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REGULARITY AND UNIQUENESS FOR CONSTRAINED
M-ESTIMATES AND REDESCENDING M-ESTIMATES

By John T. Kent and David E. Tyler1

University of Leeds and Rutgers University

Constrained M-estimates of multivariate location and scatter are
found by finding the global minimum of an objective function subject to
a constraint. They are related to redescending M-estimates of multivari-
ate location and scatter since any stationary point of the objective function
corresponds to such an M-estimate. Unfortunately, even for the population
form of the estimator, that is, the constrained M-functional, the objective
function may have multiple stationary points. In this paper, we give condi-
tions under which the objective function is as well behaved as possible, in
particular that it has at most one local minimum. To carry out this task,
we introduce a class of distributions which we call “regular” distributions
with respect to a particular objective function.

1. Introduction and summary. Constrained M-estimators (CM-
estimators) of multivariate location and scatter were introduced in Kent and
Tyler (1996) to combine the good local robustness properties of M-estimators
and the good global robustness properties of S-estimators. The constrained
M-estimators are defined via the minimization of an objective function subject
to some constraint. As with S-estimators, the critical points of this minimiza-
tion problem correspond to the solutions of redescending M-estimates of mul-
tivariate location and scatter and hence there may be multiple critical points.
The purpose of this paper is to give conditions under which the constrained
M-minimization problem is as well behaved as possible.

Let ρ�s� be a given function of s ≥ 0 satisfying

lim
s→0

ρ�s� = ρ�0� = 0� lim
s→∞ρ�s� = 1 and ρ�s� is nondecreasing�(1.1)

Let c > 0 be a “tuning parameter”, and let 0 < ε < 1 be a “breakdown
parameter.” IfF is a nondegenerate distribution in �p�p ≥ 1, the “constrained
M-functionals” of location and scatter, ��F� and ��F�, say, are defined by
minimizing

L��� �� = cE�ρ�S�� + 1
2 log det���(1.2)

over ��� ��, � ∈ �p and ��p× p� positive definite, subject to the constraint

E�ρ�S�� ≤ ερ�∞� = ε�(1.3)

Here S = �X − ��T�−1�X − �� is the squared Mahalanobis distance between
X and �, with X ∼ F. In practice, ��F� and ��F� will usually be uniquely
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determined, but the theory allows for the possibility of ties. The terminology
“constrained M-estimator” and the notation ��̂� �̂� are used when F is given
by an empirical distribution Fn.

We call the parameter ε a “breakdown parameter” since it is equivalent
to the asymptotic breakdown point of the constrained M-estimator whenever
ε ≤ 1/2. The value of ε can be chosen to be 1/2 in practice. We call the
parameter c a ‘tuning constant’ since the value of c greatly affects the influence
function and the asymptotic efficiency of the constrained M-estimator. Tuning
a CM-estimator does not affect its breakdown point. This is in contrast to
the S-estimators: tuning them to obtain desirable properties for the influence
function and desirable levels of asymptotic efficiency affects their breakdown
point. For a more detailed discussion, see Kent and Tyler (1996).

When ρ is differentiable, the critical points of L��� �� correspond to
redescending M-functionals of multivariate location and scatter. That is, they
are solutions to the M-functional equations

� = E
{
u�S�X�/E�u�S�}(1.4)

and

� = cE
{
u�S��X − ���X − ��T}�(1.5)

where u�s� = 2ρ′�s� and again S = �X − ��T�−1�X − ��. The forms of the
influence functions of location and scatter depend upon s1/2u�s� and su�s�,
respectively, and these redescend to zero whenever ρ is bounded, provided
u�s� is nonincreasing; see (3.2) below. Redescending M-estimates based on
the empirical versions of (1.4) and (1.5) have been used successfully by Rocke
and Woodruff (1996) to identify outliers in high-dimensional datasets.

Next we consider a class of distributions possessing enough symmetry to
determine the solution to (1.2) and (1.3). Tatsuoka and Tyler (2000) define
the class �p, say, to consist of the distributions of random vectors X ∈ �p

satisfying the following two conditions:

1. There exists a nonsingular p × p matrix A and a p-dimensional vector
�0 such that U = A−1�X − �0� has a pdf f�u� which is invariant under
permutations and sign changes of the components of u. Write �0 = AAT.

