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SEMI-PARAMETRIC ESTIMATION IN THE NONLINEAR
STRUCTURAL ERRORS-IN-VARIABLES MODEL

By Marie-Luce Taupin

Université Paris-Sud

In the nonlinear structural errors-in-variables model, we propose a
consistent estimator of the unknown parameter using a modified least
squares criterion. We give an upper bound of its rate of convergence which
is strongly related to the regularity of the regression function and is gen-
erally slower than the parametric rate of convergence n−1/2. Nevertheless,
the rate is of order n−1/2 for some particular analytic regression functions.
For instance, when the regression function is either a polynomial func-
tion or an exponential function, we prove that our estimator achieves the
parametric rate of convergence.

1. Introduction. Let �Y1�Z1�� � � � � �Yn�Zn� be n independent observa-
tions and consider the following model :{

Yi = fβ0�Xi� + ξi�
Zi =Xi + εi�

where the regression function fβ0 is known up to a finite dimensional pa-
rameter β0 belonging to 
 ,̊ 
 being a compact subset of Rm. The Xi’s are
unobservable i.i.d. univariate random variables with an unknown density g
with respect to the Lebesgue measure. The errors �ξi� εi� are also unobserv-
able and are i.i.d. centered Gaussian random variables, independent of the
Xi’s. Furthermore we assume that the variance of the εi’s is known and equal
to one and we denote by σ2 the variance of the ξi’s.

In this semiparametric model, our aim is to estimate the parameter β0 in
the presence of the nuisance parameter g belonging to a functional space.

In the linear case (i.e., fβ0�Xi� = β0
1 + β0

2Xi) the first results have been
written in the 1950’s (see [32], [27]). In such a case

√
n-consistent (see [18],

[19]) and efficient estimators have also been constructed (see [3], [36], [2] and
[37]). However, the methods used for the construction of the information bound
and for the construction of the estimators in the linear case do not seem to
extend to the nonlinear case.

The nonlinear case has already been studied by several authors but gener-
ally under different or more restrictive assumptions.

Let us start with the functional model, when the unobservable Xi are fixed
unknown constants. Wolter and Fuller [38] consider the situation where the
error variances tend to zero as n tends to infinity and showed that in this case
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the maximum likelihood estimator is consistent and that its rate depends on
the decrease of the error variances to zero. Zwanzig [40] proved that under
an entropy condition on the set of nuisance parameters X1� � � � �Xn, the least
squares estimator defined by

β = Arg min
β∈


min
X1�����Xn

1
n

n∑
i=1

[�Yi − fβ�Xi��2 + �Zi −Xi�2
]
�

is consistent with an exponential rate of convergence. Kukush and Zwanzig
[28] proved that without assumptions on the decrease of the error variances
or without entropy conditions, the least squares estimator defined above is not
consistent. Chan and Mak [8] proposed a

√
n-consistent estimator when the

function is a polynomial function and the error variances are known.
The model we consider in this paper is the structural model, when the

unobservable Xi are i.i.d. random variables with an unknown density g. A
natural idea would be to replace the unobservable Xi by the observations Zi
in the usual least squares criterion and to minimize

n∑
i=1

�Yi − fβ�Zi�	2�

Unfortunately this estimator is known to be inconsistent even in the linear
case. Gleser [20] improved this naive approach by considering the modified
least squares criterion

n∑
i=1

�Yi − fβ�Z̃i�	2 where Z̃i = �̂Zi + µ̂�1 − �̂��

with µ denoting the expectation ofX and � = Var�X�/�Var�X�+1	. The quan-
tity �Z+µ�1−�� is a linear approximation to Ɛ �X
Z� which equals Ɛ �X
Z�
when �X�Z� is normally distributed and �̂ and µ̂ are consistent estimators of
� and µ. This method provides a consistent estimator in the linear case but
not in general.

Several other results have been published in the structural case, but un-
der more restrictive assumptions. For instance, Hsiao [24] considered the case
where the density g of the Xi’s is known up to a finite-dimensional parame-
ter. He proved that under identifiability conditions the estimator obtained by
minimizing

n∑
i=1

�Yi − Ɛ �fβ�Xi�
Zi�	2

is consistent and asymptotically Gaussian. Other authors studied estimators
assuming the presence of additional observations (see [22], [23], [7] and [34]).
Moreover [10] and [5] proposed a numerical procedure based on simulations
(SIMEX).

Fan and Truong [17], Fan and Masry [15] and Fan, Truong and Wang [16]
treated the nonparametric case, when both the regression function and the
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density of the unobservable Xi are unknown, using methods based on decon-
volution.

Now let us motivate our method and then introduce our estimation crite-
rion. If g is known a natural estimation criterion is given by

S̃n�β�g� = n−1
n∑
i=1

W�Zi��Yi − Ɛ �fβ�Xi�
Zi�	2�(1.1)

where W��� is a deterministic weight function with compact support. We can
easily prove that under suitable assumptions β̃g defined as

β̃g = Arg min
β∈


S̃n�β�g��(1.2)

is a consistent estimator of β0 and is asymptotically Gaussian. In the model
(1.1), g is unknown and Ɛ �fβ�Xi�
Zi	 does not only depend on Zi but also
on the unknown density g. Hence β̃g is obviously not an estimator, and our

idea is simply to replace in S̃n�β�g�, the unknown conditional expectation
Ɛ �fβ�Xi�
Zi	 by a nonparametric estimate based on the sample Z1� � � � �Zn
and then to estimate β0 by minimizing this new criterion.

Hence we consider the modified least squares criterion

Sn�β� = n−1
n∑
i=1

W�Zi��Yi − �̂β�Zi�	2�(1.3)

where �̂β�Zi� is an estimate of Ɛ �fβ�Xi�
Zi	, defined in Section 2, based on
the sample Z1� � � � �Zn. The estimator β̂ of β0 is then defined by

β̂ = Arg min
β∈


Sn�β��(1.4)

Under suitable assumptions, the estimator β̂ is consistent and its rate of con-
vergence is strongly related to the regularity of the function fβ as a function
of X. We give an upper bound of the rate of β̂ for general fβ. This upper
bound is not explicit and depends on the rate of convergence of the estimator
of Ɛ �fβ�Xi�
Zi	. More precisely, Ɛ �fβ�Xi�
Zi	 is estimated by the ratio of two
estimators defined in Section 2. The upper bound of the rate of convergence of
β̂ depends on the rate of convergence of the numerator of �̂β�Zi�. As we will
see in Section 2, the more regular fβ (as a function of X), the faster the rate
of convergence of this numerator. Consequently the same holds for the rate of
convergence of β̂. This motivates us to evaluate the upper bound of the rate
of β̂ when fβ admits an analytic continuation in the complex plane.

