one or two
factors.
An example of the analysis by groups of factors

is given in Figure 4(e), where the 12 factors of the
model have been partitioned into just two groups:
the indices S∗

Ti are estimated for natural and engi-
neered barriers. The analysis by groups of factors is
cheaper than the analysis for single factors: in this
case, for instance, two pairs of indices (Si and STi
for the two groups) are computed instead of 12 pairs.
Using a base sample size of 257 the analysis by
groups requires 514 model evaluations, whereas the
analysis for each single factor involves 3,084 model
runs. In Figure 4(e), the result obtained for the anal-
ysis by groups highlights the modest role played by
engineered barriers in comparison to natural barri-
ers, confirming the beliefs of risk assessment prac-
titioners involved in nuclear waste disposal studies.
In Figure 4(f), two pie diagrams illustrate the frac-
tional contribution of each group to the output vari-
ance at a given time point.

Level E/G model. This example is introduced
for its approach to “scenario uncertainty.” Level
E/G is an upgraded version of the level E model
described above (Draper et al., 1999; Draper et al.,
2000). This more general model allows the explo-
ration of alternative scenarios that are selected at
runtime; that is, in each Monte Carlo run a differ-
ent scenario may be selected based on a Russian

Table 3
Calibration analysis: average values 	S�i� and 	ST�i� as

computed over the 128 estimates of S�i� and ST�i� plus or
minus their standard deviations σS and σTS

TiN nanocrystalline film

S�i� ± �S ST�i� ± �ST

E(Gpa) 0
70± 0
10 0
88± 0
03
ν 0
01± 0
01 0
01± 0
01
ρ(g/cm3) 0
10± 0
04 0
28± 0
09
t(nm) 0
00± 0
00 0
01± 0
01

roulette trigger. In this way, it was possible to per-
form a “model uncertainty” audit on the basis of
the variance decomposition

V̂�y�=VS
[
Ê�Y�S�]+ES[V̂�Y�S�]

=
l∑
i=1
pi

(
µ̂i − µ̂

)2 + l∑
i=1
piσ̂

2
i

(19)

that permits us to explore what fraction of the
variance V�Y� is due to scenarios (the term
VS
Ê�Y�S�, also called between-scenarios vari-
ance) and how much to the uncertain model
parameters (the term ES
V̂�Y�S�, also called
within-scenario variance).
In (19), pi is the probability of the ith scenario,
l is the number of scenarios considered and µ̂i
and σ̂i are the means and standard deviations of
Y within the ith scenario. The model involves 54
uncertain factors (poorly known physical quanti-
ties and intrinsic parametric uncertainties, such
as the time of occurrence of a geological event)
as well as six different scenarios. The probability
distributions for the factors and the scenarios are
selected by expert judgement. An interesting result
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of this exercise, run taking as output of interest
Z�t� = maxY�s�, s ∈ 
0� t, where Y�s� is the dose
absorbed at time s, is that the percentage of vari-
ance due to scenarios remained stable at about 30%
of the total variance even though the probabilities
pi were allowed to vary within a range assigned by
the experts (Draper et al., 1999).
Another interesting result of the same work,

obtained taking Y�s� directly as the output of inter-
est, is the following: if the first-order sensitivity
index is computed for the factor “trigger” that drives
the selection of the scenario, one obtains a quite low
sensitivity (Figure 6), whereas the total sensitivity
index for the same factor is very large. This tells us
that, unless at some stage we are able to drop this
trigger by fixing the scenario (e.g., by better field
data), this trigger factor will tend to increase the
overall variance because of its cooperative effect
with other factors.

