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Recent Applications of Point Process
Methods in Forestry Statistics
Dietrich Stoyan and Antti Penttinen

Abstract. Forestry statistics is an important field of applied statistics
with a long tradition. Many forestry problems can be solved by means of
point processes or marked point processes. There, the “points” are tree
locations and the “marks” are tree characteristics such as diameter at
breast height or degree of damage by environmental factors. Point pro-
cess characteristics are valuable tools for exploratory data analysis in
forestry, for describing the variability of forest stands and for under-
standing and quantifying ecological relationships. Models of point pro-
cesses are also an important basis of modern single-tree modeling, that
gives simulation tools for the investigation of forest structures and for
the prediction of results of forestry operations such as plantation and
thinning.
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1. INTRODUCTION

A lot of time and money has been, and will be,
spent on forest statistics. The original purpose was
estimation of wood volume and other similar eco-
nomically important characteristics for a (large) for-
est area. Later the reliability of inventories or, in
statistical terms, the precision of the estimators,
was studied. Modern technology, including remote
sensing, digital aerial photographs and spectrome-
ter imaging, is used nowadays to develop invento-
ries, posing new statistical problems. Furthermore,
today wood production is only one part of forestry;
both government, industry and forest owners are
interested in multiuse of forests. Therefore the ob-
jective of modern forestry includes a multitask prob-
lem field, for which forest ecology, landscape ecology
and related statistical methods become increasingly
important.
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Forestry uses numerous methods for statistical
analysis; see, for example, Avery and Burkhart
(1983) and Schreuder, Gregoire and Wood (1993). A
considerable part of them belong to spatial statistics
that includes point process statistics as a particu-
larly interesting area. There exist many successful
applications of point process statistics in forestry
that may serve as a pattern for other sciences.
As the name “point process” indicates, the origin

of the theory was the study of random point se-
quences on the time axis. Such processes still play
an important role, for example, in models of queue-
ing or telecommunication. But today spatial point
processes seem to be the dominating field, and some-
times methods of spatial point process statistics are
even converted back to the temporal case; see Can-
non and Cressie (1997). Important fields of appli-
cation of spatial point processes are astronomy, ge-
ology, archaeology and materials science. But still
none of these fields uses point process methods so
intensively, and has stimulated the theory so much,
as has forestry.
Typically point process analysis and modeling in

forestry comes down to such details as locations of
single trees and tree characteristics such as diame-
ter at breast height (dbh), tree height, stem incre-
ment during a given time span, species code or de-
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gree of damage by environmental factors. It is quite
natural to apply here planar (marked) point process
methods: the tree locations are “points” in the plane,
while the characteristics are “marks.”
Data sets in this context take the form ��xi� yi�

mi��� giving the locations xi = �xi� yi� and the
marks mi of all relevant trees in a window W
of observation, which is typically a forest stand
in a rectangle, polygon or circle. However, it is
still laborious to obtain such data sets by classical
measurement methods. New technological develop-
ments are changing the situation drastically. For
example, distance measurements can be done us-
ing laser techniques and the satellite-based global
positioning system (GPS). Already in the 1980s,
point process data sets were determined manually
from aerial photographs for small forest stands. At
the moment, the resolution in digital aerial imag-
ing in use reaches the level of 0.5 m to 1.5 m. Thus
individual trees can be observed through image
analysis with reasonable precision, with the excep-
tion of trees that are very close together or of small
trees growing within the canopy of bigger trees. A
compromise are indirect observations, such as aerial
images combined with ground-based measurement.
Even in this context, point process models may
be helpful; see, for example, Dralle and Rudemo
(1996). Marked point processes will thus become
important components of what is called “multi-
source” forest inventory (e.g., Schreuder, Gregoire
and Wood, 1993) in modeling small-scale variation
and restoration of indirect observations.
Several other spatial statistical methods are used

in forestry. One example is an investigation in which
a grid of observation points is placed in a forest, and
for each grid point some close trees are measured.
Geostatistical methods can be applied for analyzing
such data.
Many of the methods described in this paper can

be applied in statistical analyses of other ecosys-
tems, in particular plant communities. Linking of
forest structure and species occurrence in a vari-
ety of spatial and temporal scales is an objective
in landscape ecology (see, e.g., Turner and Gardner,
1991). There (marked) point processes play a central
role in small-scale modeling and, through smooth-
ing or averaging transformations, also in large scale
modeling. One of the advantages of point process
models and their transformations is consistency on
different scales.
Two of the first papers using ideas from forestry-

oriented point process statistics are the book by
König (1835) and the article by Svedberg (1922).
While König tried to estimate tree density by a dis-
tance method, Svedberg used a Poisson process for

explaining spatial patterns of plant communities.
The work of Matérn (1960) marks the beginning
of modern point process statistics in forestry. For
forestry purposes, he developed two hard-core
process models and a cluster process model and
gave expressions for the corresponding second or-
der characteristics. A now classical survey paper
on point process methods in forestry statistics is
Warren (1972). Since then many new ideas have ap-
peared and today there is a vast literature, where
the books by Diggle (1983) and Cressie (1993) have
been very influential. The following modern ideas
may be seen as particularly important:

1. The use of functions of the character of density
functions that describe variability and interac-
tion in a given forest on various scales, replac-
ing earlier numerical indices or cumulative func-
tions.

2. The construction of single-tree models of whole
forests, which enable computer simulation of for-
est development over long periods with consider-
ation of the ecological situation of every individ-
ual tree.

3. The construction of advanced stochastic models
for marked point patterns.

This paper reviews, for a broad readership, ideas
and problems that arise in the application of point
process statistics in forestry. After some remarks on
ecological problems, the classical problem of mea-
surement of tree density is discussed. Then the
description of forest stand variability by indices
and correlation functions and some problems of eco-
logical modeling are described. Single-tree models
are briefly explained, and the most attractive point
process models for forestry today, Cox and Gibbs
processes, are discussed.