When the function fβ is such that precise calculations of this upper bound
are possible, the rate of β̂ is often faster than the rate for estimating the condi-
tional expectation. In particular we establish that the estimator β̂ achieves the
parametric rate of convergence when fβ is a polynomial function and when fβ
is an exponential function. Consequently, our method provides the parametric
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rate of convergence in the linear case and extends this result to polynomials
with arbitrary degree.

In most cases, precise calculations of the rate of β̂ being impossible, we
bound this rate from above by the rate of convergence of the numerator of
φ̂β�Zi�.

In Section 2 we construct the estimator of β0. This construction is com-
posed of two parts. First we build an estimator of the conditional expectation
Ɛ �fβ�X�
Z	 and second we plug this estimator in the criterion S̃n�β�g� defined
in (1.1). This provides the estimation criterion Sn�β�. Section 3 is devoted to
the statement of the asymptotic properties of β̂. As in Section 2, we first give
the asymptotic properties of the estimators appearing in the estimate of the
conditional expectation and next we establish that β̂ is consistent and calcu-
late an upper bound for its rate of convergence for any function fβ. In Section
4 we treat several examples, in particular the case fβ is a polynomial function.
In Section 5 we study the variance estimation. Proofs of the theorems can be
found in Section 6.

2. Construction of the estimator. Write X, Z and ε for “generic” ob-
servations. Our purpose in the beginning of this section is to construct an
estimator of the conditional expectation Ɛ �fβ�X�
Z	, in order to get the esti-
mation criterion defined in (1.3). We start with some notation.

Notation 1. We denote by �u�1 = ∫ 
u�x�
dx the L1�R�-norm of the func-
tion u, by �u� v
 = ∫ u�x�v�x�dx the inner product in L2�R� and by u� the
Fourier transform of u.

We introduce the functions, �C�t� = �
t
≤C� �C�t� = �
t
≥C, Tfβ�z�x� =
fβ�x�η�z−x� and T�fβ�z�t� =

∫
Tfβ�z�x� exp �itx�dx� where η denotes the stan-

dard Gaussian density (density of ε). Furthermore, we denote by �u�∞�W =
supx∈SW 
u�x�
 where SW denotes the compact support of the weight function
W���.
We assume subsequently that the functions Tfβ�z and T�fβ�z belong to L1�R�
for any z ∈ SW.

Because of the independence between X and ε, the conditional expectation
Ɛ �fβ�X�
Z	 is written as

Ɛ �fβ�X�
Z	 =
∫
fβ�x�η�Z− x�g�x�dx∫
η�Z− x�g�x�dx ≡

#fβ�Z�
h�Z� ≡ �β�Z��(2.1)

where h = η ∗ g (∗ denoting the convolution) is the density of Z.
According to (2.1), we need to estimate the numerator #fβ�z0� and the de-

nominator h�z0� at a fixed point z0.

2.1. Estimation of the numerator. Applying the Parseval–Plancherel for-
mula and using the independence between X and ε, we obtain

#fβ�z0� = �2π�−1 〈T�fβ�z0
� g�
〉 = �2π�−1 〈T�fβ�z0

�η��−1� h�
〉
�(2.2)
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We replace h��t� by its empirical estimator n−1∑n
j=1 e

itZjK�
n�t� =

n−1∑n
j=1 h

�
n�j�t�, where K�

n�t� is the Fourier transform of the function Kn

defined by Kn�x� = CnK�Cnx�, (K being a kernel to be chosen), and Cn tends
to infinity. We propose to estimate #fβ�z0� by

#̂fβ�z0� = �2πn�−1
n∑
j=1

Re
〈
T�fβ�z0

�η��−1� h�n�j
〉
�(2.3)

where Re�z� denotes the real part of z.

Remark 2.1. This estimator depends on Cn and on the kernel K. These
two quantities will be chosen in each example. But in all cases the kernel K
has to satisfy the following conditions.

Assumptions.

(A1) The kernel K belongs to L2��� and is an even function.
(A2) Its Fourier transform satisfies K��t� = 1 for any t in �−1�1	.
(A3) 
K��t�
 ≤ ��−2�2	�t� for any t in �.

Remark 2.2. Assumption (A1) ensures that the Fourier transform of the
kernel is a real valued function. Assumption (A2) allows us to control the
bias term, and Assumption (A3) ensures the existence of the estimator #̂fβ�z�.
Note that the so-called naive kernel K�x� = sin�x�/�πx� satisfies these as-
sumptions. In the same way the analogue of the de La Vallée-Poussin kernel
V, defined by

V�x� = �cos�x� − cos�2x�	/�πx2	(2.4)

satisfies Assumptions (A1–A3). For some examples we need the kernel to sat-
isfy additional assumptions. For polynomial functions (see Section 4) the ker-
nel K and its derivatives must have all moments finite.

2.2. Estimation of the denominator. The denominator h�z0�, which is the
value of the density h = η ∗g at the fixed point z0, is estimated by the kernel
estimator

ĥ�z0� = n−1
n∑
j=1

Vn�z0 −Zj��(2.5)

where Vn�x� = b−1
n V�xb−1

n �, b−1
n = √log n and V is the analogue of the de La

Vallée-Poussin kernel defined by (2.4).
Since h�z0� = #1�z0�, estimating h�z0� by (2.5) corresponds to choosing the

kernel K = V and Cn = √log n in formula (2.3). The naive kernel K�x� =
sin�x�/�πx� provides the same rate of convergence of the quadratic risk as the
kernel V. However, the fact that V belongs to L1��� is of particular interest
when studying the risk with respect to the L∞-norm.
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2.3. Construction of β̂. Recall that our estimation criterion Sn�β�, is given
by (1.3) where �̂β�Zi� is the estimate of �β�Zi�, defined as the ratio

�̂β�Zi� = #̂fβ�Zi�/ĥ�Zi�

with #̂fβ�Zi� and ĥ�Zi� defined as in (2.3) and (2.5) where we sum over j �= i.
To be more explicit,

ĥ�Zi� = �n− 1�−1
n∑

j=1�j �=i
Vn�Zi −Zj� ≡ �n− 1�−1

n∑
j=1�j �=i

� h
n�β�Zi�Zj�(2.6)

and

#̂fβ�Zi� =
1

2π�n− 1�
n∑

j=1�j �=i
Re
〈
T�fβ�Zi�η��−1� h�n�j

〉
≡ 1
n− 1

n∑
j=1�j �=i

�n�β�Zi�Zj�
(2.7)

Putting these estimators in Sn�β�, we propose to estimate β0 by β̂ =
Argminβ∈
Sn�β�.

Remark 2.3. The introduction of the weight function W in (1.3) is neces-
sary in order to ensure that ��β�∞�W is finite and to ensure the convergence

of �#̂fβ�z� − #fβ�z��∞�W to zero.

