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From Association to Causation: Some
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David Freedman

Abstract. The “numerical method” in medicine goes back to Pierre
Louis’ 1835 study of pneumonia and John Snow’s 1855 book on the epi-
demiology of cholera. Snow took advantage of natural experiments and
used convergent lines of evidence to demonstrate that cholera is a wa-
terborne infectious disease. More recently, investigators in the social and
life sciences have used statistical models and significance tests to deduce
cause-and-effect relationships from patterns of association; an early ex-
ample is Yule’s 1899 study on the causes of poverty. In my view, this
modeling enterprise has not been successful. Investigators tend to ne-
glect the difficulties in establishing causal relations, and the mathemat-
ical complexities obscure rather than clarify the assumptions on which
the analysis is based.
Formal statistical inference is, by its nature, conditional. If maintained
hypotheses A, B, C, : : : hold, then H can be tested against the data. How-
ever, if A, B, C, : : : remain in doubt, so must inferences about H. Careful
scrutiny of maintained hypotheses should therefore be a critical part
of empirical work—a principle honored more often in the breach than
the observance. Snow’s work on cholera will be contrasted with modern
studies that depend on statistical models and tests of significance. The
examples may help to clarify the limits of current statistical techniques
for making causal inferences from patterns of association.

Key words and phrases: Association, causation, regression, history of
statistics, modeling significance, epidemiology.

1. INTRODUCTION

In this paper, I will look at some examples from
the history of statistics—examples which help to
define problems of causal inference from nonex-
perimental data. By comparing the successes with
the failures, we may learn something about the
causes of both; this is a primitive study design,
but one that has provided useful clues to many
investigators since Mill (1843). I will discuss the
classical research of Pierre Louis (1835) on pneumo-
nia and summarize the work of John Snow (1855)
on cholera. Modern epidemiology has come to rely
more heavily on statistical models, which seem to
have spread from the physical to the social sci-
ences and then to epidemiology (Sections 4 and
5). The modeling approach was quite successful in
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the physical sciences, but has been less so in the
other domains, for reasons that will be suggested
in Sections 4–6.

Regression models are now widely used to con-
trol for the effects of confounding variables, an
early paper being Yule (1899); that is the topic
of Section 4. Then some contemporary examples
will be mentioned, including studies on asbestos in
drinking water (Section 5), health effects of electro-
magnetic fields, air pollution, the leukemia cluster
at Sellafield and cervical cancer (Section 7). Sec-
tion 8 discusses one of the great triumphs of the
epidemiologic method—identifying the health ef-
fects of smoking. Other points of view on modeling
are briefly noted in Section 9. Finally, there is a
summary with conclusions.

2. LA MÉTHODE NUMÉRIQUE

In 1835, Pierre Louis published his classic study
on the efficacy of the standard treatments for pneu-
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monia: Recherches sur les Effets de la Saignée dans
Quelques Maladies Inflammatoires: Et sur l’Action
de l’Émétique et des Vésicatoires dans la Pneumonie.
(Louis, 1835). Louis was a physician in Paris. In
brief, he concluded that bleeding the patient was a
good treatment for pneumonia, although less effec-
tive than commonly thought:

Que la saignée a une heureuse influence
sur la marche de la pneumonie; qu’elle
en abrège la durée; que cependant cette
influence est beaucoup moindre qu’on ne
se l’imagine communément : : : [page 62]

His contemporaries were not all persuaded. Accord-
ing to one, arithmetic should not have been allowed
to constrain the imagination:

En invoquant l’inflexibilité de l’arith-
métique pour se soustraire aux empiéte-
mens de l’imagination, on commet contre
le bon sens la plus grave erreur : : : .
[page 79]

Pierre Louis was comparing average outcomes for
patients bled early or late in the course of the
disease. The critic felt that the groups were differ-
ent in important respects apart from treatment.
Louis replied that individual differences made it
impossible to learn much from studying individual
cases and necessitated the use of averages; see also
Gavarret (1840). This tension has never been fully
resolved, and is with us even today.

A few statistical details may be of interest. Louis
reports on 78 pneumonia patients. All were bled,
at different stages of the disease, and 50 survived.
Among the survivors, bleeding in the first two days
cut the length of the illness in half. But, Louis noted,
there were differences in régime. Those treated later
had not followed doctors’ orders:

[ils] avaient commis des erreurs de ré-
gime, pris des boissons fortes, du vin
chaud sucré, un ou plusieurs jours de
suite, en quantité plus ou moins con-
sidérable; quelquefois même de l’eau-de-
vie. [page 13]

From a modern perspective, there is a selection ef-
fect in Louis’ analysis: those treated later in the
course of an illness are likely for that reason alone
to have had longer illnesses. It therefore seems bet-
ter to consider outcomes for all 78 patients, includ-
ing those who died, and bleeding in the first two
days doubles the risk of death. Louis saw this, but
dismissed it as frightening and absurd on its face:

Résultat effrayant, absurde en apparence
[page 17].

He explains that those who were bled later were
older. He was also careful to point out the limita-
tions created by a small sample.

Among other things, Louis identified two ma-
jor methodological issues: (i) sampling error and
(ii) confounding. These problems must be addressed
in any epidemiologic study. Confounding is the
more serious issue. In brief, a comparison is made
between a treatment group and a control group, to
determine the effect of treatment. If the groups dif-
fer with respect to another factor—the “confounding
variable”—which influences the outcome, the esti-
mated treatment effect will also include the effect of
the confounder, leading to a potentially serious bias.
If the treatment and control groups are chosen at
random, bias is minimized. Of course, in epidemio-
logic studies, there are many other sources of bias
besides confounding. One example is “recall bias,”
where a respondent’s answers to questions about
exposure are influenced by presence or absence of
disease. Another example is “selection bias,” due for
instance to systematic differences between subjects
chosen for a study and subjects excluded from the
study. Even random measurement error can create
bias in estimated effects: random errors in measur-
ing the size of a causal factor tend to create a bias
toward 0, while errors in measuring a confounder
create a bias in the opposite direction.

Pierre Louis’ book was published in the same
year as Quetelet (1835), Sur l’Homme et le Déve-
loppement de Ses Facultés, ou Essai de Physique
Sociale. Quetelet, like Louis, has had—and con-
tinues to have—an important influence over the
development of our subject (Sections 4 and 5).

3. SNOW ON CHOLERA

In 1855, some 20 years before Koch and Pasteur
laid the foundations of modern microbiology, Snow
discovered that cholera is a waterborne infectious
disease. At the time, the germ theory of disease was
only one of many conceptions. Imbalance in the hu-
mors of the body was an older explanation for dis-
ease. Miasma, or bad air, was often said to be the
cause of epidemics. Poison in the ground was per-
haps a slightly later idea.