2. f�exp�v1�� � � � � exp�vp�� is Schur concave in v ∈ �p. In particular, this prop-
erty implies that f�u� is radially nonincreasing.

The class �p contains all densities g�x� for which (1) holds and for which
the level sets �x� g�x� ≥ c� are convex sets. In turn this latter class con-
tains the class �p, say, of elliptical distributions with pdfs which are radially
nonincreasing.

If a random vector X satisfying (1) happens to have finite second moments,
then it must satisfy E�U� = 0� var�U� ∝ I, and so E�X� = �0� var�X� ∝ �0 =
AAT. Thus we expect the solutions of (1.2) subject to (1.3) to take the form
� = �0, � = �0/κ for some κ > 0. Tatsuoka and Tyler [(2000), Theorem 4.2]
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confirm this result for F ∈ �p under the additional mild conditon

ρ�s� is strictly increasing, or f�u� is strictly radially decreasing�(1.6)

If (2) does not hold in the definition of �p, then Tatsuoka and Tyler (2000)
give examples for which the solution of (1.2) subject to (1.3) is not of the form
� = �0, � = �0/κ.

Thus, for a constrained M-functional to be uniquely defined at F ∈ �p, it is
necessary and sufficient that the “scaling parameter” κ be uniquely defined.
Although the scaling parameter is often viewed as a nuisance parameter, the
uniqueness of κ is essential in obtaining the influence functions of the con-
strained M-functionals and the asymptotic distributions of the constrained
M-estimates; see Kent and Tyler (1996) for details. Further, the parameter κ
is important for summarizing the concentration of the distribution. The value
of κ for the constrained M-functional corresponds to the minimum of the “pro-
file objective function”

l�κ� = cE
{
ρ
(
κS0

)}− p

2
log κ�(1.7)

where S0 = �X − �0�T�−1
0 �X − �0�, subject to the constraint (1.3). Note that

a constant term 1
2 log det��0� has been dropped in (1.7). The constraint (1.3)

can be reexpressed as κ ≤ κ0 with κ0 being the solution to

E
{
ρ
(
κ0S0

)} = ε�(1.8)

In general, for a given ρ function and a given distribution F, the uniqueness
of κ can be checked numerically since l�κ� is a univariate function. One of the
main goals of this paper is to give a more detailed theoretical study of the
scaling parameter κ.

We first note thatE�ρ�κS0�� is bounded and increasing in κwhereas− log κ
decreases from+∞ to−∞. Hence, l�κ� is dominated by−�p/2� log�κ� for small
and large κ. However, for large enough c, l�κ� will be increasing on at least
one interval of κ values.

Hence, the following definition describes the simplest possible behavior of
l�κ� and its dependence on c. The underlying randomness can be specified
either in terms of the distribution of the random vector X, or equivalently
in terms of the distribution of the squared Mahalanobis distance S0 = �X −
�0�T�−1

0 �X − �0�.

Definition 1.1. The distribution of a random variable S0 > 0 is said to be
“regular” with respect to ρ�·� if there exists c0 > 0 such that:

(a) For c < c0, l�κ� has no local maxima or minima.
(b) For c = c0, l�κ� has just one critical point (which is also an inflection

point).
(c) For c > c0, l�κ� has just two critical points, one local maximum and one

local minimum.
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Regularity of S0 is clearly a sufficient but not necessary condition for l�κ�
to have a unique minimum over κ ≤ κ0, except for the rare case whenever
c > c0 and the local minimum of l�κ� is equal to l�κ0�. In this case, the
optimal value of the scaling parameter κ corresponds to κ0 as well as to the
value of κ which produces the local minimum of l�κ�. Consequently, except for
this special case, regularity of S0 insures the uniqueness of the constrained
M-functional at F ∈ �p.