Environmental indicators case. In this exam-
ple the model is an indicator, that is, an aggregation
of data and expert opinion that is used in deci-
sion making. Tarantola, Jesinghaus and Puolamaa
(2000), carried out this test case based on data for
Austria in the year 1994. Atmospheric emissions
(e.g., Kilograms of CO2 emitted per year), emission
factors (e.g., Kilograms of CO2 emitted per ton of
waste incinerated) and production rates (e.g., Kilo-
grams of municipal waste incinerated) are available
in the CORINAIR database, maintained by the
European Environment Agency (EEA, 1996), for
several pollutants at different spatial resolutions.
Sources of uncertainty in input data include

roughly estimated emission factors and produc-
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Fig. 6. Level E/G test case: sensitivity analysis for the trigger
factor. The Si and the STi for the factor responsible for “sce-
nario uncertainty,” estimated using the extended FAST, are shown
across time (years).

tion rates, together with the choice of aggregation
levels for data (see caption in Figure 2). Data in
CORINAIR are often provided with quality labels
representing the confidence levels at which data
are known (i.e., label A is attached to “best quality”
data, while E is given to “worst quality” data).
For the two policy options considered for the

disposal of the Austrian solid waste (incineration
and landfill), production rates and emission factors
are combined to evaluate atmospheric pollutant
emissions.
Such emissions are then aggregated to a set of

pressure indicators using two different approaches,
one suggested by the Finnish statistical office and
the second by EUROSTAT. The set of Finnish indi-
cators (Puolamaa, Kaplas and Reinikainen, 1996)
includes those for greenhouse and acidification.
The greenhouse indicator, for instance, is obtained
through a weighted sum of the effects of carbon
dioxide, methane and nitrous oxide emissions (i.e.,
N2O and NOX). Global warming potentials are used
as weights (Houghton et al., 1996). Alternatively,
the set of EUROSTAT indicators (EUROSTAT,
1999) is used. This includes air pollution, climate
change and ozone layer depletion. Climate change,
for instance, is obtained by adding up emissions of
CO2, CH4, N2O and NOX. Each term in the sum is
weighted by weights obtained from surveys among
natural scientists. The two indicator systems can be
selected at runtime according to the value sampled
for the trigger factor [E/F]. This factor is responsible
for the uncertainty in the selection of the indica-
tor set and is related to the variability due to the
preference of the expert (in reality a given expert
would either select the Finnish or the EUROSTAT
system).
The pressure indicators are finally aggregated

(as weighted sums) to form environmental pres-
sure indices (PI’s), one for incineration and one for
landfill. The PI for a course of action is intended to
quantify the total hazard to the environment of that
action. The model output Y is defined as the loga-
rithm of the ratio between the PI for incineration
and the PI for landfill.
The weights used in the aggregation of the indica-

tors (e.g., the weights needed to add up greenhouse
with acidification, air pollution with climate change
etc.) are called inter weights. They quantify the
perceived relative importance of the problem cov-
ered by the indicators (e.g., whether acidification
is more or less important than greenhouse effect
and so on). The interweights can be formulated
in two ways. In the first, the interweight for a
given indicator is defined as the target reduction
that we want to achieve for that indicator within a
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defined time frame (Adriaanse, 1993). In the sec-
ond, the interweights are obtained as the result
of a procedure, called analytic hierarchy process
(AHP), which relies on the rankings provided by
stakeholders from various domains (environmen-
talists, politicians, public etc.) upon the problems
covered by the indicators (Puolamaa, Kaplas and
Reinikainen, 1996).
The model contains 196 uncertain factors, which

have been partitioned into 7 groups (see the cap-
tion for Figure 2). The total sensitivity indices have
been estimated for each group using the extended
FAST technique. In all, 7,182 model evaluations
are performed. The bimodal histogram displayed in
Figure 1 represents the outcome of the uncertainty
analysis: the left-hand region, where incineration
is preferred, encompasses approximately 40% of
the total area. The pie chart in Figure 2 shows
the total sensitivity indices as obtained by the
extended FAST (even here we use the normalized
S∗
Ti = STi/

�
i STi for ease of presentation): these

results confirm that the choice of the set of indica-
tors has an overwhelming influence and reveal that
the scientific community must work to find a con-
sensus on the proper system of indicators. Figures 1
and 2 together tell us that at present there is no
scientific basis to prefer incineration versus land-
fill. Here sensitivity analysis does not help to decide
whether one should use the Finnish or the EURO-
STAT indicators, but rather tells us about the
relative importance of the various types of uncer-
tainty. Other case studies of the same model are in
Tarantola, Jesinghaus and Puolamma (2000).