Snow was a physician in London. By observing
the course of the disease, he concluded that cholera
was caused by a living organism, which entered
the body with water or food, multiplied in the body
and made the body expel water containing copies of
the organism. The dejecta then contaminated food
or reentered the water supply, and the organism
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proceeded to infect other victims. The lag between
infection and disease (a matter of hours or days)
was explained as the time needed for the infec-
tious agent to multiply in the body of the victim.
This multiplication is characteristic of life: inani-
mate poisons do not reproduce themselves.

Snow developed a series of arguments in sup-
port of the germ theory. For instance, cholera spread
along the tracks of human commerce. Furthermore,
when a ship entered a port where cholera was preva-
lent, sailors contracted the disease only when they
came into contact with residents of the port. These
facts were easily explained if cholera was an infec-
tious disease, but were harder to explain by the mi-
asma theory.

There was a cholera epidemic in London in 1848.
Snow identified the first or “index” case in this epi-
demic:

a seaman named John Harnold, who had
newly arrived by the Elbe steamer from
Hamburgh, where the disease was pre-
vailing [Snow, 1855, page 3].

He also identified the second case: a man named
Blenkinsopp who took Harnold’s room after the lat-
ter died, and presumably became infected by con-
tact with the bedding. Next, Snow was able to find
adjacent apartment buildings, one being heavily af-
fected by cholera and one not. In each case, the af-
fected building had a contaminated water supply;
the other had relatively pure water. Again, these
facts are easy to understand if cholera is an infec-
tious disease, but hard to explain on the miasma
theory.

There was an outbreak of the disease in August
and September of 1854. Snow made what is now
called a “spot map,” showing the locations of the vic-
tims. These clustered near the Broad Street pump.
(Broad Street is in Soho, London; at the time, there
were public pumps used as a source of water.) How-
ever, there were a number of institutions in the area
with few or no fatalities. One was a brewery. The
workers seemed to have preferred ale to water: but
if any wanted water, there was a private pump on
the premises. Another institution free of cholera was
a poor-house, which too had its own private pump.
People in other areas of London contracted the dis-
ease; but in most cases, Snow was able to show they
drank water from the Broad Street pump. For in-
stance, one lady in Hampstead used to live in Soho,
and so much liked the taste of the Broad Street wa-
ter that she routinely sent a servant to draw water
from the fatal pump.

So far, we have persuasive anecdotal evidence
that cholera is an infectious disease, spread by con-

tact or through the water supply. Snow also made
statistical studies. For instance, there were a num-
ber of water companies in the London of his time.
Some took their water from heavily contaminated
stretches of the Thames river; for others, the in-
take was relatively uncontaminated. Snow made
what are now called “ecological” studies, corre-
lating death rates from cholera in various areas
of London with the quality of the water. Gener-
ally speaking, areas with contaminated water had
higher death rates. One exception was the Chelsea
water company. This company started with con-
taminated water, but had quite modern methods of
purification—settling ponds, exposure to sunlight,
and sand filtration. Its service area had a low death
rate from cholera.

In 1852, the Lambeth water company moved its
intake pipe upstream to secure relatively pure wa-
ter. The Southwark and Vauxhall company left its
intake pipe where it was, in a heavily contaminated
stretch of the Thames. Snow made an ecological
analysis comparing the areas serviced by the two
companies in the epidemics of 1853–1854 and in ear-
lier years. Let him now continue in his own words:

Although the facts shown in the above
table [the ecological analysis] afford very
strong evidence of the powerful influence
which the drinking of water containing
the sewage of a town exerts over the
spread of cholera, when that disease is
present, yet the question does not end
here; for the intermixing of the water
supply of the Southwark and Vauxhall
Company with that of the Lambeth Com-
pany, over an extensive part of London,
admitted of the subject being sifted in
such a way as to yield the most incon-
trovertible proof on one side or the other.
In the subdistricts enumerated in the
above table as being supplied by both
Companies, the mixing of the supply is
of the most intimate kind. The pipes of
each Company go down all the streets,
and into nearly all the courts and al-
leys. A few houses are supplied by one
Company and a few by the other, ac-
cording to the decision of the owner or
occupier at that time when the Water
Companies were in active competition.
In many cases a single house has a sup-
ply different from that on either side.
Each company supplies both rich and
poor, both large houses and small; there
is no difference either in the condition or



246 D. FREEDMAN

Table 1
Death rate from cholera by source of water; rate per 10,000 houses; London, epidemic of 1853–1854; Snow’s Table IX

No. of houses Cholera deaths Rate per 10,000

Southwark and Vauxhall 40,046 1,263 315
Lambeth 26,107 98 37
Rest of London 256,423 1,422 59

occupation of the persons receiving the
water of the different Companies. Now it
must be evident that, if the diminution of
cholera, in the districts partly supplied
with improved water, depended on this
supply, the houses receiving it would be
the houses enjoying the whole benefit of
the diminution of the malady, whilst the
houses supplied with the [contaminated]
water from Battersea Fields would suf-
fer the same mortality as they would if
the improved supply did not exist at all.
As there is no difference whatever in the
houses or the people receiving the supply
of the two Water Companies, or in any of
the physical conditions with which they
are surrounded, it is obvious that no ex-
periment could have been devised which
would more thoroughly test the effect of
water supply on the progress of cholera
than this, which circumstances placed
ready made before the observer.

The experiment, too, was on the
grandest scale. No fewer than three hun-
dred thousand people of both sexes, of
every age and occupation, and of every
rank and station, from gentlefolks down
to the very poor, were divided into groups
without their choice, and in most cases,
without their knowledge; one group be-
ing supplied with water containing the
sewage of London, and amongst it, what-
ever might have come from the cholera
patients; the other group having water
quite free from such impurity.

To turn this grand experiment to ac-
count, all that was required was to learn
the supply of water to each individual
house where a fatal attack of cholera
might occur [Snow, 1855, pages 74–75].

Snow’s data are shown in Table 1. The denomi-
nator data—the number of houses served by each
water company—were available from parliamen-
tary records. For the numerator data, however, a
house-to-house canvass was needed to determine

the source of the water supply at the address
of each cholera fatality. (The “bills of mortality”
showed the address, but not the water source.) The
death rate from the Southwark and Vauxhall wa-
ter is about 9 times the death rate for the Lambeth
water.