The regularity of S0 ∼ χ2
p, that is, when X has a normal distribution, was

established in an earlier unpublished version of Kent and Tyler (1996) in all
dimensions p ≥ 1 for two choices of ρ function: the biweight ρ function and the
exponentially weighted ρ function. The biweight ρ function is so named since
its weight function u�s� = 2ρ′�s� corresponds to a Tukey biweight function.
The exponentially weighted ρ function,

ρ�s� = 1− e−s�(1.9)

is so named since its corresponding weight function is u�s� = 2e−s. This weight
function was first proposed by Dennis and Welsch (1976) within the regression
setting and independently proposed within the computer vision literature as a
tractable alternative to the biweight function; see Li (1995). The extension of
regularity to a wider class of distributions beyond the chi-squared distribution
is quite delicate and so far analytic progress has been made only with the
exponentially weighted ρ function. The main result of this paper, given in
Section 2, establishes the regularity of a certain class of infinitely divisible
distributions for S0 with respect to (1.9). This class of regular distributions
for S0 includes both long- and short-tailed distributions for the corresponding
distribution of X.

The uniqueness of the constrained M-functionals as discussed so far refers
to the uniqueness of the global minimum of L��� �� under the constraint
(1.3). This leaves open the question of the nature of the critical points of
L��� ��, that is, the nature of the solutions of (1.4) and (1.5). We address
this question in Section 3 for the class �p of elliptically symmetric distribu-
tions with nonincreasing radial pdfs. The method of proof does not seem to
generalize to the wider class �p. In particular, we show that if F ∈ �p and
further mild regularity conditions hold, then any critical points of L��� ��
must be of the form ��F� = �0 and ��F� = �0/κ. Moreover, any critical point
of L��� �� must be either a local minimum or a saddlepoint. So, when the
distribution of S0 is regular and case (c) holds, L��� �� has one local mini-
mum and one saddlepoint. When case (b) holds, it has one saddlepoint but
no local minimum, and when case (a) holds, it has no critical points. Some
implications of these results for redescending M-estimates are discussed in
Section 3.

In a limited sense, regularity carries over to finite samples. Suppose the
population objective functional L��� �� possesses exactly k critical points, and
that at these critical points the second derivative matrix of L is nonsingular.
Let C be a compact region in parameter space whose interior contains these
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critical points. Then for large enough n, Ln��� �� will also have exactly k
critical points on C. This result is a simple consequence of the fact that the
first two derivatives of Ln converge to those of L uniformly on C.

2. The main regularity theorem. In this section we look at the critical
points of the profile objective function (1.7). If we let

χ�κ� = E
{
ρ
(
κS0

)}
(2.1)

denote the “ρ-transform” of S0, then (1.7) takes the form

l�κ� = cχ�κ� − p

2
log κ(2.2)

so the critical points satisfy

κχ′�κ� = p

2c
�(2.3)

It has already been assumed that ρ�s� is a bounded nondecreasing function.
If, in addition, u�s� = 2ρ′�s� is a bounded nonincreasing function, it follows
that u�s� → 0 and su�s� → 0 as s → ∞.

Then it is easy to show that κ χ′�κ� → 0 as κ → 0 and as κ → ∞. Further,
the local maxima and minima of l�κ� come in pairs. Hence, S0 will have a regu-
lar distribution (see Definition 1.1) if and only if any horizontal line intersects
the graph of κ χ′�κ� versus κ in at most two places, which is true if and only
if κ χ′�κ� is strictly unimodal.

When we specialize to ρ�s� = 1−e−s, this characterization can be described
in terms of the Laplace transform (LT) of S0,

θ�κ� = E
{
e−κS0

}
�(2.4)

In this case χ�κ� = 1− θ�κ� and (2.3) becomes

−κ θ′�κ� = p/2c�(2.5)

with S0 being regular if −κ θ′�κ� is strictly unimodal.

Theorem 2.1. The following classes of distributions for S0 are regular with
respect to ρ�s� = 1− e−s:

(a) The Bondesson power class �∗;
(b) The stable distributions with θ�κ� = exp�−cκa�, 0 < a ≤ 1, c > 0.

For any class of infinitely divisible distributions � , the “power class” � ∗

is defined here to mean all convolution powers of distributions in � of order
λ ≥ 1. If f�s� is a density in � with LT θ�κ�, then the convolution power
f∗λ�s�, say, has LT �θ�κ��λ. The fact that � is infinitely divisible ensures that
the convolution powers are well-defined probability distributions for all real
λ ≥ 0, though here we are only interested in λ ≥ 1. Note that the class of stable
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distributions is closed under convolutions, so equals its own power class. For
a brief summary of the stable distributions on �0�∞�, see, for example, Feller
(1966), page 424].