3. Asymptotic properties. This section consists of three parts. First we
give the asymptotic properties of #̂fβ�z� and the asymptotic properties of ĥ�z�,
useful in the study of β̂. Next we give the asymptotic properties of β̂: we state
the consistency of β̂ and calculate an upper bound of its rate of convergence.

Let us introduce some additional notation and assumptions, needed to char-
acterize the rates of convergence of #̂fβ�z� and ĥ�z�.

Assumption.

(A4) We say that a function fβ satisfies Assumption (A4) if the functions

Tfβ�z�T
�
fβ�z
�
d

dz
Tfβ�z and

d

dz
T�
fβ�z

belong to L1�R� for any z ∈ SW�

Notation 2. Let fβ be a function satisfying Assumption (A4). Take Cn
and K as in (2.3) and set

λn�fβ� z� = Ɛ
∣∣∣ 〈T�

fβ�z
�η��−1� h�n�j

〉 ∣∣∣2 � σ2
n�fβ� = sup

z∈SW
λn�fβ� z��

Bn�fβ� = sup
z∈SW

�T�
fβ�z

�Cn
�1�Mn�fβ� = Cn sup

z∈SW
sup

t
≤Cn


T�
fβ�z

�t�et2/2
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and

Dn�fβ� = Cn sup
z∈SW

sup

t
≤Cn


 d
dz
T�
fβ�z

�t�et2/2
�

Using this notation, we consider the following assumptions for any function
fβ.

Assumption.

(A5) We say that a function fβ satisfies Assumption (A5) if σn�fβ�
√

log n

= o�√n��Mn�fβ� log n = o�n� and Dn�fβ� = o�n3/2σn�fβ�
√

log n	�

3.1. Asymptotic properties of the estimate of the numerator.

Proposition 3.1. Let #f�z0� be defined by �2�2� and #̂f�z0� be the estimator
defined by �2�3� with a kernel satisfying Assumptions (A1)–(A3). Assume that
for any β in 
, fβ satisfies Assumption (A4). Then, there exists a sequence Cn
such that fβ satisfies �3� for any β in 
. For such a sequence, the following
results hold for any β in 
.

(a) For any z0 in �,


Ɛ �̂#fβ�z0�	 − #fβ�z0�
2 ≤ �T�fβ�z0
�Cn

�2
1� and Var�̂#fβ�z0�	 ≤ n−1λn�fβ� z0��

(b) For any p ≥ 1�

Ɛ ��#̂fβ − #fβ�
p
∞�W	 ≤K�p�

[
�σn�fβ�

√
log n	p√
n
p + �Mn�fβ� log n	p

np
+Bpn�fβ�

]
�

Remark 3.1. Note that, at worst, choosing K�x� = sin�x�/�πx� provides

σ2
n�fβ� ≤ eC

2
n� Mn�fβ� = O�CneC

2
n/2� and Dn�fβ� = O�CneC

2
n/2��

Hence the choice Cn = α√log n with α < 1 ensures that #̂fβ�z0� is a consistent
estimator of #fβ�z0� and that Assumption (A5) is satisfied.

Remark 3.2. For all the examples we consider in Section 6, the quantity
Mn�fβ� is of order σn�fβ�

√
log n. Therefore for any p ≥ 1 we get that

Ɛ ��#̂fβ − #fβ�
p
∞�W	 ≤K′�p�

[
�σn�fβ�

√
log n/

√
n�p +Bpn�fβ�

]
�

Remark 3.3. The regularity of the function fβ (as function of X) plays an

essential role in the rate of convergence of #̂fβ�z0�. Let us successively study
the bias and variance terms.

It follows from Proposition 3.1 (a) and the assumption that T�fβ�z belongs to
L1���, that the bias tends to zero as n tends to infinity. Moreover, due to the
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properties of Fourier transform, the more regular fβ, the faster the decrease
of T�fβ�z as t tends to infinity.

The upper bound for the variance term depending on the behavior of the
function R�t� defined by R�t� = T�fβ�z0

�t�et2/2 increases with the sequence Cn.
The more regular fβ is, the slower R�t� increases.

Let us study two particular cases. If fβ is regular enough such that R�t� be-
longs to L1���, the variance is of order n−1, the bias term of order exp�−C2

n/2�
and #̂f�z0� converges to #fβ�z0� with the parametric rate of convergence n−1/2.
If fβ belongs to a Sobolev Class Wm

2 = �functions f ∈ L1��� such that
∫ �1 +


t
2�mf��t�dt < ∞�, m > 1, R�t� does not belong to L1���. The square of the
bias term is of order C−2m

n (see [26] and [31]) and the variance term will be
of order exp

{
C2
n

}
/n. Hence we get an upper bound of order �log n�−m for the

quadratic risk.

3.2. Asymptotic properties of the estimate of the denominator. Because of
the independence between X and ε, h = η ∗ g and 
h��t�
 ≤ exp�−t2/2�.
Therefore, since V satisfies Assumption (A2), it is easy to see that


Ɛ �̂h�z0�	 − h�z0�
 ≤ �h��b−1
n
�1 ≤ Abn exp�−b−2

n /2��(3.1)

where A is a numerical constant. Furthermore, classical calculations ensure
that the variance is bounded from above by �nbn�−1. Taking bn = �log n�−1/2

provides the result

limn→∞
n√

log n
sup
h∈�

Ɛ
[
ĥ�z0� − h�z0�

]2
≤ �V�2

2�(3.2)

where � = �η ∗ g�g being a density on the real line�� Note that this rate of
convergence is the best in the minimax sense (see [35]). We now calculate
an upper bound for the risk of ĥ�z� related to the L∞-norm. It is known from
[26] that the rate of convergence for estimating regular densities in Lp-norms,
1 ≤ p ≤ ∞ is related to the distance between the density to be estimated and
the class of entire functions of exponential type. More precisely let us define
the distance

D∞
ν �h� = inf

f∈�ν�∞
�h− f�∞�

�ν�∞ being the collection of all entire functions of exponential type ν (see [33],
page 372 for further references about entire functions of exponential type).
Now, nequalities (3.1) ensure that

D∞
b−1
n
�h� ≤ �h− h ∗Vn�∞ ≤ �h��1 −V�n��1 ≤ Abn exp�−b−2

n /2��(3.3)

It follows, applying the result of [26] and according to (3.3), that there exists
a constant A′ depending on p such that

limn

(
n√

log n log log n

)p/2
sup
h∈�

Ɛ �ĥ− h�p∞ ≤ A′�(3.4)
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The rates of convergence obtained for estimating h�z� are classical results
for strongly regular densities. Note that, whatever the density g is, the den-
sity η ∗ g has obviously strong regularity properties. We immediately see for
instance that h = η ∗ g is �∞, that for any γ > 0, there exists Cγ > 0 such
that h belongs to the class �γ�Cγ� of densities admitting an analytic contin-
uation to the strip ��x + iy�� 
y
 ≤ γ� with �2π�−1

∫
cosh2 γt
h��t�
2dt ≤ Cγ.