Snow argued that the data could be analyzed as
if they had resulted from an experiment of nature:
there was no difference between the customers of
the two water companies, except for the water. His
sample was not only large but representative; there-
fore, it was possible to generalize to a larger popu-
lation. Finally, Snow was careful to avoid the “eco-
logical fallacy”: relationships that hold for groups
may not hold for individuals (Robinson, 1950). It is
the design of the study and the magnitude of the
effect that compel conviction, not the elaboration of
technique.

More evidence was to come from other coun-
tries. In New York, the epidemics of 1832 and 1849
were handled according to the theories of the time.
The population was exhorted to temperance and
calm, since anger could increase the humor “choler”
(bile), and imbalances in the humors of the body
lead to disease. Pure water was brought in to wash
the streets and reduce miasmas. In 1866, however,
the epidemic was handled by a different method—
rigorous isolation of cholera cases, with disinfection
of their dejecta by lime or fire. The fatality rate was
much reduced.

At the end of the 19th century, there was a burst
of activity in microbiology. In 1878, Pasteur pub-
lished La Théorie des Germes et Ses Applications
à la Médecine et à la Chirurgie (Pasteur, 1878).
Around that time, Pasteur and Koch isolated the
anthrax bacillus and developed techniques for vacci-
nation. The tuberculosis bacillus was next. In 1883,
there was a cholera epidemic in Egypt, and Koch
isolated the vibrio; he was perhaps anticipated by
Filipo Pacini. There was an epidemic in Hamburg
in 1892. The city fathers turned to Max von Pet-
tenkofer, a leading figure in the German hygiene
movement of the time. He did not believe Snow’s
theory, holding instead that cholera was caused by
poison in the ground. Hamburg was a center of the
slaughterhouse industry, and von Pettenkofer had
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the carcasses of dead animals dug up and hauled
away, in order to reduce pollution of the ground.
The epidemic continued its ravages, which ended
only when the city lost faith in von Pettenkofer and
turned in desperation to Koch.

The approach developed by Louis and Snow
found many applications. For instance, Semmel-
weiss (1867) found the cause of puerperal fever.
Around 1914, Goldberger showed that pellagra
was the result of a diet deficiency. References on
the history of cholera include Rosenberg (1962),
Howard-Jones (1975), Evans (1987), Winkelstein
(1995), Paneth, Vinten-Johansen, Brody and Rip
(1998). Terris (1964) reprints many of Goldberger’s
articles; also see Carpenter (1981). A useful ref-
erence on Pasteur is Dubos (1988). Today, the
molecular biology of the cholera vibrio is reasonably
well understood; see, for instance, Finlay, Heffron
and Fialkow (1989) or Miller, Mekalanos and Fi-
alkow (1989). For a synopsis, see Alberts et al.
(1994, pages 484, 738); there are recent surveys by
Colwell (1996) and Raufman (1998).

4. REGRESSION MODELS IN SOCIAL SCIENCE

Legendre (1805) and Gauss (1809) developed the
regression method (least absolute residuals or least
squares) to fit data on the orbits of astronomical
objects. In this context, the relevant variables are
known and so are the functional forms of the equa-
tions connecting them. Measurement can be done to
high precision, and much is known about the nature
of the errors—in the measurements and the equa-
tions. Furthermore, there is ample opportunity for
comparing predictions to reality.

By the turn of the century, investigators were us-
ing regression on social science data where these
conditions did not hold, even to a rough approxima-
tion. One of the earliest such papers is Yule (1899),
“An investigation into the causes of changes in
pauperism in England, chiefly during the last two
intercensal decades.” At the time, paupers were
supported either inside “poor-houses” or outside,
depending on the policy of local authorities. Did the
relief policy affect the number of paupers? To study
this question, Yule offered a regression equation,

1Paup = a+b×1Out+ c×1Old+d×1Pop+error:

In this equation,

• 1 is percentage change over time,
• “Out” is the out-relief ratio N/D, where
• N is the number on welfare outside the poor-

house,
• D is the number inside,

• “Old” is the percentage of the population over 65,
• “Pop” is the population.

Data are from the English Censuses of 1871, 1881
and 1891. There are two 1’s, one for 1871–1881 and
one for 1881–1891.

Relief policy was determined separately by the lo-
cal authorities in each “union,” a small geographical
area like a parish. At the time, there were about 600
unions, and Yule divided them into four kinds: ru-
ral, mixed, urban, metropolitan. There are 2×4 = 8
equations, one for each combination of time period
and type of union. Yule assumed that the coefficients
were constant for each equation, which he fitted to
the data by least squares. That is, he estimated the
coefficients a, b, c and d as the values that mini-
mized the sum of squared errors,
∑(

1Paup−a− b× 1Out− c× 1Old−d× 1Pop
)2
:

The sum is taken over all unions of a given type at
a given time period.

For example, consider the metropolitan unions.
Fitting the equation to the data for 1871–1881 gave

1Paup = 13:19+ 0:7551Out− 0:0221Old

−0:3221Pop+ residual:

For 1881–1891, Yule’s equation was

1Paup = 1:36+ 0:3241Out+ 1:371Old

− 0:3691Pop+ residual:

The framework combines the ideas of Quetelet
with the mathematics of Gauss. Yule is studying
the “social physics” of poverty. Nature has run an
experiment, assigning different treatments to dif-
ferent areas. Yule is analyzing the results, using
regression to isolate the effects of out-relief. His
principal conclusion is that welfare outside the poor-
house creates paupers—the estimated coefficient on
the out-relief ratio is positive.

At this remove, the flaws in the argument are
clear. Confounding is a salient problem. For in-
stance, Pigou (a famous economist of the era)
thought that unions with more efficient adminis-
trations were the ones building poor-houses and
reducing poverty. Efficiency of administration is
then a confounder, influencing both the presumed
cause and its effect. Economics may be another con-
founder. At times, Yule seems to be using the rate of
population change as a proxy for economic growth,
although this is not entirely convincing. Generally,
however, he pays little attention to economic activ-
ity. The explanation (Yule, 1899, page 253): “A good
deal of time and labour was spent in making trial
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of this idea, but the results proved unsatisfactory,
and finally the measure was abandoned altogether.”

The form of his equation is somewhat arbitrary,
and the coefficients are not consistent over time and
space. This is not necessarily fatal. However, if the
coefficients do not exist separately from the data,
how can they predict the results of interventions?
There are also problems of interpretation. At best,
Yule has established association. Conditional on the
covariates, there is a positive association between
1Paup and 1Out. Is this association causal? If so,
which way do the causal arrows point? These ques-
tions are not answered by the data analysis; rather,
the answers are assumed a priori. Yule is quite con-
cerned to parcel out changes in pauperism: so much
is due to changes in the out-relief ratio, so much to
changes in other variables and so much to random
effects. However, there is one deft footnote (num-
ber 25) that withdraws all causal claims: “Strictly
speaking, for ‘due to’ read ‘associated with.’”