Before proving the theorem we give a brief description of the Bondesson
class. For further details see Bondesson [(1992), especially pages 73, 29, 30,
71, 51, 69] where this class is denoted by both � and � . Let S be a random
variable on �0�∞� with pdf f�s� and Laplace transform θ�κ�.
1. The class � consists of all probability densities of the form

f�s� = Csβ−1
m∏
j=1

�1+ cjs�−γj� s > 0�(2.6)

where m ≥ 1� β > 0� cj > 0� γj > 0, and their weak limits. For simplic-
ity of exposition, limiting distributions concentrated at a single point are
excluded from �. All densities in � have support �0�∞�.

2. Another useful class of distributions on �0�∞� is the “Thorin class” � of
generalized gamma convolutions. A random variable S lies in � if and only
if

θ�κ� = exp
{
− bκ−

∫
log�1+ κ/y�U�dy�

}
�(2.7)

where U�dy� is a measure on �0�∞� satisfying∫
�0�1�

� log y�U�dy� < ∞�
∫
�1�∞�

y−1U�dy� < ∞�

The parameter b ≥ 0 gives the left-hand endpoint of the support of S.
3. Thus � can be described as the class of weak limits of convolutions of

gamma distributions, and hence all distributions in � are infinitely divisi-
ble. It can be shown that � is a proper subclass of � with b = 0
in (2.7).

4. If f�s� ∈ �, let β = ∫∞
0 U�dy� in (2.7) with 0 < β ≤ ∞. Then β can be

alternatively defined by β = sup�δ� lims↓0 f�s�/sδ−1 = 0�. Say that β is the
“order of f�s�.”

5. If f�s� ∈ � with LT θ�κ�� then −sf�s�e−as/θ′�a� ∈ � for all a > 0 [including
a = 0 if −θ′�0+� < ∞] with LT θ′�κ+ a�/θ′�a�. Note that if f�s� is of order
β, then −sf�s�e−as/θ′�a� is of order β+ 1.

6. If S ∈ �, then Sδ ∈ � for all real �δ� ≥ 1. Here Sδ denotes the ordinary
power of S, not a convolution power.

7. If S and T are independent random variables in β, then ST ∈ β. In par-
ticular, if T ∼ χ2

ν with ν > 0, then ST ∈ β.

Properties 6 and 7 are rather unusual for a class of infinitely divisible
distributions. Further, � is not closed under convolution or convolution
roots.

Bondesson’s class� should not be confused with the larger class of infinitely
divisible distributions�0, say, of “generalized convolutions of mixtures of expo-
nential distributions,” also studied in Bondesson [(1992), page 137].
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Proof of Theorem 2.1. (a) Let f�s� ∈ � with LT θ�κ�. We wish to show
that the convolution power f∗λ�s�, say, for λ ≥ 1 is regular. Write the LT of
f∗λ�s� as �θ�κ��λ = θλ�κ� for simplicity. Since f�s� ∈ � so is s f�s� (up to
a constant factor), with LT −θ′�κ�. [This statement assumes −θ′�0+� < ∞.
If not, work with −θ′�κ + a� below and use a limiting argument as a → 0 to
deduce regularity.] Since � ⊂ � , we can express θ�κ� in the form (2.7) with
b = 0, and θ′�κ� in the form

−θ′�κ� = C1 · exp
{
−
∫
log�1+ κ/y�V�dy�

}

for some measure V�dy�. Hence

−θ′λ�κ� = −θ′�κ� θ�κ�λ−1

= C2 · exp
{
−
∫
log�1+ κ/y�Vλ�dy�

}
�

where Vλ�dy� = V�dy� + �λ− 1�U�dy�. Differentiating θ′λ�κ� yields

θ
′′
λ�κ� = −

{∫ 1
κ+ y

Vλ�dy�
}
θ′λ�κ��

Setting ψ�κ� = −κθ′λ�κ�, we find

ψ′�κ� = −θ′λ�κ� − κθ
′′
λ�κ�

= −θ′λ�κ�
[
1−

∫ κ

κ+ y
Vλ�dy�

]

= −θ′λ�κ��1− b�κ�� say�

Note that b�κ� is strictly monotone increasing with b�0� = 0 and b�κ� → λβ+1
as κ → ∞. Here β is the order of f�s� and β + 1 = ∫

V�dy� is the order of
sf�s��0 < β ≤ ∞. If we let κ0 denote the unique value of κ satisfying b�κ0� = 1,
then ψ′�κ� > 0 for κ < κ0 and ψ′�κ� < 0 for κ > κ0; that is, ψ�κ� is strictly
unimodal as required.