2. SPATIAL PATTERNS AND ECOLOGICAL
PROCESSES

A forest stand is the result of former land use,
complex ecological processes and practical forestry.
The corresponding spatial marked point pattern is
an important source of information on the plant
population. Although the underlying biological pro-
cesses cannot be deduced directly from observed pat-
terns, they themselves and their changes are highly
indicative of certain processes; according to Tilman
(1988), a central goal of ecology is to understand
the causes of the patterns observed in the natu-
ral world. This task is very complicated when only
a snapshot analysis based on one pattern is pos-
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sible; repeated observations yield, of course, more
information. It is possible that similar patterns re-
sult from different ecological processes. In particu-
lar, a completely random pattern, that is, a point
distribution as in (or similar to) a Poisson process,
may appear in the beginning of an ecological evo-
lution (for example, in the case of natural regener-
ation of beeches or birches), but it may also be a
result of multiphase ecological processes. Thus its
appearance does not necessarily mean that there
was (or is) no interaction or that the pattern is a
result of the action of many small factors (Odum,
1971, page 215). These problems are described in
the paper by Lepš (1990). The application of point
process statistics may help to study the patterns,
to pose statistical and ecological hypotheses and to
investigate their agreement with empirical data.
Natural patterns of trees often show clumping

or clustering in their starting phase, caused by
environmental heterogeneity, seed dispersion and
competition with other species; they are sometimes
called environmental, morphological and sociologi-
cal causes. Young populations show large variations
both in space and time due to irregular seeding,
high mortality, lack of competition and possible
changes in the local environmental conditions.
A typical study of such a population is Salonen,
Penttinen and Särkkä (1992), who consider plant
colonization of a bare peat surface over five years.
During the evolution of a forest there typically

exists a tendency towards regularity. This can be
mainly explained by competition among neighbor-
ing trees and by dependence of mortality on local
population density. Also, environmental variables
such as ground cover vegetation, light conditions,
microclimate, soil characteristics, profile and ecolog-
ical history of the forest area play an important role.
In a forest, both forms of variability, clustering

and regularity, may coexist on various scales. For
example, trees may be regularly distributed on a
small scale (for older trees due to competition among
neighbors and for young trees due to planting in
rows), but be clustered on a larger scale (due to eco-
logical heterogeneity).
Of course, the forester’s work is decisive for for-

est development; even his personality has an influ-
ence; see Füldner, Sattler, Zucchini and von Gadow
(1996). The forester’s influence often begins with
planting, but he later becomes a competition man-
ager, first by weeding out competing shrubs and
thinning of young trees and then by removing cer-
tain trees to promote the growth of others. Figures 1
and 2 show two typical tree patterns. For the nat-
ural stand of young pines in Finland (Figure 1) the
clustering is obvious; in contrast, in the old spruces

Fig. 1. 126 young pines in a 10m×10m square plot in a Finnish
forest. The trees are shown as circles, the diameters of which are
proportional to the tree heights. This pattern is highly clustered;
some trees are very close together.

Fig. 2. 134 spruces of age 60 years in a 56 m × 38 m stand
of Tharandter Wald (Germany). The trees are shown as circles,
where the diameters are proportional to the bhd’s.

stand (Figure 2) there is some form of regularity,
mainly as a result of the forester’s work.

3. FORESTRY SUMMARIES

The simplest summary characteristic of a forest
is intensity λ, defined as the stand density or av-
erage number of trees per unit area. Multiplied by
the area of the stand B, it yields the expected total
number of trees,

E�
�B�� = λν�B��(1)
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Here ν denotes the planar Lebesgue measure yield-
ing the area of B and 
�B� denotes the number of
points in the set B. The character 
 also denotes
the point process, that is, the set of all points or
tree positions. Formula (1) holds if 
 is stationary,
that is, its distribution is translation invariant.
The estimation of the intensity λ is not a trivial

problem in forestry. The application of the standard
estimator,

λ̂ = 
�W�
ν�W� �(2)

is practically difficult: counting the number of trees

�W� in a large sampling window W is laborious.
Therefore, various other stand density estimators
have been developed that are based on sampling
and often on fast measurement methods.
Particularly simple in practice are distance meth-

ods; see Ripley (1981) and Krebs (1989). The idea
here is to measure distances, “tree–nearest neigh-
boring tree” or “test point–nearest tree” distances,
and to transform them into intensity estimators.
The method goes back to König (1835) who sug-
gested the estimator

λ̂K = 1

δ2
�

where δ2 is the empirical second moment of “tree–
neighboring tree” distances. His formula is precise
in the case of a square lattice, while he remains
aware of the randomness of forests. The estimator
is sensitive to the underlying process. For example,
in the case of a Poisson process it is natural to put

λ̂P = 1

4δ
2 �

using the formula for the mean nearest neighbor
distance δ of the homogeneous Poisson process.
Many alternative estimators for λ have been pro-
posed (cf. Ripley 1981, page 134), but none is
particularly robust, thus restricting their use for
forestry purposes.
Tree numbers alone do not tell enough about a

forest; it is important to consider measures of tree
quantities such as height, basal area or volume.
This concept can be realized by means of marked
point processes.
Let � = ��xi�mi�� be a marked point process with

scalar marks mi for simplicity. Their distribution
M is called the mark distribution. In the stationary
case, M can be interpreted as the distribution of
the mark of the “typical” point. Statistically it is
obtained as the empirical distribution of the marks
of points in a sampling window W.

Many useful forest summaries are of the general
form ∑

�x�m�∈�
f�x�m�

for any nonnegative measurable function f. A par-
ticular case is f�x�m� = 1B�x�m, where 1B denotes
the indicator function of the set B. Then the sum is
equal to the sum S�B� of the marks of all points in
B, for example, the total wood volume in a stand.
For a stationary marked point process �, the fol-

lowing formula, often called the Campbell theorem
(see Stoyan, Kendall and Mecke, 1995, page 106)
holds:

E

( ∑
�x�m�∈�

f�x�m�
)
= λ

∫ ∫
f�x�m�M�dm�dx�(3)

where the integration is over �2 and the set of
all possible marks. In particular, (3) yields for
the f�x�m� above and a stationary marked point
process,

E�S�B�� = λν�B�µ�
where µ is the mean mark.
A forestry-originated method is Bitterlich sam-

pling (Bitterlich, 1948, 1952) or angle count sam-
pling. It is used in practical forestry as a rapid tool
for measuring the proportional mean basal area a,
which is defined as the mean of the sum of all cross-
section areas at breast height of the trees in a given
stand B divided by the area ν�B� of the stand,

a = π
4
E

( ∑
�x�β�∈�

β21B�x�
)/

ν�B��(4)

here, β denotes the random dbh (=diameter at
breast height) mark. The Campbell theorem (3)
yields

a = π
4
λE�β2��(5)

independently of B. The mean basal area is closely
related to the mean volume of trees, a central objec-
tive in forest inventories.
In the angle count method, sampling points � are

chosen either randomly or following some sampling
design. For each �, the trees that can be seen in
an angle larger than a fixed size 2α are counted;
see Figure 3. Their number is multiplied by sin2 α�
yielding the estimator â��� of a given as

â��� = ∑
�x�β�∈�

b���x� β�

with

b���x� β� = sin2 α1��x−��<β/2 sinα��x� β��
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Fig. 3. Schematic explanation of Bitterlich sampling. The ob-
server’s position is in �. All hatched trees are counted, that is, all
trees seen under an angle larger than 2α �α fixed�.