Yule’s approach is strikingly modern, except there
is no causal diagram and no stars indicating statis-
tical significance. Figure 1 brings him up to date.
An arrow from X to Y indicates that X is included
in the regression equation that explains Y. “Statis-
tical significance” is indicated by an asterisk, and
three asterisks signal a high degree of significance.
The idea is that a statistically significant coefficient
differs from 0, so that X has a causal influence
onY. By contrast, an insignificant coefficient is zero:
then X does not exert a causal influence on Y. The
reasoning is seldom made explicit, and difficulties
are frequently overlooked.

Stringent assumptions are needed to determine
significance from the data. Even if significance can
be determined and the null hypothesis rejected or
accepted, there is a much deeper problem. To make
causal inferences, it must in essence be assumed
that equations are invariant under proposed in-
terventions. Verifying such assumptions—without
making the interventions—is quite problematic. On
the other hand, if the coefficients and error terms
change when the right-hand side variables are
manipulated rather than being passively observed,

Fig. 1. Yule’s model; metropolitan unions, 1871–1881.

then the equation has only a limited utility for pre-
dicting the results of interventions. These difficul-
ties are well known in principle, but are seldom
dealt with by investigators doing applied work in
the social and life sciences. Despite the problems,
and the disclaimer in the footnote, Yule’s regression
approach has become widely used in the social sci-
ences and epidemiology.

Some formal models for causation are avail-
able, starting with Neyman (1923). See Hodges
and Lehmann (1964, Section 9.4), Rubin (1974)
or Holland (1988). More recent developments will
be found in Pearl (1995) or Angrist, Imbens and
Rubin (1996). For critical discussion from vari-
ous perspectives, see Goldthorpe (1998), Abbott
(1997), Humphreys and Freedman (1996, 1999),
McKim and Turner (1997), Manski (1995), Lieber-
son (1985), Lucas (1976), Liu (1960) or Freedman
(1987, 1991, 1995). The history is discussed by
Stigler (1986) and Desrosières (1993).

5. REGRESSION MODELS IN EPIDEMIOLOGY

Regression models (and variations like the Cox
model) are widely used in epidemiology. The models
seem to give answers, and create at least the ap-
pearance of methodological rigor. This section dis-
cusses one example, which is fairly typical of such
applications and provides an interesting contrast to
Snow on cholera.

Snow used primitive statistical techniques, but
his study designs were extraordinarily well thought
out, and he made a huge effort to collect the relevant
data. By contrast, many empirical papers published
today, even in the leading journals, lack a sharply
focused research question; or the study design con-
nects the hypotheses to the data collection only in
a very loose way. Investigators often try to use sta-
tistical models not only to control for confounding,
but also to correct basic deficiencies in the design or
the data. Our example will illustrate some of these
points.

Kanarek et al. (1980) asked whether asbestos
fibers in the drinking water cause cancer. They
studied 722 census tracts in the San Francisco
Bay Area. (A census tract is a small geographical
region, with several thousand inhabitants.) The in-
vestigators measured asbestos fiber concentration
in the water for each tract. Perhaps surprisingly,
there is enormous variation. Kanarek et al. com-
pared the “observed” number of cancers by site
with the expected number, by sex, race and tract.
The “expected” number is obtained by applying
age-specific national rates to the population of the
tract, age group by age group; males and females
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are done separately, and only whites are considered.
(There are about 100 sites for which age-specific
national data are available; comparison of observed
to expected numbers is an example of “indirect
standardization.”)

Regression is used to adjust for income, educa-
tion, marital status and occupational exposure. The
equation is not specified in great detail, but is of the
form

log
Obs:
Exp:

= A0 +A1 asbestos fiber concentration

+A2 income+A3 education

+A4 married+A5 asbestos workers

+ error.

Here, “income” is the median figure for persons in
the tract, and “education” is the median number
of years of schooling; data are available from the
census. These variables adjust to some extent for
socioeconomic differences between tracts: usually,
rates of disease go down as income and education
go up. The next variable in the equation is the frac-
tion of persons in the tract who are married; such
persons are typically less subject to disease than the
unmarried. Finally, there is the number of “asbestos
workers” in the tract; these persons may have un-
usually high rates of cancer, due to exposure on the
job. Thus, the variables on the right-hand side of the
equation are potential confounders, and the equa-
tion is an attempt to adjust for their effects. The
estimate of A1 for lung cancer in males is “highly
statistically significant,” with P < 0:001. A highly
significant coefficient like this would nowadays be
taken as strong evidence of causation, but there are
serious difficulties.

Confounding

No adjustment is made for smoking habit, which
was not measured in this study. Smoking is strongly
but imperfectly associated with socioeconomic sta-
tus and has a substantial effect on cancer rates.
Thus, smoking is a confounder. The equation does
not correct for the effects of smoking, and the P-
value does not take this confounding into account.

Figure 2 illustrates an alternative explanation for
the data. (i) Smoking (an unmeasured confounder)
is associated with the concentration of asbestos
fibers in the water; indeed, both are strongly re-
lated to socioeconomic variables in the tracts. The
association is signaled by the straight line joining
the two variables. (ii) Smoking has a strong, direct
effect on lung cancer, indicated by the arrow in the
figure. Associations (i) and (ii) explain the observed
association between asbestos fibers in the water

Fig. 2. Smoking as an unmeasured confounder: the noncausal
association between asbestos in the water and lung cancer is ex-
plained by the associations with smoking.

and lung cancer rates; this observed association is
not causal. To recapitulate, a confounder is associ-
ated with the putative cause and with its effect; the
confounder may explain part or all of an observed
association. In epidemiology, unmeasured or poorly
measured confounders are the rule rather than the
exception.

Model Specification

The choice of variables and functional form is
somewhat arbitrary, although not completely un-
reasonable. The authors say that their equation is
suggested by mathematical models for cancer, but
the connection is rather loose; nor have the cancer
models been validated (Freedman and Navidi, 1989,
1990). The models used to adjust for confounders are
seldom grounded in more fundamental science.

Statistical Assumptions

To compute the P-value, it is tacitly assumed that
errors are statistically independent from tract to
tract, and identically distributed. This assumption
may be convenient, even conventional, but it lacks
an empirical basis.

The Search for Significance

Even if we set the fundamental difficulties aside,
the authors have made several hundred tests on the
equations they report, without counting any pre-
liminary data analysis that may have been done.
The P-values are not adjusted for the effects of the
search, which may be substantial (Dijkstra, 1988;
Freedman, 1983).