The KIM model. The aim of this example is
to show how sensitivity analysis can be used for
model-building purposes. Also illustrated in this
example is a two-stage approach that can be used
for many-factor models. Uncertainty and sensitivity
analyses played a central role in the construction
of the KIM model, a kinetic model for OH-initiated
oxidation of dimethyl sulphide (DMS; CH3SCH3)
that is relevant to climate change studies (Charlson
et al., 1992). KIM is a zero-dimensional model that
incorporates a description of the reaction pathways
for the formation of sulphur-containing molecules,
such as sulphur dioxide (SO2) and methane sul-
phonic acid (MSA, CH3SO3H) from DMS (Figure 3).
The KIM model is relevant to climate change
studies, because of the important contribution of
DMS emissions to the formation of climatically
active atmospheric aerosols and, in particular,
the hypothesised feedback mechanism linking the
biogenic sulphur cycle to the greenhouse effect
(Charlson et al., 1992). In brief, the accumulation

of greenhouse gases such as CO2 would increase
sea temperature, thereby increasing the fluxes of
DMS to the atmosphere; DMS, being a precursor
of aerosols, would lead to increased cloudiness (and
cloud brightness) that would shield solar radiation.
This would ultimately lower earth’s temperature,
counteracting the greenhouse effect.
As discussed in Section 1, the building of the KIM

model proceeded by running the model in a Monte
Carlo framework. Global sensitivity analysis was
used systematically by the chemists to verify their
understanding of the model.
Figure 7 relates to a version of KIM that includes

multiphase (droplets–air) transport and chemistry
and dry deposition for SO2 (Campolongo et al.,
1999). Of interest in the study are α, the concen-
tration ratio in marine aerosol between MSA and
non-sea-salt sulphates (α = MSA/�SO2 + H2SO4�),
and its temperature dependency. The predicted
values of α are compared with field observations
of MSA–to–non-sea-salt-sulphate ratios (Bates,
Calhoun and Quinn, 1992). The sensitivity anal-
ysis procedure, tested on a recent version of KIM
that includes 68 uncertain factors, underlines the
importance of the kinetic coefficients k1, involved
in the reaction between OH and DMS, and k21,
which controls the gas phase yield of DMSO2 from
the oxidation of DMSO. The strong dependence of α
upon k21, as highlighted by the analysis, has forced
the chemists to consider the need for further exper-
imental determination of k21. It is unlikely that a
similar conclusion could have been reached safely
using a one-factor-at-a-time approach.
Because of the large number of factors to be sam-

pled, in a subsequent work (Campolongo, Taran-
tola and Saltelli, 1999) a two-step procedure was
implemented:

• A preliminary screening exercise was first
conducted using the method of Morris (1991) to
identify the subset of the potentially most explana-
tory parameters. The method is cheaper than the
FAST and Sobol’ approaches. However, it provides
qualitative sensitivity measures. The method of
Morris can be suggested when the computational
cost of a quantitative analysis is not affordable,
due to a large and complex model (as is true in
this case).
• A quantitative method (the extended FAST)

was consequently applied to the subset of pre-
selected inputs. Results of this analysis confirmed
the large importance of the kinetic coefficients k1
and k21, the former of which was found responsible
for about 90% of the total output variance.
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k21 value taken from Ray et al., (1996)
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Fig. 7. KIM, latitude dependence of the α ratio: experimental data and two different model predictions are compared across latitude.