More precisely, according to (3.1), we see that � is included in the class
�1�1/2�2� where the classes �A�ρ�r� are more generally defined as �A�ρ�r� =
�φ such that 
φ��t�
 ≤ A exp�−ρ
t
r��� See [12], [13], [26], [25], [21] for fur-
ther references about density estimation in classes of densities with strong
regularity properties. Note that the problem of estimating the value of h at
a fixed point in the convolution model Zi = Xi + εi is different from the de-
convolution problem. In the latter case the aim is to estimate the density g of
the Xi’s. It is known that the slowest rates of convergence for estimating g
are obtained for the smoothest error densities. See [14], [6], [39] for references
about deconvolution problems.

3.3. Asymptotic properties of β̂. Before stating our results we give some
preliminary assumptions.

Assumptions. For any β in 
�

(A6) fβ�x� admits continuous derivatives up to order 3 with respect to β�
(A7) Ɛ

{
W2�Z��fβ0�X� −�β�Z��	4} <∞�

(A8) S
�2�
a�b�β� = Ɛ �W�Z�Ɛ �f�1�

βa
�X�
Z	Ɛ �f�1�

βb
�X�
Z	 < ∞ for a� b = 1� � � � �

m�f
�1�
a denoting the first derivative of f with respect to βa.

(A9) The quantity S�β�β0� = Ɛ �W�Z�	σ2 + Ɛ �W�Z��fβ0�X� − �β�Z�	2�,
admits one unique minimum at β = β0.

(A10) The matrix S�2��β0� is positive definite.
(A11) For a� b� c = 1� � � � �m, denote by f�2�

βa�b
�x� and f�3�

βa�b�c
�x� the second and

third derivatives of f with respect to βa�βb and βc respectively. For
any z in SW and for a� b� c = 1� � � � �m the functions

sup
β∈


∣∣∣f�1�
βa

���η�z− ��
∣∣∣ � sup

β∈


∣∣∣f�2�
βa�b

���η�z− ��
∣∣∣ and sup

β∈


∣∣∣f�3�
βa�b�c

���η�z− ��
∣∣∣

are in L1�R��

Observe that Assumption (A11) ensures in particular that
∂

∂β
�β�z� = #f�1�

β
�z�/h�z� ≡ ��1�

β �z��(3.5)

and therefore

S
�2�
a�b�β� = Ɛ �W�Z���1�

βa
�Z���1�

βb
�Z�	 = Ɛ �W�Z�Ɛ �f�1�

βa
�X�
Z	Ɛ �f�1�

βb
�X�
Z	

Consistency of β̂.
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Theorem 3.1. Let #̂fβ�Zi� be defined by �2�7� with the kernel K satisfying

Assumptions (A1–A3). Assume that for any β in 
, fβ satisfies Assumptions
(A4), (A6–A10). Then there exists a sequence Cn such that fβ satisfies Assump-

tion (A5) for any β in 
. For this sequence, β̂ = β̂�Cn� defined by �1�4�� is a
consistent estimator of β0.

The proof of the consistency is mainly based on the properties of the crite-
rion S̃n�β�g� defined in (1.1). We state in the proof of Lemma 6.1 that S̃n�β�g�
is a contrast (see [11], Definition 3.2.7. and Theorem 3.2.8, pages 124–126 or
[4] for further references about contrasts). Next, using the asymptotic prop-
erties of #̂fβ�z� and ĥ�z� we prove that for any β in 
, S̃n�β�g� − Sn�β�
converges to zero in probability. To establish this convergence, we use that
�#̂fβ−#fβ�∞�W = op�1�. This convergence holds provided that Assumption (A4)
is satisfied and that Cn is such that Assumption (A5) is satisfied (see Propo-
sition 3.1).

Consequently the assumptions needed to prove the consistency are integra-
bility, differentiability assumptions (A6–A8), and identifiability assumptions
(A9) and (A10).

Rate of convergence of β̂.

Theorem 3.2. Assume that for any β in 
, fβ satisfies Assumptions (A4),

(A6)–(A11). Let #̂fβ�Zi� be as in Therorem 3�1� take Cn such that Theorem 3�1
holds and such that the first and second derivatives of fβ with respect to β
satisfy Assumption (A5). Then the following result holds�

β̂− β0 = Op
[
δ1�n�fβ0� + n−1/2 + δ2�n�fβ0�] �

where

δ1�n�fβ0� = n−1/2Ɛ 1/2
{
Ɛ 2
[
W�Z1�
h�Z1�

�
�1�
β0 �Z1��n�β0�Z1�Z2�

∣∣∣∣Z2

]}
+Bn�fβ0��

δ2�n�fβ0� =Mn�fβ0�Mn�f�1�
β0 �/n3/2 + o

[
Mn�fβ0��log n�5/4

√
log log n/n3/2

]
�

with �n�β�z�Zj� and ��1�
β �z� defined in �2�7� and �3�5� respectively.

Remark 3.4. The rate of convergence arising from the difference
∂

∂β
S̃n
(
β0� g

)− ∂

∂β
Sn
(
β0) �

with S̃n�β� defined in (1.1), is given by three terms. The first term δ1�n�fβ0� is

strongly related to the rate of convergence of #̂fβ0
�z� − #fβ0

�z� through quanti-
ties of the form

n−1
n∑
i=1

W�Zi�F�Zi��̂#fβ0
�Zi� − #fβ0

�Zi�	�(3.6)
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where F is some function of Zi satisfying Ɛ �W2�Zi�F2�Zi�	 <∞. The second
term of order n−1/2 comes from the study of

n−1
n∑
i=1

W�Zi�F�Zi��̂h�Zi� − h�Zi�	 = Op�n−1/2��(3.7)

and from the fact that

−√
n
∂

∂β
S̃n�β0� g� 	−→

n→∞ 
 �0� @1��

@1 being defined in Lemma 6.1. The last term δ2�n�fβ0� comes from the study
of quantities of the form

A2 = n−1
n∑
i=1

W�Zi�
[
�̂β0�Zi� −�β�Zi�

] [
�̂

�1�
β0 �Zi� −��1�

β0 �Zi�
]
�

where �̂�1�
β0 �Zi� is the estimate of Ɛ �f�1�

β0 �Xi�
Zi	 = �
�1�
β0 �Zi� defined in (3.5).