(b) For the stable case, let θ�κ� = exp�−cκa��0 < a ≤ 1. Then ψ�κ� =
−κθ′�κ� = acκa exp�−cκa� which is easily seen to be strictly unimodal.

Comments. 1. Spherically symmetric distributions. The class � contains
a large number of well-known distributions including gamma, F, Pareto, log-
normal, and generalized inverse Gaussian. Further, if X ∈ �p can be written
as a scale mixture of multivariate normals, X = Z

√
T, with Z ∼ Np�0� I�

independent of T ∈ �, then ZTZ ∼ χ2
p and S = XTX = TZTZ ∈ � also.

In particular, if X follows a multivariate t distribution with ν > 0 degress of
freedom, then S ∈ �. The multivariate t distribution is the single most com-
mon example for robustness studies, and in particular includes long-tailed
distributions for ν near 0.
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2. Distributions with i.i.d. components. It is also possible to construct
vectors X of i.i.d. components such that S = XTX satisfies the assumptions of
Theorem 2.1. Suppose each component Xi is symmetrically distributed such
that X2

i lies in the class of distributions in either part (a) or (b) of
Theorem 2.1. Then S = ∑p

i=1X
2
i also lies in the class of part (a) or (b), respec-

tively, thus ensuring the regularity of S. For example, if each Xi follows a
t-distribution with ν > 0 degrees of freedom, then X2

i follows an F1� ν dis-
tribution which lies in �, and S lies in �∗. In addition Tatsuoka and Tyler
(2000) show that this distribution for X lies in �p.

3. Some, but not all the stable distributions lie in �. Bondesson [(1992),
pages 85, 88] gives more details. The limiting case a = 1, θ�κ� = e−κ corre-
sponds to a point mass at s = 1. However, the assumption of a stable law for
S does not seem very useful for robustness. For example if a = 1/2, the stable
density for S takes the form f�s� ∝ s−3/2 exp�−1/s�, which dies away expo-
nentially as s → 0. Thus, under either an assumption of elliptic symmetry or
i.i.d. components for X, the density of f�x� will vanish at x = 0, which vio-
lates the assumption used in earlier sections that the density of a symmetric
multivariate distribution decreases radially from the origin.

4. Not all distributions on �0�∞� are regular. Here is an example in p = 2
dimensions. Let q take two values q1 = 1 and q2 = 50, each with probability
1/2 and let X�q ∼ Np�0� qI�. Then S = XTX is a mixture of two scaled χ2

p

variates with Laplace transform

θ�κ� = 1
2

2∑
j=1

�1+ 2qjκ�−p/2

and with ψ�κ� = −κθ′�κ� given by

ψ�κ� = 1
2pκ

2∑
j=1

qj�1+ 2qjκ�−p/2−1�

For these particular parameters it can be checked numerically that ψ�κ� has
two modes, at κ = 0�012 and κ = 0�42 of roughly equal height. A plot of
ψ�κ� versus log κ is given in Figure 1 and a plot of l�κ� versus log κ is given
in Figure 2 for c = 8�3. Note that l�κ� has two local minima and two local
maxima. If ε = 1

2 the constraint (1.3) takes the form κ ≤ 0�0707 �log κ ≤
−2�65� which implies the first local minimum of l�κ� is the global constrained
minimum.

If p = 2, then S follows a mixture of exponential distributions, a class
which is known to be infinitely divisible. Hence this example also shows that
not all infinitely divisible distributions are regular.