Weak Effects

The effect being studied is weak: a 100-fold in-
crease in asbestos fiber concentration is associated



250 D. FREEDMAN

with perhaps a 5% increase in lung cancer rates.
What is unusual about the present example is only
the strength of the unmeasured confounder, and the
weakness of the effect under investigation.

Epidemiology is best suited to the investigation
of strong effects, which are hard to explain away
by confounding (Cornfield et al., 1959, page 199).
As attention shifts to the weaker and less consis-
tent effects that may be associated with low doses,
difficulties will increase. Long delays between the
beginning of exposure and the onset of disease are
a further complication. Toxicology may be of some
value but presents difficulties of its own (Freedman,
Gold and Lin, 1996; Freedman and Zeisel, 1988).
The limitations of epidemiology are discussed by
Taubes (1995). For detailed case studies, see Van-
denbroucke and Pardoel (1989) or Taubes (1998).
Other examples will be given in Section 7.

6. SOME GENERAL CONSIDERATIONS

Model Specification

A model is specified by choosing (i) the explana-
tory variables to put on the right hand side, (ii) the
functional form of the equation and (iii) the assump-
tions about error terms. Explanatory variables are
also called “covariates,” or “independent variables”;
the latter term does not connote statistical indepen-
dence. The functional form may be linear, log linear
and so forth. Errors may be assumed independent or
autoregressive; or some other low-order covariance
matrix may be assumed, with a few parameters to
estimate from the data.

Epidemiologists often have binary response vari-
ables: for instance, disease is coded as “1” and health
as “0.” A “logit” specification is common in such cir-
cumstances. Conditional on the covariates, subjects
are assumed to be independent. If Yi is the response
for subject i while Xi is a 1×p vector of covariates,
the logit specification is

log
Prob�Yi = 1�
Prob�Yi = 0� =Xiβ:

Here, β is a p×1 vector of parameters, which would
be estimated from the data by maximum likelihood.
For useful details on various models and estimation
procedures, see Breslow and Day (1980, 1987).

Models are chosen on the basis of familiarity and
convenience; there will be some effort made to avoid
gross conflict with the data. Choices are generally
somewhat arbitrary, although they may not be un-
reasonable. There will often be some preliminary
data analysis: for instance, variables with insignif-
icant coefficients are discarded, and the model re-
fitted. Details can make a large difference in con-

clusions. In particular, P-values are often strongly
dependent on the final specification, and the pre-
liminary data analysis may make these P-values
difficult to interpret—as discussed below.

It is sometimes argued that biases (like recall bias
or selection bias) can be modeled and then correc-
tions can be made. That might be so if the auxil-
iary models could themselves be validated. On the
other hand, if the auxiliary models are of doubtful
validity, the “corrections” they suggest may make
matters worse rather than better. For more discus-
sion, see Scharfstein, Rotnitzky and Robins (1999)
or Copas and Li (1997). In the original physical-
science applications, the specifications were dictated
by prior theory and empirical fact (Section 4). In the
social sciences and epidemiology, the specifications
are much more arbitrary. That is a critical distinc-
tion.

A Review of P-Values

It may be enough to consider one typical exam-
ple. Suppose X is a random variable, distributed as
N�µ;1�, so

Prob�X−µ < x� = 8�x� = 1√
2π

∫ x
−∞

exp�−u2/2�du:

The “null hypothesis” is that µ = 0; the “alternative”
is that µ 6= 0. The “test statistic” is �X�. Large values
of the test statistic are evidence against the null
hypothesis. For instance, a value of 2.5 for �X� would
be quite unusual—if the null hypothesis is correct.
Such large values are therefore evidence against the
null.

If x is the “observed value” of X, that is, the value
realized in the data, then the P-value of the test is
8�−�x��+1−8��x��. In other words, P is the chance
of getting a test statistic as large as or larger than
the observed one; this chance is computed on the
basis of the null hypothesis. (Sometimes, P is called
the “observed significance level.”) If the null hypoth-
esis is correct, then P has a uniform distribution.
Otherwise, P is more concentrated near 0. Thus,
small values of P argue against the null hypothe-
sis. If P < 0:05, the result is “statistically signifi-
cant”; if P < 0:01, the result is “highly significant.”
These distinctions are somewhat arbitrary, but have
a powerful influence on the way statistical studies
are received. In this example, X is an unbiased es-
timate of µ. If X were biased, the bias would have
to be estimated from some other data, and removed
from X before proceeding with the test. P is about
sampling error, not bias.
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The Search for Significance

The effect of multiple comparisons can be seen
in our example. A value of 2.5 for �X� is unusual.
However, if 1,000 independent copies of X are ex-
amined, values of 2.5 or larger are to be expected.
If only the large values are noticed and the search
effort is ignored when computing P, severe distor-
tion can result. Disease clusters attributed to en-
vironmental pollution may present such analytical
problems. There are many groups of people, many
sources of pollution, many possible routes of expo-
sure and many possible health effects. Great care
is needed to distinguish real effects from the effects
of chance. In this context, the search effort may not
be apparent, because a cluster—especially of a rare
disease—can be quite salient.

The difficulty is not widely appreciated, so an-
other example may be useful. A coin that lands
heads 10 times in a row is unusual. On the other
hand, if a coin is tossed 1,000 times and there is
at least one run of 10 heads, that is only to be ex-
pected. The latter model may be more relevant for
a disease cluster, given the number of possibilities
open to examination.

If adjustment for confounding is done by regres-
sion and various specifications are tried, chance cap-
italization again comes into play. For some empiri-
cal evidence, see Ottenbacher (1998) or Dickersin
(1997). Many epidemiologists deny that problems
are created by the search for significance. Some com-
mentators are more concerned with loss of power
than distortions of the P-value, because they are
convinced a priori that the null hypothesis is un-
tenable. Of course, it is then unclear why statistical
testing and P are relevant. See, for instance, Roth-
man (1990) or Perneger (1998). On the other hand,
Rothman’s preference for estimation over testing in
the epidemiologic context often seems justified, es-
pecially when there is an effect to be estimated. For
more discussion, see Cox (1977, Section 5); also see
Section 9 below.

Intermediate Variables

If X and Y cause Z, but X also causes Y, the
variable Y would often be treated as an “intermedi-
ate variable” along the pathway from X to Z, rather
than a confounder. If the object is to estimate the
total effect of X on Z, then controlling for Y is usu-
ally not advised. If the idea is to estimate the direct
effect of X on Z, then controlling for Y may be ad-
vised, but the matter can under some circumstances
be quite delicate. See Greenland, Pearl and Robins
(1999).