This term δ2�n�fβ0� will generally be negligible compared to the others. Conse-
quently the rate of convergence of β̂ is in most cases governed by the first term
δ1�n�fβ0� and hence we can expect to achieve the parametric rate of conver-
gence only for functions fβ such that (3.6) is of order Op�n−1/2�� When fβ ≡ β
andK ≡ V, (3.6) and (3.7) are the same, and in this case δ1�n�fβ0� = Op�n−1/2��

Remark 3.5. We have seen in Remark 2.1 that #̂f�z� depends on the se-
quence Cn and on the kernel K. It follows that β̂ also depends on these two
quantities that we need to choose in each case. According to Remark 3.1, one
can always find a sequence Cn such that β̂ is consistent. In fact, it is chosen
among sequences Cn satisfying Assumption (A5), in order to balance the first
and the last term in δ1�n�f�. In the same way the kernel K is chosen in each
example.

When fβ is such that precise calculations of δ1�n�fβ0� are possible, we can
choose a kernel K that provides a rate of convergence of β̂ faster than the
rate of convergence of #̂fβ0

�z�. If not, we only use the fact that δ1�n�fβ0� is
dominated by σn�fβ0� + βn�fβ0�. In these cases, the kernel K is chosen as the
naive kernel K�x� = sin�x�/�πx�, and we calculate an upper bound for the
rate of convergence of β̂ which is directly related to the rate of convergence of
the numerator #̂fβ0

�z�.

The proof of Theorem 3.2 can be found in Section 6.
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4. Applications. Applying Remarks 3.3 and 3.5 when fβ belongs to a
Sobolev class Wm

2 , m > 1, provides that δ1�n�fβ0� is of order �log n�m/2 which
remains very slow. These remarks motivate us to consider regular functions
with respect to x, in particular functions admitting an analytic continuation
to a strip in the complex plane containing the real line.

First we consider functions admitting an analytic continuation to the whole
complex plane and second we consider functions admitting an analytic contin-
uation in a finite width strip.

4.1. Functions admitting an analytic continuation in the whole complex
plane.

Example (Polynomials). The following result states that if we consider a
kernel K that is a fast decreasing function, we get the

√
n-consistency.

Assumption. For any integer l and p, the kernel K satisfies

(A12)
∫ 
ulK�p�
du <∞

where K�p� denotes the derivative of order p of the kernel K.

Assume that fβ�x� =
∑m
l=0 βlx

l with m ≥ 1. Let #̂fβ�Zi� be defined by (2.7)

with Cn = √log n and with the kernel K satisfying Assumptions (A1)–(A3)
and (A12). Then we have

β̂− β0 = Op�n−1/2	�

Remark 4.1. It is easily shown that there exist kernels satisfying As-
sumptions (A1)–(A3) and (A12).

Remark 4.2. Note that when m = 1, then fβ�X� = β0 + β1X, and the
rate is of order n−1/2. It follows that β̂ achieves the parametric rate of con-
vergence (result already known in that case). Several other methods provide
an estimator of β converging with the parametric rate (see [18], [1], [19], [9]).
For instance the estimator minimizing

n∑
i=1

�Yi − β0 − β1Zi�2/�1 + β2��

is known to be
√
n-consistent and asymptotically Gaussian.

Our method provides the parametric rate of convergence for estimating β
in the linear case and extends this result to polynomials of arbitrary degree.

Sketch of proof. In view of (2.7) and after some calculations we find

�n�β0�Z1�Z2� =
m∑
l=0

β0
l

l∑
k=0

(
l

k

)
γ�l− k�

k∑
q=0

(
k

q

)
Z
k−q
1 K

�q�
n �Z1 −Z2��(4.1)
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where γ�l−k� = �√2π�−1
∫
ul−k exp�−u2/2�dx. Combining (4.1) with the fact

that the kernel K satisfies Assumptions (A1–A3) yield Bn�fβ0� = op�n−1/2�.
Let ϕ�z� =W�z���1�

β0 �z�/h�z�. Then, according to (4.1), the following equality
holds

δ1�n�fβ0� = n−1/2Ɛ 1/2�D2
n�Z2�	 +Bn�fβ0��

where

Dn�Z2� =
m∑
l=0

β0
l

l∑
k=0

(
l

k

)
γ�l− k�

k∑
q=0

(
k

q

)
Ɛ
[
ϕ�Z1�Zk−q1 K

�q�
n �Z1 −Z2� 
Z2

]
�

Now, the last expectation can be rewritten in the following way:

Ɛ
[
ϕ�Z1�Zk−q1 K

�q�
n �Z1 −Z2� 
Z2

]
= Cqn

∫
ϕk�q
(
Z2 + uC−1

n

)
K�q��u�du

with ϕk�q�z� = ϕ�z�h�z�zk−q. Proceeding to a Taylor expansion yields

Cqn

∫
ϕk�q
(
Z2 + uC−1

n

)
K�q��u�du =

q−1∑
r=0

ϕ
�r�
k�q�Z2�Cq−rn

∫
urK�q��u�du

+ϕ�q�
k�q�Z2�

∫
uqK�q��u�du(4.2)

+C−1
n

∫
uq+1ϕ

�q+1�
k�q �u�2�K�q��u�du

u�2 being a point in the interval �Z2�Z2+u/Cn	. Integrating by parts provides
that the first term in (4.2) is equal to zero, the last term tends to zero with
Cn and the second term is bounded from above. This entails that δ1�n�fβ0� =
Op�n−1/2�� ✷

Example (Exponential). Assume that fβ�x� = exp �βx�. Let #̂fβ�Zi� be de-

fined by (2.7) with Cn = √log n and with the kernel K ≡ V defined in (2.4).
Then we get the following result: β̂− β0 = Op�n−1/2�� ✷

Combining this result and the result on polynomials ensures that β̂ achieves
the parametric rate of convergence, for any function fβ�x� of the form

fβ�x� =
m∑
l=0

βlx
l exp�αx��

Example (Sum of cosines). Assume that fβ�x� = ∑m
l=0 βl cos�lx� with

m ≥ 1. Let #̂fβ�Zi� be defined by (2.7) with Cn = √2 log n and with the kernel

K�x� = sin�x�/�πx�. Then we get β̂− β0 = Op�n−1/2 exp�m√log n�	� ✷
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4.2. Functions admitting an analytic continuation in a finite width strip.

Example. Let us denote by Bγ = {�x+ iy�� �x�y� ∈ �2� 
y
 ≤ γ} and con-
sider the following assumption.

Assumption. For any β in 
 the function fβ��� admits an analytic contin-
uation to the strip Bγ, and there exist c > 2 and M > 0 such that for all

A
 ≥M�
(A13) sup
y
≤γ

∣∣fβ�A+ iy�∣∣ ≤ exp
{
A2/c

}
.