Again (3) gives

E�â���� = a�
that is, Bitterlich’s estimator is unbiased.
It is of practical importance that when estimat-

ing the mean basal area, the measurement can be
carried out using a simple piece of equipment called
Relaskop and the investigator does not need to mea-
sure the dbh’s. By the way, here the probability that
a randomly selected sample point picks a given tree
is related to its basal area, and Bitterlich’s estima-
tor can be shown to be a Horvitz–Thompson-type
estimator; see, for example, Overton and Stehman
(1995). Bitterlich sampling can also be used in the
estimation of other tree quantities such as mean
height.
Incidentally, Bitterlich sampling can be consid-

ered as sampling from a random field; see Penttinen
(1988). Define the random variable

Y��� = sin2 α
∑

�x�β�∈�
1��x−��<β/2 sinα��x� β��(6)

where � is any sampling point of �2. Then �Y���� � ∈
�2� is a random field with mean a. This approach
opens a way for application of geostatistical methods
to forestry.

4. DESCRIPTION OF VARIABILITY

4.1 Classical Variability Indices

In the 1950s and 1960s, some numerical indices
were created with the aim of describing aspects of
variability in a forest by a single number; see Ripley
(1981). Usually these indices were based on pairs:
“tree–neighboring tree.” The first index of this type
is the aggregation index of Clark and Evans (1954),

which is defined as

R = δ

E�D� �(7)

Here δ is the empirical mean of the distances from
the trees to their nearest neighbors, while E�D� is
the mean nearest neighbor distance in a Poisson
forest of the same intensity λ as the forest under
analysis. Values of R greater than 1 indicate that
the pattern has a tendency to regularity, while R <
1 points to clustering. The index R has been used to
quantify and prove statistically the intuitively clear
statement that in a forest one often finds increasing
regularity (and thus increasing R) with age.
A further index is the coefficient of segregation S

of Pielou (1977). It describes the degree of mixing of
trees of two species A and B in a forest, and, like R,
it is based on nearest neighbor distances. Let N be
the number of all trees, let m and n be the numbers
of base trees of species A and B, respectively, and
let r and s be the numbers of times trees of species
A and B have served as nearest neighbors (NN) of
other trees, respectively. These numbers are set out
in an obvious form in a 2× 2 table as follows:

Species of NN

A B

Species of A a b m
base plant B c d n

r s N

The coefficient of segregation is then defined by

S = 1− N�b+ c�
ms+ nr �(8)

If the nearest neighbors are always of the same
species as the base tree, then S = 1; if all neighbors
are of different species then S = −1� In the case
of complete randomness of species distribution, one
can expect values of S around 0.
A disadvantage of both indices is that they are

“short-sighted,” because they only consider nearest
neighbors; what is beyond the nearest neighbors is
ignored. However, these indices are still of value
when applied in situ in a forest, when only nearest
neighbor distances are measured, not tree locations.

4.2 Correlation Functions

Modern point process statistics uses functions
instead of indices such as those described in the
preceding section. These functions depend on the
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intertree distance r and thus are in relation to var-
ious ecological scales in the patterns. Probably the
most successful functions in describing tree density
variability are the second order characteristics.
In order to avoid technical difficulties, it is as-

sumed here that the analyzed point process 
 is
stationary and isotropic; that is, its distribution is
invariant with respect to translations and rotations.
In this case all process characteristics of second or-
der can be expressed by means of the intensity λ
and Ripley’s K function (Ripley, 1976, 1977). The
quantity λK�r� is interpreted as the mean number
of points of 
 in a disc of radius r centred at a “typ-
ical” point of 
, which is not counted.
The statistical estimation of K�r� follows that

idea, by giving in turn all the points of a sample of 

the role of the “typical” point. If, as usually happens
in forestry, only the points in a bounded window
W of observation can be studied, edge correction is
necessary to obtain precise estimates. The quantity
λ2K�r� can be estimated by an unbiased estima-
tor of Horvitz–Thompson type (Ohser and Stoyan
1981; Baddeley 1998). It is then divided by an esti-
mate of λ2. By no means is it optimal to use simply
the squared λ of formula (2); instead, more elabo-
rate intensity estimators should be applied that are
adapted toW and r; see Stoyan and Stoyan (1998b).
As it happens, one of the first applications of the

K function was for a forestry example: Ripley (1977)
analysed positions of redwood seedlings and found
that they are more clustered than the points of a
Poisson process. The book by Diggle (1983) is the
reference for statistical analyses of point processes
using the K function; many of the examples consid-
ered there have a forestry or ecology background.
In the case of the homogeneous Poisson process,

the K function satisfies K�r� = πr2. As in this par-
ticular case, the function K�r� for other point pro-
cesses increases as r2. Thus a popular choice is the
L function,

L�r� =
√
K�r�/π for r ≥ 0�(9)

also because the square root transformation stabi-
lizes variances. Figures 4a and 4b show the L func-
tions for the young pines and the spruces, respec-
tively. The curves show the typical behavior for a
cluster process and for a soft core process: values
greater and smaller than r, respectively. Figures 5a
and 5b will show the distributional differences more
clearly.
The L function is a valuable tool for goodness-

of-fit tests in point process statistics. In such tests
the empirical (estimated) L function is compared
to the L function of the model to be tested. If the

Fig. 4. The empirical L function for the young pines of Figure 1a
and for the spruces of Figure 2b. The values of L̂�r� for the pines
are greater than r for r ≤ 3 m, which indicates clustering of the
pattern. For the spruces of Figure 2� L̂�r� vanishes for r < 1 m
because the minimum intertree distance is 1 m. The values of
L̂�r� smaller than r indicate some form of “repulsion” between
the trees, which is in this case mainly a result of forester’s work.
Figure 5 will better represent the information obtained by second
order characteristics.

null hypothesis is a Poisson process, then the L-
test introduced by Ripley can be used; see Ripley
(1988). For testing of other null hypotheses, typi-
cally simulation tests are used; see Diggle (1983);
Ripley (1988) and Stoyan and Stoyan (1994).
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Fig. 5. The empirical pair correlation function for the young
pines of Figure 1a and for the spruces of Figure 2b. For the pines,
the function has the typical form of the pair correlation function
of a cluster process. For the spruces of Figure 2, the function has
the form of the pair correlation function of a point process with a
hard-core distance and soft-core repulsion for larger distances.