3. Stationary points under elliptical symmetry. In this section we
study the nature of the solutions of the M-functional equations (1.4) and (1.5)
when the distribution of X lies in �p. Note that the M-functionals are affine
equivariant in the sense that if X is transformed to X∗ = AX+b where A�p×
p� is nonsingular and b ∈ �p, then ��F∗� = ��F� + b, ��F∗� = A��F�AT.
Hence, without loss of generality we may restrict attention to the case where
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Fig. 1. A plot of ψ�κ� for the example in Comment 4 of Section 2. Note the bimodality of ψ�κ�.
The horizontal line has a value of ψ = p/2c = 2/�2 · 8�3� = 0�12 and intersects this curve in four
places which are the critical points of l�κ�.
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Fig. 2. A plot of l�κ� for the example in Comment 4 of Section 2 with c = 8�3. Note the presence
of four critical points, two of which are local minima, thus demonstrating the lack of regularity.
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X is spherically symmetric about the origin with density f�x� = f0�s� say,
where s = xTx.

The assumptions of Section 1 already imply that:

1. ρ�s� is nondecreasing and f0�s� is nonincreasing in s > 0.

For this section we need the following additional mild regularity conditions,
where u�s� = 2ρ′�s�:
2. ρ�s� is continuous in s > 0 and is continuously differentiable for all but a

finite set of s values.
3. s1/2u�s� is bounded over s > 0.
4. su�s� is bounded over s > 0.
5. In some interval 0 < s < s∗, ρ�s� is strictly increasing and f0�s� is strictly

decreasing.
6. f0�s� is continuous in s > 0 and is continuously differentiable for all but a

finite set of s values.

The last condition is just used in Proposition 3.2 below; the other conditions
are used in both propositions.

For derivative calculations it is convenient to parameterize V = �−1 in
three pieces,

V = κ343T�(3.1)

where κ > 0� 3 is an orthogonal matrix, and 4 = diag�eδi� is a diagonal matrix
with

∑
δi = 0 so that det�4� = 1. Let ∇�L��� �� and ∇	L��� �� denote the

gradient vectors of L with respect to � and 	 = �δ1� � � � � δp�T, ignoring the
constraint on 	. This constraint can be accommodated by considering direc-
tional derivatives 
T∇	L where

∑
βi = 0. If H��p − 1� × p� is a rank p − 1

matrix whose row sums all vanish, then the vector H∇	L summarizes all the
directional derivative information. Similarly, let ∇�∇T

�L and ∇	∇T
	 L denote

the �p× p� matrices of second partial derivatives.
The main results of this section are given by the following two properties.

Proposition 3.1. Under conditions (1)–(5):

(a) ∇�E�ρ�κ�X − ��T4�X − ���� = 0 if and only if � = 0.
(b) H∇	E�ρ�κXT4X�� = 0 if and only if 	 = 0, that is, 4 = I.

Proposition 3.2. Under conditions (1)–(6):

(a) ∇�∇T
�E�ρ�κ�X − ��T�X − ������=0 is positive definite.

(b) H∇	∇T
	 E�ρ�κXT4X�HT��	=0 is positive definite.

(c) H∇	∇T
�E�ρ�κ�X − ��T4�X − ������=0�	=0 = 0.

(d) �∂/∂κ�∇�E�ρ�κ�X − ��T�X − ������=0 = 0.
(e) �∂/∂κ�H∇	E�ρ�κXT4X���	=0 = 0.
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Comments. 1. The proofs of these propositions are given at the end of this
section. For the moment we focus on their implications about solutions to the
M-functional equations (1.4) and (1.5), respectively.

2. By spherical symmetry, L��� �� does not vary with 3. Hence criti-
cal points of L are determined by ∇�L = 0� ∂L/∂κ = 0 and HT∇	L = 0.
Since log det� = −p log κ does not depend on � or 	, ∇� log det��� = 0 and
HT∇	 log det��� = 0. Hence from Proposition 3.1, any critical point of L��� ��
must satisfy � = 0 and � = I/κ for some κ > 0. A similar conclusion is reached
by Hampel, Ronchetti, Rousseeuw and Stahel [(1986), Theorem 2, page 288]
under a somewhat more general framework. However, they do not include the
results of Proposition 3.2, and they left open the question of uniqueness for κ,
which is addressed in Section 2.