7. OTHER EXAMPLES IN EPIDEMIOLOGY

This section provides more examples in epidemi-
ology. Generally, the studies mentioned are unper-
suasive, for one or more of the following reasons:

• Effects are weak and inconsistent.
• Endpoints are poorly defined.
• There is an extensive search for statistical signif-

icance.
• Important confounders are ignored.

When effects are weak or inconsistent, chance
capitalization and confounding are persistent is-
sues; poorly defined endpoints lend themselves to
a search for significance. These problems are par-
ticularly acute when studying clusters. However,
the section ends on a somewhat positive note. After
numerous false starts, epidemiology and molecular
biology have identified the probable etiologic agent
in cervical cancer.

Leukemias and Sarcomas Associated with
Exposure to Electromagnetic Fields

Many studies find a weak correlation between ex-
posure to electromagnetic fields and a carcinogenic
response. However, different studies find different
responses in terms of tissue affected. Nor is there
much consistency in measurement of dose, which
would in any event be quite difficult. Some inves-
tigators try to measure dose directly, some use dis-
tance from power lines, some use “wire codes,” which
are summary measures of distance from transmis-
sion lines of different types. Some consider exposure
to household appliances like electric blankets or mi-
crowave ovens, while some do not. The National Re-
search Council (1997) reviewed the studies and con-
cluded there was little evidence for a causal effect.
However, those who believe in the effect continue to
press their case.

Air Pollution

Some investigators find an effect of air pollution
on mortality rates: see Pope, Schwartz and Ransom
(1992). Styer et al. (1995) use similar data and a
similar modeling strategy, but find weak or incon-
sistent effects; also see Gamble (1998). Estimates
of risk may be determined largely by unverifiable
modeling assumptions rather than data.

Sellafield

There was a leukemia cluster associated with the
British nuclear facility at Sellafield. Fathers work-
ing in the facility were exposed to radiation, which
was said to have damaged the sperm and caused
cancer in the child after conception—the “paternal
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preconception irradiation” hypothesis. Two of the
Sellafield leukemia victims filed suit. There was a
trial with discovery and cross examination of expert
witnesses, which gives a special perspective on the
epidemiology. As it turned out, the leukemia cluster
had been discovered by reporters. The nature and
intensity of the search is unknown; P-values were
not adjusted for multiple comparisons. The effects
of news stories on subsequent responses to medi-
cal interviews must also be a concern. The epidemi-
ologists who investigated the cluster used a case–
control design, but changed the definitions of cases
and controls part way through the study. For such
reasons among others, causation does not seem to
have been demonstrated. The judge found that

the scales tilt decisively in favour of the
defendants and the plaintiffs therefore
have failed to satisfy me on the balance
of probabilities that [paternal preconcep-
tion irradiation] was a material contrib-
utory cause of the [Sellafield] excess : : : .
[page 209]

The cases are Reay and Hope v. British Nuclear
Fuels, 1990 R No 860, 1989 H No 3689. Sellafield
is also referred to as Seascale or Windscale in the
opinion, written by the Hon. Mr. Justice French of
the Queen’s Bench. The epidemiology is reported by
Gardner et al. (1990) and Gardner (1992); also see
Doll, Evans and Darby (1994). Case–control studies
will be discussed again in the next section. Chance
capitalization is not a fully satisfactory explanation
for the Sellafield excess. Some epidemiologists think
that leukemia clusters around nuclear plants may
be a real effect, caused by exposure of previously iso-
lated populations to viruses carried by immigrants
from major population centers; this hypothesis was
first put forward in another context by Kinlen and
John (1994).

Cervical Cancer

This cancer has been studied for many years.
Some investigators have identified the cause as tis-
sue irritation; others point to syphilis, or herpes,
or chlamydia; still others have found circumci-
sion of the husband to be protective. See Gagnon
(1950), Røjel (1953), Aurelian, Schumann, Marcus
and Davis (1973), Hakama et al. (1993) or Wynder,
Cornfield, Schroff and Doraiswami (1954). Today, it
is believed that cervical cancer is in large part a
sexually transmitted disease, the agent being cer-
tain types of human papillomavirus (HPV). There
is suggestive evidence for this proposition from epi-
demiology and from clinical practice, as well as

quite strong evidence from molecular biology. If so,
the earlier investigators were misled by confound-
ing. For example, the women with herpes were
presumably more active sexually, and more likely
to be exposed to HPV. The two exposures are as-
sociated, but it is HPV that is causal. For reviews,
see Storey et al. (1998) or Cannistra and Niloff
(1996). The history is discussed by Evans (1993,
pages 101–105); some of the papers are reprinted
by Buck, Llopsis, Nájera and Terris (1989).

8. HEALTH EFFECTS OF SMOKING

In the 1920s, physicians noticed a rapid increase
of death rates from lung cancer. For many years, it
was debated whether the increase was real or an
artifact of improvement in diagnostics. (The lungs
are inaccessible, and diagnosis is not easy.) By the
1940s, there was some agreement on the reality of
the increase, and the focus of the discussion shifted.
What was the cause of the epidemic? Smoking was
one theory. However, other experts thought that
emissions from gas works were the cause. Still oth-
ers believed that fumes from the tarring of roads
were responsible.

Two early papers on smoking and lung can-
cer were Lombard and Doering (1928) and Müller
(1939). Later papers attracted more attention, es-
pecially Wynder and Graham (1950) in the United
States, and Doll and Hill (1950, 1952) in the United
Kingdom. I will focus on the last, which reports on a
“hospital-based case–control study.” Cases were pa-
tients admitted to certain hospitals with a diagnosis
of lung cancer; the controls were patients admitted
for other reasons. Patients were interviewed about
their exposure to cigarettes, emissions from gas
works, fumes from tarring of the roads, and various
other possible etiologic agents. Interviewing was
done “blind,” by persons unaware of the purpose of
the study. The cases and controls turned out to have
rather similar exposures to suspect agents—except
for smoking. Data on that exposure are shown in
Table 2.

There were 1,357 cases in the study, of whom
1,350 were smokers; there were 1,357 controls, of
whom 1,296 were smokers. In both groups, non-

Table 2
Hospital-based case–control study; smoking status for cases and

controls. (Doll and Hill, 1952)

Cases Controls

Smoker 1,350 1,296
Nonsmoker 7 61
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smokers are rare; but they are much rarer among
the controls. To summarize such data, epidemiolo-
gists use the “odds ratio,”

1;350/7
1;296/61

≈ 9:

Roughly speaking, lung cancer is 9 times more
common among smokers than among non-smokers.
(Doll and Hill matched their cases and controls, a
subtlety that will be ignored here.) Interestingly
enough, there some cases where the diagnosis of
lung cancer turned out to be wrong; these cases
smoked at the same rate as the controls—an unex-
pected test confirming the smoking hypothesis.