An example of calibration. This example
illustrates the use of SA for the calibration of
an experimental setup. The term calibration is
used here by analogy with the physical experi-
ment world, where an instrument is calibrated
against a known standard. In Tarantola, Pastorelli,
Beghi and Bottani (2000), SA is employed with the
objective of investigating the performance of an
estimation procedure for the determination of a set
of physical parameters from a set of experimental
measurements and computer simulations before the
measurements themselves are made. Specifically,
the objective here is to indicate if the parameters
of interest have a chance of being properly esti-
mated, thus saving extensive laboratory time and
costs.
This example is of interest in the semiconduc-

tors industry: a computational model (Hardouin
Duparc, Sanz Velasco and Velasco, 1984) simu-
lates the underlying physical process. The physical
system consists of a thin homogeneous film of uni-
form thickness (e.g., amorphous carbon), which
is deposited on a substrate (typically silicon, Si)
whose properties are fully known. The answer being
sought is how accurately the film’s elastic proper-
ties (i.e., Young’s modulus E and the Poisson ratio
ν) will be estimated in the presence of simultaneous

uncertainty in the design parameters of the film
(i.e., its mass density ρ and its thickness t).
In the usual estimation procedure, the elastic

properties E and ν are determined via a standard
least-squares procedure

LS�E� ν� = ∑
i

[
vic�E� ν� − viexp

σiexp

]2
�(20)

where the viexp are the experimental acoustic wave
velocities observed at a set of incidence angles i
onto the film, vic�E� ν� are the model predictions cal-
culated for a mesh over the plane of points �E� ν�
and the σiexp are related to the measurement errors
at a given angle. The solution is identified as the
point �Ê� ν̂� that corresponds to the minimum of
the function LS �·� ·�. The calibration does not usu-
ally account for uncertainties in ρ and t; that is,
the minimum of LS �·� ·� is sought over all values
�E� ν� in the plane. In the present example we try
to overcome this limitation.
In our calibration study, the four factors �E� ν,
ρ� t� are all allowed to vary. The target function of
our analysis is

LSj�E� ν� ρ� t�
= ∑
i

[
vic�E� ν� ρ� t� − vicj�Ej� νj� ρj� tj�

]2



(21)
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In (21), we have dropped the σiexp, assuming that
the measurement error is independent of the angle,
that is, that σiexp does not depend on i. Further,
assuming that no measurements have been taken
yet, we have replaced the experimental velocity
viexp with one of the model output value vicj, calcu-
lated for some given point �Ej� νj� ρj� tj�. Clearly
the target functions LSj now depend on the point j
selected in the space of the four factors �E� ν� ρ� t�.
To compute sensitivity indices for LSj we now need
to explore systematically the space of the four fac-
tors �E� ν� ρ� t�. We do this using the method of
Sobol’. A base sample, of size 512, is used for esti-
mating the indices for each of the four factors. Two
indices are computed for each factor, the first-order
index and the total index. Hence the total cost of
the analysis is �2× 4+ 2� × 512 = 5�120 model exe-
cutions. At this point, using the same sample of
5,120 model executions, we can compute as many
sensitivity indices as we like for LSj, simply by
selecting different points vicj�Ej� νj� ρj� tj� in (21)
and using the sample to estimate the sensitivity
coefficients. The computational cost of the sensitiv-
ity analysis depends essentially on the computer
time needed to perform the 5,120 runs of the model
that provide the values (at different angles i) of
vic�E� ν� ρ� t� for different values of �E� ν� ρ� t�, while
the effort needed to estimate the sensitivity indices
given the set of model outputs is negligible.
We have actually performed 128 sensitivity anal-

yses by selecting the sample points �Ej� νj� ρj� tj�,
j = 1� 
 
 
 �128, to uniformly cover the domain of
the input factors. The 128 points in the space of
�E� ν� ρ� t� are simply a subset of the 5,120 already
explored. The average values of the first order and
the total effective indices, respectively 	S�i� and
	ST�i�, over the 128 estimates, are given in Table 3
for one of the films analysed.
The 	ST�i� for E is always very high, indicat-

ing that in all three cases estimation will only be
guaranteed for E, whereas ν will remain com-
pletely undetermined. Thus, we know in advance of
the calibration that subsequent experimental mea-
surements will be capable of estimating E but not ν.
The small values of σST [i.e., the standard devia-

tion of the 128 estimates of ST�i� for parameter E
indicate that the sensitivity estimates are robust
to (poorly influenced by) the choice of the points
�Ej� νj� ρj� tj�.