3. The nature of these critical points is determined by Proposition 3.2.
Note that ∇�∇T

�L��� �� > 0 at � = 0 and H∇	∇T
	 log det���HT > 0 at � = 0,

	 = 0. Hence L��� �� always has a local minimum with respect to � and 	,
respectively, at � = 0, 	 = 0. Therefore, with respect to all the parameters, the
critical points of L can never be local maxima; they can only be local minima
or saddle points, depending on the sign of ∂2L/∂κ2.

4. Conditions (1)–(6) are sufficient in the following proofs to ensure that
the integrals converge, that the interchange of differentiation and integration
is justified and that the strict inequalities hold where required. Note that
in general (3) is more restrictive than (4) for s near 0, and vice versa for s
near ∞. In practice u�s� will usually be a bounded nonincreasing function,
possibly with some discontinuities. In this case (3) and (4) hold automatically.
In particular, su�s� → 0 as s → ∞ in this case because

1
2su�s� ≤

∫ s

s/2
u�t�dt = 2�ρ�s� − ρ�s/2���(3.2)

and the right-hand side tends to 0 as s → ∞ since ρ is bounded and monotone.
The fact that f�x� is a pdf on �p implies that

∫∞
0 s�p−2�/2f0�s�ds < ∞. Under

(1) and (6), a result in Feller [(1966), page 148] based on integration by parts
shows that this bound is equivalent to − ∫∞

0 sp/2f′
0�s�ds < ∞. Hence xTxf′�x�

is integrable over �p.
5. The results of this section can also be applied to the CM-functionals

which minimize (1.2) subject to (1.3). For a given value of κ, the optimal choice
of � and 	 [in the sense of minimizing (1.2) and making it easiest to satisfy
the constraint (1.3)] must take the form � = 0 and 	 = 0 by Proposition
3.1. Hence, under the regularity conditions of this section, Propositions 3.1
and 3.2 yield an alternative proof that for F ∈ �p, the CM-functionals must
always take the form � = 0, � = I/κ. The original proof given in Kent and
Tyler (1996) is based on uniqueness results for S-functionals given by Davies
(1987).
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Proof of Proposition 3.1. (a) Let S = κ�X − ��4�X − ��. Then
E�ρ�S�� =

∫
ρ�s�f0�xTx�dx

with derivative components, j = 1� � � � � p, given by

�∇�E�ρ�S���j = κ

[∫
4��− x�ρ′�s�f0�xTx�dx

]
j

= κeδj
∫
�µj − xj�ρ′�s�f0�xTx�dx(3.3)

= −κeδj
∫
yjρ

′
(
κ
∑

eδiy2
i

)
f0

(∑�yi + µi�2
)
dy�

where yi = xi−µi. If � = 0 this integral vanishes by symmetry. If not, choose
a component j for which µj �= 0, and split the integral between yj > 0 and
yj < 0 to get

�∇�E�ρ�S���j = −κeδj
∫
yj>0

yjρ
′
(
κ
∑

eδiyi

)
�f0�u1� − f0�u2��dy�

where

u1 = �yj + µj�2 +
∑
i�=j

�yi + µi�2� u2 = �−yj + µj�2 +
∑
i�=j

�yi + µi�2�

If µj > 0, then u1 > u2 and f0�u1� ≤ f0�u2�, with strict inequality for y
near 0. Further, ρ′�s� ≥ 0 for s > 0 with strict inequality for s near 0. Thus
the integrand is nonnegative everywhere and strictly positive for y near 0.
Thus the integral is positive, and conversely if µj < 0. In either case we have
established that �∇�E�ρ�S���j �= 0.

(b) When � = 0,

E�ρ�S�� =
∫
ρ
(
κ
∑

eδix2
i

)
f0

(∑
x2
i

)
dx

[∇	E�ρ�S��]
j
= κeδj

∫
x2
jρ

′
(
κ
∑

eδix2
i

)
f0

(∑
x2
i

)
dx(3.4)

= κe−
∑

δi/2
∫
y2
jρ

′
(
κ
∑

y2
i

)
f0

(∑
e−δiy2

i

)
dy�

where yi = eδi/2xi. If 	 = 0 the value of this integral does not depend on j;
hence 
T∇	E�ρ�S�� = 0 wherever

∑
βi = 0 and so H∇	E�ρ�S�� = 0.