There is another function that presents the infor-
mation given by the K or L function in a clearer,
easier way. The situation is similar to that in clas-
sical univariate statistics where the cumulative dis-
tribution function is a good descriptor of a distri-
bution that is particularly useful in goodness-of-fit
tests, but the probability density function (or its em-
pirical counterparts such as kernel estimates, his-

tograms or stem-and-leaf plots) has proved to be
more attractive for exploratory data analysis, be-
cause most people can more easily interpret a prob-
ability density function than a cumulative distri-
bution function. A second order function of nature
similar to that of a density function is the pair cor-
relation function g�r�. It is related to the K func-
tion by

g�r� = d

dr
K�r�

/
�2πr� for r ≥ 0�(10)

An independent heuristic definition is as follows:
consider two infinitesimally small discs of areas dx
and dy at a distance r. Let p�r� denote the proba-
bility that each disc contains a point of the process.
Then

p�r� = λ2g�r�dxdy�

For a completely random point process (i.e., a ho-
mogeneous Poisson process), g�r� ≡ 1. Values of the
pair correlation function g�r� larger than one in-
dicate that interpoint distances around r are rela-
tively more frequent than they would be under a
completely random point process; if this is the case
for small values of r, typically there is clustering.
Conversely, values of g�r� smaller than one indi-
cate that the corresponding intertree distances are
rare, which may indicate inhibition. It is even pos-
sible that g�r� = 0; then the interpoint distance r
has zero probability in the point process. The pair
correlation function can take on any value between
zero and infinity; for large r it tends to 1. It can
be interpreted as a modern counterpart to the ag-
gregation index of Clark and Evans. Section 14.4.2
in Stoyan and Stoyan (1994) discusses in detail the
interpretation of pair correlation functions.
Figure 5 shows the estimated pair correlation

functions for the two forest stands already dis-
cussed. For the Finnish young pines it has the
typical form of the pair correlation function of a
cluster process. If one accepted the hypothesis of
circular clusters, then the pair correlation function
would suggest a mean cluster of about one me-
ter in diameter. However, Møller, Syversveen and
Waagepetersen (1997) have shown that the sim-
ple Matérn cluster process with circular clusters
of diameter one meter, that was used in Stoyan
and Stoyan (1994) for these data, is probably not
a good model; instead, their more flexible Cox pro-
cess model, which will be described in Section 6.2,
seems to give a better fit.
For the spruce data, a very different pair corre-

lation function is obtained. This point pattern has
a hard-core distance of about one meter (this is the
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minimum intertree distance in the stand). There-
fore, the pair correlation function vanishes for r be-
tween zero and one meter. For values greater than
r = 1 m, the pair correlation function is similar to
that of so-called soft core processes. Probably the
waves of the estimate for values of r larger than
eight meters are only statistical fluctuations and
do not give relevant information. Thus the range
of correlation in that stand is about eight to ten
meters, a value which has been often observed for
older stands in the forestry literature; for the young
pines the range may be about two meters. In gen-
eral, for mature Boreal forests there were observed
three partially overlapping scales: “hard-core” dis-
tances of zero to two meters, tree interaction and
correlation with distances between one and ten me-
ters and independence or influence of environmental
factors, with distances over seven meters.
One should note that the pair correlation func-

tion does not directly define the range of mutual
interaction between trees. A measure which does do
this, the pair potential function, is discussed in Sec-
tion 6.3. For example, a point pattern of trees with
a short-range inhibition may show long-term corre-
lation behavior.
The pair correlation function also appears in an

important formula in point process statistics. The
variance of the random number 
�B� of points 
 in
any set B is given by

var�
�B�� = λ2
∫ ∞

0
γB�r�2πrg�r�dr

+ λν�B� − �λν�B��2�
(11)

Here γB�r� denotes the isotropized set covariance
function of B; see, for example, Stoyan and Stoyan
(1994) for a definition. Thus the variance of the in-
tensity estimator λ̂ defined by (2) can be calculated
if g�r� is known.
The second order analysis can be extended to con-

sider also inhomogeneous point patterns through
modifications of the K- and g-functions; see Bad-
deley, Møller and Waagepetersen (1998). In Stoyan,
Kendall and Mecke (1995) and in Stoyan and Stoyan
(1994) the unisotropic stationary case is considered,
that is between motion invariant and inhomoge-
neous.

4.3 Nearest Neighbor Distances

For many statisticians it was (and still is) natural
to consider the nearest neighbor distance distribu-
tion function D instead of the pair correlation func-
tion or the L function; this distribution function is
easier to understand and to measure in situ. It de-
scribes the distribution of the distance from a “typi-
cal” point of a point process to its nearest neighbor;

see the discussion in Stoyan, Kendall and Mecke
(1995), Section 4.4. The estimation of D�r� follows
that idea, by giving in turn all the points of a sam-
ple of 
 the role of the “typical” point and check-
ing whether its nearest neighbor is closer than r.
Here edge correction is recommendable, and again
Horvitz–Thompson estimators are helpful; see Chiu
and Stoyan (1998). Baddeley and Gill (1997) used
Kaplan–Meyer estimators. Figure 6 shows the sta-
tistical estimates of D for the two tree patterns of
Figures 1 and 2. They also show the correspond-
ing probability density functions d�r�, which were
estimated by means of a kernel estimator. The dis-
tributional differences of the two tree patterns are
clearly expressed by D and d.
In exploratory statistics it may be useful to ap-

ply in addition a function that could be called the
nearest neighbor pair hazard rate,

h�r� = d�r�
1−D�r�

/
�2πrλ� for r ≥ 0�(12)

The ratio d�r�/1−D�r� is the hazard rate corre-
sponding to D, the statistical estimation of which is
studied in Baddeley and Gill (1997). Because

d�r�
1−D�r� dr

gives the probability of the appearance of the near-
est neighbor of the typical point x in the annulus
with radii r and r+ dr centered at x, it seems nat-
ural to divide the hazard rate by the length of the
corresponding perimeter 2πr; the division by λ nor-
malizes with respect to the intensity. For a homo-
geneous Poisson point process, h�r� ≡ 1. Figure 6
shows estimated nearest neighbor pair rate func-
tions for the tree patterns of Figures 1 and 2. These
curves show in a particularly clear way the differ-
ences in the short range behavior of the two point
patterns.
An alternative to the nearest neighbor distribu-

tion function is the empty space statistic established
by Cox (1971) for forestry purposes. This statistic
uses information on distances from sampling points
to nearest trees. In the stationary case the sampling
point can be taken as the origin o. Then define