3.1 On the Generation of the Input

We end this section on the worked examples by
discussing the generation of the input probabil-
ity density function for the input factors. Usually
sensitivity starts from pdf’s given by the experts

(see the level E example). The analyst moves on
from the assigned pdf ’s and attempts to char-
acterize how Y depends upon X. In the case of
the KIM model, chemists postulate values of the
kinetic coefficients that are physically reasonable,
often by analogy with similar compounds, and use
uncertainty and sensitivity analysis to study their
plausibility (Saltelli and Hjorth, 1995). In the cali-
bration example, the film producer provides ρ and
t, along with their related uncertainties. Distribu-
tions for the input factors could also derive from
available data, physical bounding considerations or,
finally, results (in the form of posterior pdf ’s) from
previous procedures. An application to time series
analysis is given in Planas and Depoutot (2000).
See also an application to graphical methods (scat-
terplots of residuals) to the same problem setting
in Young (1999).

4. DISCUSSION

The purpose of this section is to see if some gen-
eral conclusions on the use of global quantitative
sensitivity analysis can be inferred from the exam-
ples presented so far.
Sensitivity analysis can be an important ele-

ment of the model building process. It allows the
impact of different factors on Y to be analyzed. It
helps to elucidate the impact of different model
structures (Environmental indicators test case),
mechanisms (KIM) or scenarios (Level E/G) on the
models’ responses.
The example of the environmental indicators

shows that SA is particularly useful in treating
structural uncertainty and providing guidance for
the identification of the weak links of a scientific
assessment chain.
The KIM model shows that in the presence of

uncertain evidence and poorly understood mech-
anisms, global SA can provide assistance in the
model-building process. One does not explore a
multidimensional space moving a step at a time;
global SA provides effective ways for such an
exploration.
Sensitivity analysis can also be used to ascertain

which subset of input factors (if any) accounts for
most of the output variance (and in what percent-
age). Those factors with a small percentage can be
frozen to any value within their range. This con-
tributes to model simplification and was indeed the
original motivation of the work of Sobol’ (1990). For
instance, in the Bateman model, all the factors but
C01 and λ4 could be fixed at t = 107 s, as shown by
the sensitivity pattern of Figure 5. What we mean
here is that assigning particular values to factors
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other than C01 and λ4 does not add useful infor-
mation to the effect of determining the output (see
below).
Global SA can be used for mechanism reduction

(dropping or fixing nonrelevant parts of the model,
as was done routinely in the process of building
the KIM model) and for model lumping (build-
ing or extracting a model from a more complex
one). This has some epistemological implications,
as touches upon the “relevance” of a model. It has
been argued that often the complexity of models
largely exceeds the requirements for which they are
used. Especially if one adopts the viewpoint that
models are heuristic constructs, built for a task
(see, e.g., Oreskes, Shrader-Frechette and Belitz,
1994), then they should not be more complex than
they need to be. For example, a complex submodel
for the engineered barriers in the level E test case
would not be justified. A model is “relevant” when
its input factors actually cause variation in the
model response. A discussion of the concept of rel-
evance can be found in Beck, Ravetz, Mulkey and
Barnwel (1997).
Global SA can be of use as a quality assurance

tool, to make sure that the assumed dependence
of the output on the input factors in the model
makes physical sense and can be reconciled with
the analyst’s understanding of the system. We have
not shown any example of this type of application,
because modeling and coding errors that are iden-
tified via SA are usually corrected at once. Yet, in
our experience, it never happens that a sensitiv-
ity analysis is run on a virgin model without some
inadequacy of the model being identified.
Another application that was not illustrated here

is to aggregation analysis, whereby one treats as
an uncertain factor some internal or computational
characteristic of a computer program (e.g., number
of nodes, of elements, of layers etc.; an example is
in Helton, Iman, Johnson and Leigh, 1989). In this
case SA helps to tune the degree of detail of the
model to the task at hand.
Global quantitative SA could be used prior to and

within model identification and parameter estima-
tion (see the example on calibration). In particular,
before a given data acquisition activity that entails
laboratory experiments or field data is undertaken,
the candidate models put forward to describe the
system should undergo quantitative SA. The con-
venience of this approach is in the low cost of the
computational experiments compared to the phys-
ical ones. The same kind of analysis can serve to
ascertain if it is possible to discriminate among com-
peting models.