If 	 �= 0 and
∑

δi = 0, then there are at least two distinct components of 	,
say δ1 > δ2 for simplicity. Let β1 = 1, β2 = −1, βi = 0 for i �= 1�2� and split
the integral in between y2

1 > y2
2 and y2

1 < y2
2 to get


T∇	E�ρ�S�� = κ
∫
�y2

1 − y2
2�ρ′

(
κ
∑

y2
i

)
f0

(∑
e−δiy2

i

)
dy

= κ
∫
y2
1>y

2
2

�y2
1 − y2

2�ρ′
(
κ
∑

y2
i

)
�f0�u1� − f0�u2��dy�
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where u1 = eδ1y2
1 + eδ2y2

2 + ∑p
i=3 e

δiy2
i , u2 = eδ1y2

2 + eδ2y2
1 + ∑p

i=3 y
2
i . Since

y2
1 > y2

2, it follows that u1 > u2 � so that f0�u1� ≤ f0�u2� with strict inequality
near y = 0. Thus the integral is positive, so HT∇	E�ρ�S�� �= 0.

Proof of Proposition 3.2. (a) Differentiating (3.3) and setting � = 0,
	 = 0, yields

∇�∇T
�E�ρ�S�� = −κ

∫
yyTρ′

(
κ
∑

y2
i

)
f′
0

(∑
y2
i

)
dy�

Since ρ′ ≥ 0� f′
0 ≤ 0, with strict inequality near y = 0, the resulting integral

is a positive definite matrix.

(b) Differentiating (3.4) with respect to 	 and setting 	 = 0 yields

∇	∇T
	 E�ρ�S�� = −κ

∫
zzTρ′

(
κ
∑

y2
i

)
f′
0

(∑
y2
i

)
dy

− 1
2κ1p1

T
p

∫
y2
1ρ

′
(
κ
∑

y2
i

)
f0

(∑
y2
i

)
dy�

where z is a p-vector with entries zi = y2
i , and 1p is a p-vector of ones. Since

ρ′ ≥ 0 and f′
0 ≤ 0 with strict inequality near y = 0, the first integral is positive

definite. Thus, since H1p = 0, H∇	∇T
	 E�ρ�S��HT is positive definite.

(c)–(e) To show the mixed partials vanish, use symmetry arguments.
Differentiate (3.3) with respect to 	 or κ, set � = 0 and 	 = 0 and note that the
integral is an odd function of y to conclude that the integral is 0. Similarly,
differentiate (3.4) with respect to κ, set 	 = 0 and note that the answer does
not depend on j. Hence H�d/dκ�∇	E�ρ�κXT4X���	=0 ∝ H1p = 0.

4. Regression. The results of the paper also apply to the constrained
M-estimators of regression given in Mendes and Tyler (1996). Consider the
regression equation y = x′
0 + e, and let F represent the joint distribution of
�y�x�. The constrained M-functionals of regression and scale, say 
�F� and
σ�F�, respectively, are defined by minimizing

L�
� σ� = cE�ρ�r2/σ2�� + log det �σ�(4.1)

over �
� σ�, 
 ∈ �q and σ > 0, subject to the constraint

E�ρ�r2/σ2�� ≤ ε�(4.2)

with r = y− x′
.
The class �1 corresponds to the unimodal symmetric distributions. It is

shown in Mendes and Tyler (1996) that if the distribution of e lies in �1, then
the constrained M-functional of regression is uniquely given by 
�F� = 
0.

The asymptotic results for 
�Fn� and the influence function of 
�F� given
in Mendes and Tyler (1996) require that σ�F� also be uniquely defined. The
value of σ2�F� corresponds to the minimum of cE�ρ�r20/σ2�� − log σ , where
r0 = y − x′
0, subject to the constraint σ ≥ σ0 with σ0 being the solution
to E�ρ�r20/σ2

0 �� = ε. This is equivalent to minimizing the “profile likelihood
equation” (1.7) subject to the constraint (1.8) if we set S0 = r20, p = 1, �0 = 1
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and κ = σ−2. Thus, the study of the uniqueness of σ�F� is identical to the
study of the uniqueness of κ for the case p = 1.
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