1−Hs�r� = P�
�b�o� r�� = 0� for r ≥ 0�

The probability gives the proportion of those sam-
pling points for which the distance to the nearest
tree is larger than r. The distribution function Hs

gives the distribution of that random variable; see
Diggle (1983) and Ripley �1977�1981�. The char-
acter Hs�r� means “spherical contact distribution
function,” as in Stoyan, Kendall and Mecke (1995)
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Fig. 6. The empirical nearest neighbor distribution function
D̂�r� (- - - - -) and the corresponding estimates of the density
function d̂�r� (– – –) and the nearest neighbor pair hazard rate
ĥ�r� ( ). For the pines of Figure 1a, all three functions have
forms which are typical for cluster processes. For the spruces of
Figure 2b these functions have a form which supports the idea
that a soft-core process with an 1 m hard-core is a good model.

and originates in mathematical morphology as the
“law of first contact;” see Serra (1982), page 488.
An extensive forestry application of the spheri-

cal contact distribution function can be found in
Pohtila (1980), where the author analyzes tree pat-
terns of different regeneration history: naturally
generated, cultivated with different methods of es-
tablishment (burning-over together with planting,

ploughing with planting) and mixed (cultivated
with plants of natural origin).
A compromise between the D and Hs statistics is

the quotient

J�r� = 1−D�r�
1−Hs�r�

introduced by Van Lieshout and Baddeley (1996),
which turned out to be a valuable statistic for de-
termining the range of interaction in point patterns.
Many statisticians today believe that second or-

der characteristics such as the K function, or the
pair correlation function g, give more interesting in-
formation on the tree distribution variability than
D and Hs. The reason is that D and Hs are short-
sighted, as they use only the relatively short nearest
neighbor distances, whereas K, L and g operate in
a variety of scales. However, if the parameters of a
point process were estimated by means of second or-
der characteristics, then it is probably better to test
the goodness-of-fit by means of a test in which the
functions D or Hs are used and not by a test based
again on a second order characteristic.

4.4 Mark Correlation Functions

Not only the number of trees in a stand is of in-
terest; their diameters (dbh), basal areas and other
marks, are also important.
In many analyses, the marks are considered to be

random but independent. The mathematical model
is then an “independently marked point process.”
This model is sometimes realistic. For example, sta-
tistical analyses suggest the assumption that the
heights of the pines in Figure 1 and the dbh’s of
the spruces in Figure 2 are independent; the inde-
pendence of the spruces in Figure 2 is a result of
forester’s work, which eliminated suppressed trees.
Correlations of the marks in a stationary marked

point process can be described by mark correlation
functions. Like the pair correlation function, these
functions depend on the interpoint distance r. They
are conditional mean values, and the condition is
that there is an underlying point process point both
in o and r, where r is any fixed point at a distance
r from origin o. Let m�o� and m�r� be the corre-
sponding marks. Their relationship is quantified by
f�m�o��m�r��, where f is a suitable “test” function.
Important examples are

f1�m1�m2� =m1m2

and

f2�m1�m2� = 1
2�m1 −m2�2�

The mean value in the case of f1, κf1�r�, is often
normalized by division by the squared mean mark
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µ2, which then yields the mark correlation function
kmm�r�; see Stoyan and Stoyan (1994). Other ways
of describing mark correlation exist; see Schlather
(1999). In the case of independent marks, kmm�r� =
1 for all r. Otherwise, the mark correlation function
describes a certain type of correlation of the marks.
If the marks are dbh’s, then frequently the following
behavior is observed. First, kmm�r� takes on values
smaller than one for small r; it then increases and
fluctuates around one for large r. This behavior may
indicate that the price that trees have to pay for be-
ing close together is that their diameters tend to be
smaller than the mean µ in the whole forest. Pent-
tinen, Stoyan and Henttonen (1992) and Gavrikov
and Stoyan (1995) give forestry examples.
When using f2, the corresponding mean κf2�r� is

denoted by γ�r�. The function is called mark vari-
ogram (Cressie, 1993) because of a formal parallelity
to geostatistical variograms; see also Section 7. It
describes the differences of the marks of trees at in-
tertree distance r. For small r, it gives information
about tree interaction, while for larger r it describes
the influence of environmental factors such as soil,
humidity or altitude. A mark variogram can show a
behavior different from that of a geostatistical var-
iogram, and geostatistical ideas may be insufficient
for its interpretation; see the discussion Wälder and
Stoyan (1996) and Stoyan and Wälder (1999).
In the case of a multivariate point process, that is,

a point process with discrete marks characterizing,
for example, species, or with discretized marks, the
mark connection functions pij�r� are helpful. They
are closely related to Kij functions as considered
in Diggle (1983). The value pij�r� is the conditional
probability that one of the points has mark i and
the other has mark j, where the condition is the
same as for the mark correlation function.
If the discrete marks are independent, then the

functions are constant. Otherwise, for large r, they
tend to fixed values pij with

pij = 2pipj and pii = p2
i �

where pi is the probability that the typical point
has mark i. These functions can be seen as a mod-
ern counterpart of Pielou’s segregation coefficient.
For example, they are used in Gavrikov and Stoyan
(1995), where the marks characterize different de-
grees of damage by environmental factors.
Another second order approach for the study of

clustering of a property of trees (called cases) in
a heterogeneous point pattern of trees is the spa-
tial case-control approach by Diggle and Chetwynd
(1993).

5. GROWTH MODELS FOR FOREST STANDS

Foresters need models for predicting the yield of
forests and consequences of their work. Tools of in-
creasing quality for satisfying this need have ex-
isted, for hundreds of years. The development be-
gan with stand yield tables in China (seventeenth
century) and Central Europe (eighteenth century).
These tables helped predict growth in dependence
of tree species and environmental conditions. They
were developed and improved over the years and
have finally led to extensive computer programs.
The best modern models are the so-called single-

tree models or individual tree-based models. Newn-
ham (1964) is one of the pioneering works. The state
of modern research in this field can be found in
Biging and Dobbertin (1992, 1995), Liu and Ash-
ton (1995) and Pacala et al. (1996). In such models,
all trees in a stand appear explicitly. The growth
behavior of each tree is described in relation to its
own parameters (age, size, species and others), to
those of its neighbors (through competition indices),
to the whole stand and to environmental factors.
Only by such models does it seem possible to predict
the results of the forester’s work, such as planting
and thinning, with sufficient precision. Figure 7 was
obtained by means of the single-tree growth simu-
lator SILVA 2.1, a program developed by Pretzsch
�1993�1997�.
It is possible to start such models in arbitrary con-

figurations. Lepš and Kindlmann (1987) began with
patterns of a Poisson process, of a hard-core process
and of a cluster process. For both non-Poisson pat-
terns, a tendency towards a more random, Poisson-
like pattern could be observed.
Many single-tree models use statistical relation-