The odds ratio is a useful descriptive statistic on
its own. However, there is a conventional way of do-
ing statistical inference in this setting, which leads
to confidence intervals and P-values. The basic as-
sumption is that the cases are a random sample
from the population of lung cancer cases, while the
controls are a random sample (with a different sam-
pling fraction) from the part of the population that
is free of the disease. The odds ratio in the data
would then estimate the odds ratio in the popula-
tion.

More explicitly, the population can be classified in
a 2× 2 table, as in Table 3, where a is the number
who smoke and have lung cancer; b is the number
who smoke but do not have lung cancer; similarly
for c and d. Suppose the lung cancer patients in
hospital are sampled at the rate φ from the corre-
sponding part of the population, while the controls
are sampled at the rate ψ from the remainder of
the population. With a large number of patients,
the odds ratio in the study is essentially

�φa�/�φc�
�ψb�/�ψd� =

a/c

b/d
= a/b
c/d

:

See Cornfield (1951). Since lung cancer is a rare
disease even among smokers, a/b ≈ a/�a+ b� is es-
sentially the rate of disease among smokers, while
c/d ≈ c/�c + d� approximates the rate among non-
smokers, and the odds ratio nearly coincides with
the rate ratio. Moreover, standard errors and the

Table 3
A 2× 2 table for the population, classified according to presence
or absence of lung cancer and smoking habit: a is the number of
smokers with lung cancer, b is the number of smokers free of the

disease, and so forth

Lung cancer No lung cancer

Smoker a b
Nonsmoker c d

like can be computed on the basis of the sampling
model. For details, see Breslow and Day (1980).

The realism of the model, of course, is open to seri-
ous doubt: patients are not hospitalized at random.
This limits the usefulness of confidence intervals
and P-values. Scientifically, the strength of the case
against smoking rests not so much on the P-values,
but more on the size of the effect, on its coherence
and on extensive replication both with the original
research design and with many other designs. Repli-
cation guards against chance capitalization and, at
least to some extent, against confounding—if there
is some variation in study design (Cornfield et al.,
1959; Ehrenberg and Bound, 1993).

For instance, Doll and Hill (1954) began a “co-
hort study,” where British doctors were followed
over time and mortality rates were studied in re-
lation to smoking habit. At this point, it became
clear that the smokers were dying at much faster
rates than the nonsmokers, not only from lung can-
cer but from many other diseases, notably coronary
heart disease. It also became clear that the odds
ratio computed from Table 2 was biased downward,
because patients in a hospital are more likely to be
smokers than the general population.

The results of the studies on smoking are gen-
erally coherent in the following ways: (i) There is
a dose–response relationship: persons who smoke
more heavily have greater risks of disease than
those who smoke less. (ii) The risk from smoking
increases with the duration of exposure. (iii) Among
those who quit smoking, excess risk decreases with
time after exposure stopped. These considerations
are systematized to some degree by “Hill’s postu-
lates”: see Evans (1993, pages 186ff). Of course, the
data are not free of all difficulties. Notably, inhala-
tion increases the risk of lung cancer only in some
of the studies.

There was resistance to the idea that cigarettes
could kill. The list of critics was formidable, in-
cluding Berkson (1955) and Fisher (1959); for a
summary of Fisher’s arguments, see Cook (1980).
The epidemiologists made an enormous effort to
answer criticisms and to control for possible con-
founders that were suggested. To take only one
example, Fisher advanced the “constitutional hy-
pothesis” that there was a genetic predisposition
to smoke and to have lung cancer: genotype is the
confounder. If so, there is no point in giving up
cigarettes, because the risk comes from the genes
not the smoke. To refute Fisher, the epidemiologists
studied monozygotic twins. The practical difficul-
ties are considerable, because we need twin pairs
where one smokes and the other does not; further-
more, at least one of the twins must have died
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from the disease of interest. Monozygotic twins are
scarce, smoking-discordant twin pairs scarcer yet.
And lung cancer is a very rare disease, even among
heavy smokers.

Data from the Finnish twin study (Kaprio and
Koskenvuo, 1989) are shown in Table 4. For exam-
ple, there were 22 smoking-discordant monozygotic
twin pairs where at least one twin died. In 17 out
of 22 cases, the smoker died first. Likewise, there
were 9 cases where at least one twin in the pair
died of coronary heart disease. In each case, the
smoker won the race to death. For all-cause mor-
tality or coronary heart disease, the constitutional
hypothesis no longer seems viable. For lung can-
cer, the numbers are tiny. Of course, other stud-
ies could be brought into play (Carmelli and Page,
1996). The epidemiologists refuted Fisher by design-
ing appropriate studies and collecting the relevant
data, not by a priori arguments and modeling. For
other views, see Bross (1960) or Stolley (1991).

Figure 3 shows current data from the United
States, with age-standardized death rates for the
six most common cancers among males. Cancer is a
disease of old age and the population has been get-
ting steadily older, so standardization is essential.
In brief, 1970 was chosen as a reference population.
To get the standardized rates, death rates for each
kind of cancer and each age group in each year are
applied to the reference population.

Mathematically, the standardized death rate from
cancer of type j in year t is

∑
i nidijt∑
i ni

;

where ni is the number of men in age group i in
the 1970 population, and dijt is the death rate from
cancer of type j among men in age group i in the
population corresponding to year t. That is “direct
standardization.”

As will be seen, over the period 1930–1980, there
is a spectacular increase in lung cancer rates. This
seems to have followed by about 20 or 25 years the
increase in cigarette smoking. The death rate from

Table 4
The Finnish twin study: first death by smoking status among
smoking-discordant twin pairs (Kaprio and Koskenvuo, 1989)

Smokers Nonsmokers

All causes 17 5
Coronary heart disease 9 0
Lung cancer 2 0

Fig. 3. Age-standardized cancer death rates for males, 1930–
1994, per 100,000; U.S. vital statistics. Reprinted by the permis-
sion of the American Cancer Society, Inc. (ACS). Figure is re-
drawn from American Cancer Society (1997), using data kindly
provided by the ACS. According to the ACS, “Due to changes in
ICD coding, numerator information has changed over time. Rates
for cancers of the liver, lung, and colon and rectum are affected
by these coding changes. Denominator information for the years
1930–1959 and 1991–1993 is based on intercensal population es-
timates, while denominator information for the years 1960–1989
is based on postcensal recalculation of estimates. Rate estimates
for 1968–1989 are most likely of better quality.”

lung cancer starts turning down in the late 1980s,
because cigarette smoking began to decrease in the
late 1960s. Women started smoking later than men,
and continued longer: their graph (not shown) is
lower, and still rising. The data on U.S. cigarette
consumption are perhaps not quite as solid as one
might like; for English data, which tell a very sim-
ilar story, see Doll (1987) and Wald and Nicolaides-
Bouman (1991). The initial segment of the lung can-
cer curve in Figure 3 was one of the first clues in
the epidemiology of smoking. The downturn in the
1980s is one of the final arguments on the smoking
hypothesis.