We have mentioned in Section 2 that local, one at-
a-time sensitivity analysis (in forms such as equa-
tions (14)–(16)) is today the most commonly used
brand of sensitivity analysis. Yet this approach is
not appropriate when the problem is to identify the
relative influence of different factors on the output
in the presence of finite variation in the factors.
Modelers are usually faced with inputs at differ-

ent levels of uncertainty, often so severe as to cover
orders of magnitude. In these instances global tests
are needed that cover the entire space of existence
of the input factors and all the factors must be var-
ied simultaneously.
In the present article we have never explicitly

computed derivative-based sensitivity measures; it
would have been foolish to do so for the Legendre
polynomial (strong interaction present), and nonin-
formative for the level E case (nonlinear, as shown
by the model coefficient of determination R2

y). We
could in theory have used derivative-based sensi-
tivity measures for the Bateman test cases within
those time regions where R2

y ≥ 0
8. However, we
would trust more a plain standard regression coeffi-
cient, which intrinsically includes the normalization
of the factors’s uncertainty ranges. The technique
to choose in any given study should work regard-
less of the degree of linearity and monotonicity of
the model, unless the analyst chooses to proceed by
increasing the complexity of the analysis one step at
a time. For instance, one could start using the sim-
plest test ∂Y/∂Xj, but this would perform well only
if the model is linear. A drawback of this approach is
that, to find out if this is the case, the analyst needs
to use the more expensive linear regression anal-
ysis. If the linear regression analysis were to per-
form poorly (low R2

y), then the analyst would have
to decide on whether to attempt a nonlinear regres-
sion or use the variance-based measures described
in this paper. If the model turns out to be additive,
the first-order sensitivity coefficients can be used.
Even in this case, however, the additivity or other-
wise of the model becomes known a posteriori, that
is, after the first-order indices have been computed.
It is clear that computing from the start the full set
of first-order plus total sensitivity indices would pro-
vide complete information while saving an analyst’s
time.
The full potential of sensitivity analysis, espe-

cially of the new quantitative measures discussed
in this work, is still to be discovered by most mod-
elers. Worse, the same can be said for regression-
based methods that are by no mean new, or for the
classic “design of experiments” when it is applied to
numerical experiments.
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In other words, modelers tend to lag behind exper-
imentalists when it comes to planning an efficient
and informative design. This might be due in part
to an overconfident attitude on the part of the ana-
lysts. In experimental physics, overconfidence in the
treatment of measurement error, and underestima-
tion of uncertainty, has been discussed among oth-
ers by Henrion and Fischhoff (1986). This overconfi-
dence might be at play also in computational exper-
iments, with the aggravating circumstance that in
these latter experiments more factors are at play
and their variation is larger.
A possible cause of difficulty for SA is when the

model consists of a large set (k) of input factors
and, simultaneously, has many output variables
(e.g., m). In such a case, a complete analysis would
require the estimation of the sensitivity of each out-
put to every input, thus returningm×k indices. We
believe that the analysis can be made more effec-
tive by focussing not on the model output per se
but on the problem that such output is supposed to
solve. To this end, “model use” should be declared
before uncertainty and sensitivity analyses are per-
formed. For example, we have not analyzed the
full set of outputs of the environmental indicators
test case, but only the “top statement” (landfill
or incineration) that was the object of the analy-
sis. This approach has the merit of increasing the
transparency of the analysis.
The authors reviewed in Oreskes, Shrader-

Frechette and Belitz (1994) argue that models are
heuristic constructs, built for a task, rather than
either true or false representations of the world,
and that model evidence does not have the same
role as mathematical proof. Instead, a model can
provide generic evidence to defend or disprove a
thesis. In this context, sensitivity analysis can
be seen to be an important element of evidence
building.
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