Corollary 4.1. Let β̂ be defined by �1�4� with Cn = √log n and K�x� =
sin�x�/�πx�. Assume that there exists γ > 0 such that f satisfies Assumption
(A13). If f satisfies Assumptions (A6)–(A10), we have the following results�

(a) β̂ is a consistent estimator of β0.
(b) Furthermore if f and its derivatives with respect to β satisfy Assumptions

(A11) and (A13) then we get

β̂− β0 = Op
[
exp
{
−γ
√

log n
}]
�

Easy calculations ensure that Bn�f0β� = O�exp�−γCn�	� and σ2
n�f� =

O�exp��γ − Cn�2�	� Moreover, since f�1�
β also admits an analytic continuation

to the strip Bγ� σ2
n�f�1�

β0 � is of the same order than σ2
n�fβ0� which gives the

result. ✷

5. Estimation of σ2. We consider now the problem of estimating the vari-
ance σ2 of the errors ξi’s. The main point is that β̂ depends on the observations
�Yi�Zi�, on the density η of the errors εi and on the regression function fβ,
but it does not depend on σ2. Hence we propose to estimate σ2 by

σ̂2 = Tn�β̂� − n−1
n∑
i=1

Wn�Zi�
[
�̂f2

β̂

�Zi� − �̂2
β̂
�Zi�
]
�(5.1)

where Tn�β̂� and Wn�Zi� are defined by Tn�β̂� = n−1∑n
i=1Wn�Zi��Yi −

�̂β̂�Zi�	2� and Wn�Zi� = W�Zi�/�n−1∑n
i=1W�Zi�	. Under suitable assump-

tions, σ̂2 is a consistent estimator of σ2 as it is stated in the following corol-
lary.

Corollary 5.1. Let β̂ be defined by �1�4�� σ̂2 be defined by �5�1� and
assume that Theorem 3�1 holds. If furthermore f2 satisfies Assumption (A4),
then taking Cn such that f2 satisfies (A5) ensures that σ̂2 is a consistent esti-
mator of σ2.
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Remark 5.1. Note that all calculations made with Var�εi� = 1 remain
available with Var�εi� known but different from one. The problem of estimat-
ing Var�εi� is more complicated and needs further calculations, since β̂ defined
in (1.4) depends explicitly on η (the density of the εi’s) and hence on Var�εi�.

6. Proofs. We start with the proof of Proposition 3.1, concerning the
asymptotic properties of #̂fβ�z�. Second we give the asymptotic properties of

β̃g defined in (1.2) and then we prove Theorem 3�1 (consistency of β̂). Third we
proceed to the proof of Theorem 3.2 (upper bound of the rate of convergence
of β̂) and fourth we prove Corollary 5.1 (consistency of σ̂2).

6.1. Proof of Proposition 3�1� Part (a) of Proposition 3.1 is an almost im-
mediate consequence of Definition (2.3).

To prove part (b) we use a chaining method and exponential inequalities.
We start with studying Ɛ ��#̂fβ − #fβ�∞�W	 using a version of a lemma of

Pisier (see [30]). For higher order moments, we use a version of Talagrand’s
inequality that can be found in [29].

Denoting by νn�z� the quantity νn�z� = #̂fβ�z� − Ɛ �̂#fβ�z�	 and applying the
part a) we get that

Ɛ ��#̂fβ − #fβ�∞�W	 ≤ Ɛ ��νn�∞�W	 +Bn�fβ��
Using the definition of #̂fβ�z� given by (2.3) and (2.7), νn�z� = n−1∑n

j=1ψn�j�z�
where ψn�j�z� = �n�β�z�Zj� − Ɛ ��n�β�z�Zj�	 are i.i.d centered variables and
satisfy

�ψn�j�∞�W ≤Mn�fβ�� sup
z∈SW

Var�ψn�j�z�	 ≤ σ2
n�fβ�

and sup
z∈SW

∣∣∣∣ ddzψn�j�z�
∣∣∣∣ ≤ Dn�fβ�

with Mn�fβ� and Dn�fβ� defined in Notation 2. To apply Pisier’s Lemma (see
[30]) we need to consider a grid Gn on SW. We thus cover the compact SW
by 
Gn
 intervals �zl� zl+1�, l = 1� � � � � 
Gn
 − 1. We denote by L the length of
the interval SW and by G�z� the projection of z ∈ SW on Gn. The projection
t = G�z� is defined by t = zl for z ∈ �zl� zl+1� for l = 1� � � � � 
Gn
. Since
νn�z� = νn�t� + νn�z� − νn�t� it follows that

Ɛ ��νn�∞�W	 ≤ Ɛ 1 + Ɛ 2

with Ɛ 1 = Ɛ ��νn�∞�Gn	 and Ɛ 2 = Ɛ �supz∈SW 
νn�z� − νn�G�z��
	. Now, applying
Pisier’s Lemma we obtain

Ɛ 1 ≤ σn�fβ�
√

2n−1 log �2
Gn
� + �Mn�fβ� log �2
Gn
�	/3n
Finally, taking 
Gn
 = n2, Ɛ 1 is bounded from above in the following way:

Ɛ 1 ≤ σn�fβ�
√
n−12�log 2 + 2 log n	 +Mn�fβ��log 2 + 2 log n	/3n�(6.1)
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The derivatives of #̂fβ�z� and Ɛ �̂#fβ�z�	 are continuous and we get that

Ɛ 2 ≤
[

sup
z∈SW


z−G�z�
 sup
z∈SW

∣∣∣∣ ddzνn�z�
∣∣∣∣
]
≤ 2LDn�fβ�/�
Gn
��(6.2)

Combining (6.1) and (6.2) we get by Assumption (A5) that Ɛ ��νn�∞�W	 is
bounded by

σn�fβ�
√
n−12�log 2 + 2 log n	 +KMn�fβ��log 2 + 2 log n	/3n�(6.3)

which implies that

Ɛ

[
sup
z∈SW

∣∣∣̂#fβ�z� − #fβ�z�∣∣∣
]
≤K′

[
σn�fβ�

√
log n/

√
n+Mn�fβ� log n/n+Bn�fβ�

]
�

and the result holds for p = 1.
Consider now the case p > 1. Denote by x+ the quantity x+ = x�x≥0. For

any ρ > 0 and for any finite family � we have that

�νn�∞�� ≤ [�νn�∞�� − �1 + ρ�Ɛ ��νn�∞�� �]+ + �1 + ρ�Ɛ [�νn�∞�� ] �
Consequently, Ɛ ��νn�∞�� 	p is bounded by

2pƐ ��νn�∞�� − �1 + ρ�Ɛ ��νn�∞�� �	p+ + 2p�1 + ρ�pƐ p��νn�∞�� 	�

Denoting by Z�n�, the variable Z�n� = �νn�∞�� −�1+ρ�Ɛ ��νn�∞�� 	, using that
Ɛ �X+�p = ∫ pyp−1��X > y��y≥0dy and applying Talagrand’s inequality (see
[29]) we get that