The strength of the case rests on the size and co-
herence of the effects, the design of the underlying
epidemiologic studies, and on replication in many
contexts. Great care was taken to exclude alterna-
tive explanations for the findings. Even so, the argu-
ment depends on a complex interplay among many
lines of evidence. Regression models are peripheral
to the enterprise. Cornfield et al. (1959) provides an
interesting review of the evidence in its early stages.
A summary of more recent evidence will be found in
IARC (1986). Gail (1996) discusses the history.

9. OTHER VIEWS

According to my near-namesake Friedman (1953,
page 15), “the relevant question to ask about the
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‘assumptions’ of a theory is not whether they are
descriptively ‘realistic,’ for they never are, but : : :
whether the theory works, which means whether it
yields sufficiently accurate predictions.” This argu-
ment is often used by proponents of modeling. How-
ever, the central question has been begged: how do
we know whether the model is making good pre-
dictions? Fitting an equation to an existing data set
is one activity; predicting the results of an interven-
tion is quite another, and the crucial issue is getting
from here to there. If regression models were gener-
ally successful in making causal inferences from as-
sociational data, that would be compelling evidence.
In my experience, however, those who repeat Fried-
man’s argument are seldom willing to engage in de-
tailed discussions of the track record.

According to Bross (1960, page 394), “a critic who
objects to a bias in the design [of a study] or a failure
to control some established factor is, in fact, raising
a counterhypothesis : : : [and] has the responsibility
for showing that his counterhypothesis is tenable.
In doing so, he operates under the same ground
rules as [the] proponent.” Also see Blau and Dun-
can (1967, page 175). There is some merit to this
point. Critics, like others, have an obligation to be
reasonable. However, the argument is often used to
shift the burden of proof from the proponent of a
theory to the critic. That is perverse. Snow and his
peers sought to carry the burden of proof, not to
shift it. That is why their discoveries have stood the
test of time.

According to some observers, regression models
can be misleading in attempts to identify causes;
once causation has been established, the models
can be used to quantify the magnitudes of the
effects. I agree, although quantification is by no
means straightforward. It is not only causation that
must be established, but also the specification of
the model, including the identification of the prin-
cipal confounders, and the form of the equation
connecting the relevant factors to the outcomes of
interest (Section 6). The number of successes under
this heading is not large.

Ken Rothman and others have expressed a pref-
erence for confidence intervals over hypothesis
testing. There have been objections, on the grounds
that the two forms of inference are isomorphic.
These objections miss the point. The isomorphism
can tell us how to translate one set of mathematical
theorems into another, but can scarcely dictate the
form of an empirical research question. An investi-
gator may be interested in a point estimate for some
parameter, and may also want a measure of the
uncertainty due to random error. For such an in-
vestigator, testing a sharp null hypothesis may be

irrelevant. That would lead to confidence inter-
vals, not P-values. Such an investigator, of course,
would not care whether the confidence interval just
misses—or just covers—some critical value, like 1.0
for an odds ratio. To justify his position, Rothman
makes two arguments: (i) fixed-level significance
testing often creates artificial dichotomies; (ii) prac-
titioners find it easier to misinterpret P-values than
point estimates. For more discussion, see Rothman
(1996), Freedman, Pisani and Purves (1997, chapter
29), Lang, Rothman and Cann (1998) or Rothman
and Greenland (1998, pages 183–194); the last has
further references to the literature.

10. SUMMARY AND CONCLUSIONS

Statisticians generally prefer to make causal in-
ferences from randomized controlled experiments,
using the techniques developed by Fisher and Ney-
man. In many situations, of course, experiments are
impractical or unethical. Most of what we know
about causation in such contexts is derived from ob-
servational studies. Sometimes, these are analyzed
by regression models; sometimes, these are treated
as natural experiments, perhaps after conditioning
on covariates. Delicate judgments are required to
assess the probable impact of confounders (mea-
sured and unmeasured), other sources of bias, and
the adequacy of the statistical models used to make
adjustments. There is much room for error in this
enterprise, and much room for legitimate disagree-
ment.

Snow’s work on cholera, among other examples,
shows that sound causal inferences can be drawn
from nonexperimental data. On the one hand, no
mechanical rules can be laid down for making such
inferences. Since Hume’s day, that is almost a tru-
ism. On the other hand, an enormous investment of
skill, intelligence and hard work seems to be a re-
quirement. Many convergent lines of evidence must
be developed. Natural variation needs to be iden-
tified and exploited. Data must be collected. Con-
founders need to be considered. Alternative expla-
nations have to be exhaustively tested. Above all,
the right question needs to be framed.

Naturally, there is a strong desire to substitute
intellectual capital for labor. That is why investiga-
tors often try to base causal inference on statistical
models. With this approach, P-values play a crucial
role. The technology is relatively easy to use and
promises to open a wide variety of questions to the
research effort. However, the appearance of method-
ological rigor can be deceptive. Like confidence in-
tervals, P-values generally deal with the problem of
sampling error not the problem of bias. Even with
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sampling error, artifactual results are likely if there
is any kind of search over possible specifications for
a model, or different definitions of exposure and dis-
ease. Models may be used in efforts to adjust for con-
founding and other sources of bias, but many some-
what arbitrary choices are made. Which variables
to enter in the equation? What functional form to
use? What assumptions to make about error terms?
These choices are seldom dictated either by data or
prior scientific knowledge. That is why judgment is
so critical, the opportunity for error so large and the
number of successful applications so limited.
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Médecine le 30 Avril 1878, par M. Pasteur en Son Nom et au
Nom de MM. Joubert et Chamberland. G. Masson, Paris.



258 D. FREEDMAN

Pearl, J. (1995). Causal diagrams for empirical research.
Biometrika 82 689–709.

Perneger, T. V. (1998). What’s wrong with Bonferroni adjust-
ments. British Medical Journal 316 1236–1238.

Pope, C. A., Schwartz, J. and Ransom, M. R. (1992). Daily mor-
tality and PM10 pollution in Utah Valley. Archives of Envi-
ronmental Health 47 211–217.

Quetelet, A. (1835). Sur l’Homme et le Développement de Ses
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