ships which mainly result from regression analysis.
For example, Rathbun and Cressie (1994) stud-
ied a single-tree model in which growth of a given
tree is a function of its diameter and of the com-
petive influences of its neighbors, measured by
their distances and diameters. Typically, such mod-
els summarize statistical relationships; they do
not yet go back to the true processes of growth.
However, since the 1970s, a new approach has
been established in forestry: system analysis and
ecological–physiological modeling of growth. The
aim is to explain the growth processes causally.
Since many elements of the growth processes in

forests are still not explored on the level of these
ecological–physiological models, today single-tree
models which represent a compromise between the
classical single-tree models and modern ideas are
used. Such models are called “hybrid models”; see
Kimmins (1993).
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Fig. 7. Some steps of the evolution of a mixed forest with spruces and beeches, obtained by means of the single-tree model SILVA 2.1.
Start configuration with spruces and beeches, aged 20 and 25 years, respectively and situations 20� 80 and 145 years later. (Published
with the kind permission of H. Pretzsch.)

In the context of point processes, single-tree mod-
els can be seen as models of spatio-temporal point
processes. They pose the following statistical prob-
lems:

1. Model validation, that is, checking that a given
single-tree model produces realistic artificial
forests.

2. Construction of geometrical models for tree
crowns, which will be used as marks.

3. Modeling mortality of trees, the main random
component in many forests.

4. Developing models for realistic start configura-
tions based on a statistical analysis of any forest
to be used in the simulation of its development.

6. POINT PROCESS MODELS

6.1 Poisson Process

Point process models play an important role in
forestry statistics. They are needed both in confir-
matory and exploratory data analysis and as start-
ing configurations for single-tree models. In mod-
ern forestry statistics, two classes of point processes
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are of particular interest: Cox and Gibbs processes.
Probably, Gibbs processes will be the more interest-
ing in the future because of their greater flexibility
and realism.
Quite often a null model is used, since it is partic-

ularly simple or serves as a benchmark. The most
important null model in spatial point process statis-
tics and in forestry statistics is the homogeneous
Poisson process with intensity λ, which corresponds
to the hypothesis of complete spatial randomness
and has the following properties:

1. The number of points in any region B follows the
Poisson distribution with mean λν�B�.

2. Given n trees in B, their positions behave as an
independent sample from the uniform distribu-
tion in B.

Condition (2) says that no interaction exists in the
point pattern. Incidentally, the homogeneous Pois-
son process is a particular case of both the Cox and
Gibbs processes discussed below.
One of the earliest applications of the Poisson

model in biological sciences is Svedberg (1922), who
compared counts of plants with expected frequen-
cies calculated from the Poisson distribution. To-
day the Poisson process is conventionally used as a
starting point in the construction of models, where
one of the first steps is just testing of the hypothesis
of complete spatial randomness, usually by means
of the L-test of Section 4.2. If that null model is in
agreement with the data, more complicated models
are not worth trying. An impression of the general-
ity of complete spatial randomness in forestry data
is given by Tomppo (1986) who detected that around
30% of the permanent inventory plots in Finland,
presenting thinning forests in mineral soil areas,
could be considered as realizations of Poisson pro-
cesses.
The inhomogeneous Poisson process with intensity

function λ�x� is defined as follows:

1. The number of points in any region B follows the
Poisson distribution with mean

∫
B λ�x�dx.

2. Given n trees in B, their positions can be consid-
ered as an independent sample from the distri-
bution with density λ�x�/ ∫B λ�x�dx.

This process is fundamental in modeling of intensity
in heterogeneous environment: often some concomi-
tant variables exist and are regressed with respect
to the intensity; this is analogous to modeling of the
hazard through concomitant variables in survival
analysis.
A sophisticated nonparametric Bayesian ap-

proach to the estimation of spatial Poisson inten-
sity is suggested by Heikkinen and Arjas (1998).

There, the intensity function is approximated by
a piecewise constant function generated through
the Voronoi tessellation of an “instrumental” Pois-
son process with positively correlated values in
the cells. This spatial correlation plays the role
of smoothing. The intensity is estimated from the
posterior distribution using a Markov chain Monte
Carlo (MCMC) sample of sizeN, λ̂�1��x�� � � � � λ̂�N��x�
of piecewise constant intensity estimators through
averaging. The final estimator for the Poisson in-
tensity is λ̂�x� = �1/N��Nm=1 λ̂

�m��x�. Heikkinen
and Arjas (1999) give a forestry application with a
partially observed concomitant variable to data ear-
lier analyzed by Rathbun (1996), who used kriging
in the interpolation of the covariate.

6.2 Cox Processes

A very flexible and popular class of point process
models for forestry are Cox processes. A Cox process
can be seen as the result of a two-stage random
mechanism; therefore the name “doubly stochastic
Poisson process” is frequently used. In the first step
a nonnegative function λ�x� is sampled, and then
the inhomogeneous Poisson process with intensity
function λ�x� is generated.
In recent years, Cox processes of increasing com-

plexity and realism have been suggested. Early
models were Poisson cluster processes, for exam-
ple, Matérn’s cluster process. Here λ�x� is built by
means of the points x1�x2� � � � of a homogeneous
Poisson process of intensity λp�

λ�x� = µ
∞∑
i=1

1b�xi�R��x��(13)

where b�xi�R� is the disc with radius R centered
at xi. The points of the Cox process appear here
in independent (and possibly superposed) clusters
centered at the xi’s. The model parameters are
λp� µ and R. This model had appeared already in
Matérn (1960) and was later used in several pa-
pers, perhaps not always very successfully; see the
critique in Møller, Syversveen and Waagepetersen
�1997�1998�.
The random intensity function λ�x� in Matérn’s

cluster process is a piecewise constant function,
which cannot be more than a rough and discon-
tinuous approximation to any unknown continuous
intensity function; in forests one would expect
smoother intensity functions. Such a function ap-
pears in the Thomas process, where

λ�x� = µ
∞∑
i=1
φσ�x − xi��(14)
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and φσ is the density function of the two-dimen-
sional symmetric normal distribution with variance
σ2. This model and its generalizations are applied
to forestry data in Diggle (1983), Cressie (1993) and
Stoyan and Stoyan (1996).
A similar process appeared in the forestry litera-

ture as an ad hoc model; see Lepš and Kindlmann
(1987):

λ�x� = λ0 min

{
1�

n∑
i=1

exp
(−a�x − xi�2

)}
�(15)