Ɛ �Z�n�
+ �p ≤ p#�p/2�

[
σn�fβ�/

√
nτ�ρ�

]p
+ 2p!�Mn�fβ�/�nτ�ρ��	p�

It follows from the definition of σn�fβ� and using (6.3), that for any finite
subset � of SW there exists a constant Kp depending on p such that,

Ɛ ��νn�∞�� 	p ≤KpƐ
p��νn�∞�� 	�

This entails that Ɛ �νn�∞�W	p ≤KpƐ
p��νn�∞�W	 which is bounded by

K1�p���σn�fβ�
√

log n/
√
n�p + �Mn�fβ� log n/n�p	� ✷

All the properties of β̂ follow from asymptotic properties of β̃g. More pre-

cisely the consistency of β̂ comes from the difference Sn�β�−Ŝn�β�. The upper

bound of the rate of convergence of β̂ comes from S
�1�
n �β0�−S̃n

�1��β0� g�. There-
fore we begin with the statement of the asymptotic properties of β̃g, proved
at the beginning of the Appendix.
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Lemma 6.1. Let β̃g be defined by �1�2�� If Assumptions (A6–A10) are satis-
fied, we get the following results�

(a) β̃g converges in probability to β0.

(b) Furthermore
√
n�β̃g−β0� 	−→

n→∞ 
 �0� @� with @= [Ɛ �W�Z��β0�Z�	2]−2
@1

and

@1 = σ2Ɛ
[
W2�Z���1�

β0 �Z���1�
β0 �Z�T

]
+Ɛ
[
W2�Z��fβ0�X� −�β0�Z�	2��1�

β0 �Z���1�
β0 �Z�T

]
�

We repeatedly use the following equalities, needed in the proof of consis-
tency and in the proof of the bound for the rate of convergence.

For any function f̄ satisfying Assumption (A4), using both (3.4) and Propo-
sition 3.1, yields the following equalities:

�̂f̄�Zi� −�f̄�Zi� =
#̂f̄�Zi� − #f̄�Zi�

h�Zi�
− #̂f̄�Zi�
h�Zi�

ĥ�Zi� − h�Zi�
h�Zi�

+ rn�f̄�Zi�

with 
U�i 
 ≤ 
̂h�Zi� − h�Zi�
 and rn�f̄�Zi� defined by

rn�f̄�Zi� = 2
#̂f̄�Zi�
h�Zi�

�̂h�Zi� − h�Zi�	2
h2�Zi�

1
�1 +U�i�3

�

We deduce immediately from (3.4) that


rn�f̄�Zi�
 ≤ �ĥ− h�2
∞ = op�n−1/2��

which entails

�̂f̄�Zi�−�f̄�Zi�=
#̂f̄�Zi�−#f̄�Zi�

h�Zi�
− #̂f̄�Zi�
h�Zi�

ĥ�Zi�−h�Zi�
h�Zi�

+op�n−1/2��(6.4)

6.2. Proof of Theorem 3�1� The main point of the proof lies in stating that
for any β in 
, S̃n�β�g�−Sn�β� = op�1� whence Sn�β� is a contrast. This im-
plies by Lemma 6.1 that Sn�β� converges in probability to S�β�β0�, admitting
an unique minimum at β = β0. Next denoting by w�n� ρ� the quantity

w�n� ρ� = sup �
Sn�α� −Sn�β�
 � 
α− β
 ≤ ρ� �

and using the regularity of f we obtain, after easy calculations, that there
exist two sequence ρk and εk such that

lim
n→∞��w�n� ρk� > εk	 = 0�(6.5)
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The consistency of β̂ = Arg minβ∈
Sn�β� follow thus from [11] (Theorem 3.2.8,
page 126). Let us study Sn�β� − S̃n�β�g�. Simple calculations give the decom-
position

Sn�β� − S̃n�β�g� =
1
n

n∑
i=1

W�Zi�
{
��β�Zi� − �̂β�Zi�	

× �2Yi − ��̂β�Zi� +�β�Zi��	2
}
�

Now, combining (6.4), Proposition 3.1 and inequality (3.4), we infer that

��̂β −�β�∞�W = op�1��(6.6)

which entails that Sn�β� − S̃n�β�g� = op�1�� Finally, applying Lemma 6.1,

S̃n�β�g� is a contrast which implies that Sn�β� is also a contrast and arguing
as for β̃g, we deduce that β̂ is consistent. ✷

6.3. Proof of Theorem 3�2� For convenience, we subsequently omit β0 in
the notation and we denote by #̂f�z� and #f�z� the quantities #̂fβ0

�z� and
#fβ0

�z�. In the same way denote by Tf�z the function Tfβ0 �z. Applying (3.5), we
consider the vector

∂

∂β
#̂fβ0

�Zi� = #̂f�1� �Zi� =
(
#̂
f
�1�
1
�Zi�� � � � � #̂f�1�

p
�Zi�
)T
�

defined as the vector of the first derivatives of #̂fβ�Zi� with respect to the
parameter β and taken at β = β0. Similarly, we define

∂2

∂βa∂βb
#̂fβ0

�Zi� = #̂f�2�
a�b
�Zi��(6.7)

the matrix of the second derivatives of #̂fβ�Zi� with respect to the component

βa and βb of β and taken at the value β = β0. By Definition (1.4), of β̂ we
have

∂

∂β
Sn

(
β̂
)
�= S�1�

n

(
β̂
)
= 0�

Under Assumptions (A6) and (A11), proceeding to a Taylor expansion, we can
write

β̂− β0 = −�S�2�
n

(
β0)+Rn	−1S

�1�
n

(
β0) �

with Rn defined by

Rn =
∫ 1

0

[
S

�2�
n

(
β0 + s

(
β̂− β0

))
−S�2�

n

(
β0)]ds�(6.8)
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In other words,

β̂− β0 = −
[
S

�2�
n �β0� +Rn

]−1
S̃

�1�
n

(
β0� g

)
+
[
S

�2�
n

(
β0)+Rn]−1 [

S̃
�1�
n

(
β0� g

)−S�1�
n

(
β0)] �

where S̃�1�
n �β�g� and S̃

�2�
n �β�g� denote the first and second derivatives of

S̃n�β�g� with respect to β. It follows from Lemma 6.1 that −√
nS̃

�1�
n �β0� g�

converges in distribution to 
 �0� @1�� and therefore

β̂− β0 =
[
S

�2�
n �β0� +Rn

]−1 [
S̃

�1�
n

(
β0� g

)−S�1�
n

(
β0)]+Op (n−1/2) �

The rate of convergence of β̂ is thus governed by the difference S̃�1�
n �β0� g� −

S
�1�
n �β0�. and the proof of Theorem 3.2 lies in checking the three following

points:

(i) S̃�1�
n �β0� g� −S�1�

n �β0� = Op�δ1�n�f� + n−1/2 + δ2�n�f�	;
(ii) S�2�

n �β0� −S�2��β0� = op�1�, with S�2��β0� defined in (3.3);
(iii) Rn defined by (6.8) satisfies Rn = op�1�.