The n points xi here are random or deterministic
points. The particular form results from the inter-
pretation of the min-term as a probability; the Cox
process is seen as the result of a location-dependent
thinning of a stationary Poisson process of intensity
λ0, where the min-term is the retaining probability
of a point at location x.
In the (mathematical) statistical literature other

models have appeared recently and have been ap-
plied to forestry problems. Ickstadt and Wolpert
(1997) and Wolpert and Ickstadt (1998) studied the
case

λ�x� =
∫
φσ�x − s�3�ds��(16)

where 3 is a random Gamma measure, a particu-
lar completely random measure. This model can be
seen as a generalized nonstationary Thomas pro-
cess. While a usual cluster process can be inter-
preted as a model where all clusters have the same
weight, in the model of Wolpert and Ickstadt the
clusters have random weights.
Møller, Syversveen and Waagepetersen (1997,

1998) suggested the “Log Gaussian Cox process,”
where

λ�x� = exp�Z�x��(17)

with a Gaussian random field �Z�x��. This random
field may represent unobserved growth conditions
while the exponential link function models the re-
sponse of the trees.
For the cases shown in (13) to (17), which be-

long to stationary processes, intensity and pair
correlation functions can be calculated analytically.
Wolpert and Ickstadt (1998); Møller, Syversveen
and Waagepetersen (1998) as well as Heikkinen
and Arjas (1998, 1999) showed how these models
can be used in the context of hierarchical modeling
in Bayesian statistics for inhomogeneous Poisson
processes. Using MCMC methods, they came to a
posteriori estimates of λ�x� for given forests.
We revisit again the paper by Rathbun and

Cressie (1994). These authors model the appear-
ance of young trees (additionally recruited into an

already existing population) by a Cox process. Its
random intensity is

λ�x� = exp
(
β0 + β1d�x� + β2W�x� +��x�)�

Here β0, β1 and β2 are model parameters; d�x� is
the distance of the location x to the nearest path
in the forest; W�x� = �

�i��1/ri�x��, where ri�x� is
the distance from x to the ith nearest tree (under
the already existing trees) and where the sum is
over all trees within 30 m of x; ��x� is a Gaussian
random field. The model parameters were estimated
by means of the EM algorithm where the unknown
realization of � is taken as missing data.
It should be noted that �λ�x��, the random Pois-

son intensity, is a continuous parameter random
field. Such fields are the objective of geostatistical
methods, which offer a further possibility for point
processes statistics. Another use of geostatistics in
connection with a Cox process is given when con-
comitant variables, observed in a set of sampled lo-
cations, are regressed with the intensity; see Rath-
bun (1996).
All these Cox models have a weak point: they do

not guarantee a hard-core distance between trees
and are therefore too variable at short distances.
In mature forests there is typically some degree of
regularity at short distances and there usually is a
positive hard-core distance.

6.3 Gibbs Processes

A widespread family of point process models are
Gibbs point processes with pairwise interactions. In
a bounded window W they are defined through the
density function formula

f�x� = C exp
{
−∑∑

i<j

φ
(�xi − xj�

)}
(18)

for a point pattern x = �x1� � � � �xn� of n points,
where n is fixed (see, e.g., Ripley, 1977; Stoyan,
Kendall and Mecke, 1995); C is a normalizing con-
stant. There are more general models with random
n and also Gibbs point processes in the whole �2.
In these generalizations, the density (18) should be
considered with respect to the homogeneous Poisson
process with unit intensity.
The function φ, called the pair potential function,

is such that φ��xi − xj�� = 0 if and only if the two
points xi and xj are not mutually interacting. Note
that if φ�r� = 0 for all r > 0, then a pattern of n
independent uniform points in W is obtained.
One of the assets of Gibbs point processes in ap-

plications is that interpretation is possible in terms
of interaction. Indeed, inspecting the pair-potential
function, positive values of φ�r� indicate inhibition
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on a scale defined by r and values of magnitude zero
mean vanishing interaction; negative values of φ�r�
show attraction at this r.
A simple example of a Gibbs process is the Strauss

process (Strauss, 1975; Kelly and Ripley, 1976), for
which

φ�r� =
{
γ� if r < R,
0� otherwise�

Accordingly, points with mutual distance less than
a fixed radius R are neighbors (and interacting). If
S�x� is the number of neighboring pairs, then (18)
can be rewritten in the form

f�x� = C exp
{−γS�x�}�(19)

This model holds only for nonnegative γ correspond-
ing to inhibitive interaction. If γ = ∞, a hard core
model results.
What is especially nice in applications of Gibbs

processes is that these processes are easy to sim-
ulate. MCMC simulation methods such as the
Metropolis–Hastings algorithm suggested by Geyer
and Møller (1994) or spatial birth-and-death pro-
cess (Ripley, 1977; Stoyan, Kendall and Mecke,
1995) are commonly used. Conditional simulation,
for example, keeping some tree positions fixed, is
straightforward.
The most important applications of Gibbs point

processes in forestry are in modeling of short-range
competition between trees. Therefore, in forthcom-
ing forest simulators, Gibbs processes will play
an important role. Tomppo (1986) is an example
of the extensive use of Gibbs type processes in
forestry. Other applications can be found in Ogata
and Tanemura �1984�1985�� Penttinen, Stoyan
and Henttonen (1992), Stoyan, Kendall and Mecke
(1995) and Särkkä and Tomppo (1998). Inhomo-
geneous Gibbs processes where the point density
follows a deterministic trend are also useful; see
Ogata and Tanemura (1986), Stoyan and Stoyan
(1998a), Jensen and Nielsen (1998) and Baddeley,
Møller and Waagepetersen (1998).
When modeling point patterns by means of Gibbs

processes, a parametric family of pair potentials is
usually introduced. Then (18) serves as the likeli-
hood function, but its optimization is not straight-
forward due to the unknown scaling factor C. This
problem can be bypassed by applying the Markov
chain Monte Carlo maximum likelihood method;
see, for example, Diggle et al. (1994) and Geyer
(1998). In any event, the use of the maximum like-
lihood method is computationally intensive. Alter-
native estimation methods such as the pseudolikeli-
hood method proposed by Besag (1978) (see Ripley,
1988; Goulard, Särkkä and Grabarnik, 1996), as

the Takacs–Fiksel method (see Stoyan and Stoyan,
1994), can also be used. Nonparametric approaches
have also been suggested for pair potential estima-
tion by Diggle et al. (1994) and, in the Bayesian
frame, by Heikkinen and Penttinen (1998).
Gibbs point processes have been successfully

used as models for forests but, as noted earlier,
this class of processes has difficulties in producing
clustered patterns in sufficient variety as needed
in forestry applications. Heuristically this means
that the Gibbs models above do not take into ac-
count the limits of natural resources because the
neighborhood property does not depend on the
realization.

7. MODELS FOR MARKED POINT PROCESSES

In the preceeding section, little was said about
marks. The reader should remember that marks de-
scribe trees and may be qualitative or quantitative.
Qualitative marks characterize, for example, tree
species or their origin (natural or planted), while
quantitative marks are characteristics such as dbh
or degree of damage (if given in percentages).
An important particular case of qualitatively

marked point processes are binary point processes,
processes with two marks, 1 and 2. Two exam-
ples of binary point process models are linked and
balanced Cox processes, where the random inten-
sity functions of the subprocesses of 1-points and
2-points, λ1�x� and λ2�x�, satisfy

λ1�x� = aλ2�x�
and

λ1�x� + λ2�x� = c�
respectively, with suitable positive constants a and
c; see Diggle and Milne (1983). The linked Cox
process models positive association between the
two process components, whereas the balanced
Cox process models negative association. Møller,
Syversveen and Waagepetersen (1998) suggest
a bivariate log-Gaussian Cox process for which
the component processes log λj�x� are correlated
Gaussian random fields, j = 1�2.
The Gibbs process can be generalized to the bi-

nary point process case. If �xi� stands for the pat-
tern of 1-points and �yj� for 2-points, then the den-
sity is of the form

f�x� y�=C exp
{
−∑∑

i�=k
φ11

(�xi − xk�
)

−∑∑
j �=l
φ22

(�yj − yl�
)

−∑∑
i� j

φ12
(�xi − yj�

)}
�
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assumed to have nj points of type j (j = 1 and
2), and the φij�r�’s are interaction functions mea-
suring interaction between pairs of points of type i
and j, for i� j ∈ �1�2�. Such processes are studied
in Ogata and Tanemura (1985) for modeling forests.
These authors show how to estimate parameters in
parametrized pair potential functions via the maxi-
mum likelihood method.
The marks are frequently introduced as follows:

an unmarked point process 
 and an independent
random field �Z�x�� are given. If the nth point of 

is located at xn, then its mark is

m�xn� = Z�xn��
that is, the marks come directly from the ran-
dom field. This random field mark model may be
a good approximation to marked point processes
in forestry, in particular if �Z�x�� describes a tree
variable which is in close correlation to environ-
mental factors following a stationary and isotropic
random field. For very short distances, the model is
not correct because it ignores interaction of trees.
The aim of statistical analysis for this model is, in
addition to estimation of point process characteris-
tics, to determine distributional characteristics of
the random field. This can be done by geostatistical
methods, since for this model the mark variogram
introduced in Section 4.4 equals the variogram of
�Z�x��. If the random field mark model does not
hold, the mark variogram may have a form which
is different from that of a variogram of a random
field; for example, it may not be negative definite;
see Wälder and Stoyan (1996) and Kuuluvainen,
Penttinen, Leinonen and Nygren (1996).
The random field model can be refined by replac-

ing the unmarked point process by a binary point
process, where the marks describe the social posi-
tions of trees, dominant or suppressed. Then the
marks may be determined by

m
(
xin

) = fi(Z(
xin

))
for i = 1�2

with suitable functions fi. This models the extent
of resource exploitation of the environment which
trees are able to carry out depending on their so-
cial position; see Stoyan and Wälder (1999). It is
an important statistical problem to investigate the
random field given the marks.
Marked Gibbs processes with quantitative marks

are not yet frequently used. A good example of
a forestry-oriented paper is Goulard, Särkkä and
Grabarnik (1996). They fit a marked Gibbs pro-
cess model to the spruces of Figure 2, where the
marks are the dbh’s; the case without marks was
considered in Stoyan, Kendall and Mecke (1995).

Statistics and simulation of marked Gibbs pro-
cesses are much more complicated than in the
unmarked case since not only the pair potential
(which, of course, depends on the marks) but also
a “primary” mark distribution, which cannot be
measured directly, has to be determined and used.
The observed marks belong to another distribu-
tion. Here, the Gibbs process density is a density
with respect to an independently marked Poisson
process.
A trick used by Ogata and Tanemura (1985) can

be applied in the estimation of parameters of pair
potential of the form

φ

( �x − y�
w
(
m�x��m�y�)

)

with a suitable scaling function w. Degenhardt
(1999) applied this method and obtained ecologi-
cally interpretable pair potential parameters for
various German forests.

8. SUMMARY AND CONCLUSIONS

As the paper has shown, point processes and
marked point processes are powerful tools in mod-
ern forestry statistics. The last decades have seen
a rapid development of theoretical statistical meth-
ods and stochastic models for point processes, which
is to some extent inspired solely by forestry appli-
cations. Of particular importance are the modern
single-tree models, which have been developed
mainly by forest scientists who now learn that they
need the support of point process statisticians.
The recent development inspires one also to think

that the borders between separate areas of spatial
statistics, relevant for forest science, will fade away.
Maybe we have not been farsighted when speaking,
for example, about point process statistics and geo-
statistics as different disciplines for problem solv-
ing. Instead, these topics will appear as complemen-
tary, to supporting building blocks in modeling; see
the discussion on Cox processes in the recent paper.
Some problems discussed in this paper will re-

main important research themes also in the future.
One of them is modeling of inhomogeneous or spa-
tially nonstationary forests and the development
of adequate statistical characteristics and meth-
ods. A particular question is to determine the form
by which the local interaction of trees (e.g., de-
scribed by a pair potential depending on species
and age) is influenced by factors (such as soil, hu-
midity or environment) that may generate global
inhomogeneity.
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A further problem is automation of production
of tree position maps and the full use of the possi-
bilities of GPS and GIS (geographical information
systems). Stable and fast statistical and image-
analytical methods for the construction of such
maps based on blurred and noisy images of forests
have to be developed.
Finally, stochastic modeling has to be combined

with biological ideas with the aim of obtaining re-
alistic variability predictions based on incomplete
measurements. Particularly important is good sta-
tistical support in modeling two essential processes
in forest development that are probably highly in-
fluenced by random factors: mortality and regener-
ation.
In all these directions (and various others),

forestry researchers need the help of professional
spatial statisticians. Unfortunately, foresters do
not always know or accept this and develop their
own methods; at least in Europe, forestry research
concerning problems of spatial statistics is rather
conservative. On the other hand, the statistical
community should note that much of published sta-
tistical work is not accessible by, or intelligible to,
foresters.

ACKNOWLEDGMENTS

The authors thank Jan Lepš very much for many
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stund Holzwirtschaftliche Zeitung 59 4–5.

Bitterlich, W. (1952). Die Winkelzählprobe. Forstwissenschaft-
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