Proof of (i). Start by writing S̃�1�
n �β0� g�−S�1�

n �β0� = A1+A2+A3� where

A1 = 2
n

n∑
i=1

W�Zi��Yi −�β0�Zi�	
[
�̂

�1�
β0 �Zi� −��1�

β0 �Zi�
]
�

A2 = 2
n

n∑
i=1

W�Zi�
[
�̂β0�Zi� −�β0�Zi�

] [
�̂

�1�
β0 �Zi� −��1�

β0 �Zi�
]
�

A3 = 2
n

n∑
i=1

W�Zi�
[
�̂β0�Zi� −�β0�Zi�

]
�

�1�
β0 �Zi��

Control of A1. Using (6.4) write A1 = B1 +B2 +B3 + op�n−1/2� where

B1 = 2
n

n∑
i=1

W�Zi�
h�Zi�

�Yi −�β0�Zi�	
[̂
#f�1� �Zi� − #f�1� �Zi�

]
�

B2 = − 2
n

n∑
i=1

W�Zi�
h2�Zi�

�Yi −�β0�Zi�	
[
ĥ�Zi� − h�Zi�

]
#f�1� �Zi��

B3 = − 2
n

n∑
i=1

W�Zi�
h2�Zi�

�Yi −�β0�Zi�	
[
ĥ�Zi� − h�Zi�

] [̂
#f�1� �Zi� − #f�1� �Zi�

]
�

Applying Lemma A.2 to B1 with F�z� = 1/h�z�, and to B2 with both F�z� =
1/h2�z� and f�1�

a ≡ 1, we can conclude that for any a= 1� � � � �m,B1�a = op�n−1/2�
andB2�a = op�n−1/2��Under Assumptions (A5), bothσ2

n�f�1�
a �√log n = o�n� and
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M2
n�f�1�

a � log n = o�n3�� Consequently, applying Lemma A.4 after changing f in
f
�1�
a yieldsB3 = op�n−1/2�, which entails thatA1 = op�n−1/2�.

Control of A2. Let us denote by A2 = �A2�1� � � � �A2�m�T and apply (6.4) to
f and to f�1�, just as in A1 to write A2�a = C1 +C2 +C3 + op�n−1/2� where

C1 = 2
n

n∑
i=1

W�Zi�
h2�Zi�

[̂
#
f
�1�
a
�Zi� − #f�1�

a
�Zi�
] [̂
#f�Zi� − #f�Zi�

]
�

C2 = − 4
n

n∑
i=1

W�Zi�
h2�Zi�

[̂
#f�Zi� − #f�Zi�	�̂h�Zi� − h�Zi�

]
#̂
f
�1�
a
�Zi��

C3 = − 4
n

n∑
i=1

W�Zi�
h2�Zi�

[̂
#
f
�1�
a
�Zi� − #f�1�

a
�Zi�
] [
ĥ�Zi� − h�Zi�

]
#̂f�Zi��

Applying Lemma A.3 to C1 ensures that

C1 = Op
[
Mn�f�Mn�f�1�

a �/n3/2
]
+ op

[
σn�f�/

√
n+Bn�f�

]
�

From Assumption (A5), Lemma A.3 and using the fact that
Mn�f�

√
log n/n3/2 = o�n−1/2� together with formulas (3.4) and Proposition

3.1 b) we infer that

C2 = op
[
Mn�f��log n�5/4

√
log log n/n3/2

]
+ op

[
n−1/2] �

Arguing as for C2 (replacing f by f�1�
a in C2) and using thatMn�f�1�

a �√log n/n3/2

= o�n−1/2� we obtain C3 = op�Mn�f��log n�5/4√log log n/n3/2	 + op�n−1/2	 and
finally

A2�a = Op
[
Mn�f�Mn�f�1�

a �/n3/2
]
+ op

[
Mn�f��log n�5/4

√
log log n/n3/2

]
+op
[
σn�f�/

√
n+Bn�f� + n−1/2] �

Control of A3� In most cases, the rate of convergence of β̂ is governed by
the rate of convergence of this term which does not depends on the observa-
tions Yi. This arises from the fact that the term A1 depending on the Yi’s, is
centered and then is negligible with respect to the last term A3.

Using again (6.4) write A3 = D1 +D2 +D3 + op�n−1/2� where

D1 = 2
n

n∑
i=1

W�Zi�
h�Zi�

[̂
#f�Zi� − #f�Zi�

]
�

�1�
β0 �Zi��

D2 = 2
n

n∑
i=1

W�Zi�
h�Zi�

[
ĥ�Zi� − h�Zi�

]
�β0�Zi���1�

β0 �Zi��

D3 = − 2
n

n∑
i=1

W�Zi�
h2�Zi�

[
ĥ�Zi� − h�Zi�

] [
#f�Zi� − #̂f�Zi�

]
�

�1�
β0 �Zi��
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Applying Lemma A.1 to D1 and D2 we infer that

D1 = Op
[
δ1�n�f� +Bn�f�

]
and D2 = Op

[
n−1/2] �

Under Assumption (A5), applying Lemma A.3 to D3 we can conclude that
D3 = op�n−1/2	� which entails that A3 = Op

[
δ1�n�f�/

√
n+Bn�f� + n−1/2

]
and

(i) holds.

Proof of (ii). Since S̃
�2�
n �β0� g� − S�2��β0� = op�1� (see the proof of

Lemma 6.1), it remains to prove that S�2�
n �β0�−S̃�2�

n �β0� g� = op�1�� Proceeding

as for the consistency, write S�2�
n �β0� − S̃�2�

n �β0� g� = E1 +E2 +E3, where

E1 = 2
n

n∑
i=1

W�Zi�
[
�̂

�1�
β0 �Zi��̂�1�

β0 �Zi�T −��1�
β0 �Zi���1�

β0 �Zi�T
]
�

E2 = 2
n

n∑
i=1

W�Zi�Yi
[
�̂

�2�
β0 �Zi� −��2�

β0 �Zi�
]
�

E3 = 2
n

n∑
i=1

W�Zi�
[
�̂β0�Zi��̂�2�

β0 �Zi� −�β0�Zi����2�
β0 �Zi�

]
�

Using equality (6.6) we infer that E1 = op�1�, E2 = op�1� and denoting by
�E3�a�b the components of the matrix E3, that �E3�a�b = op�1� for any integer
a� b in �1�m	 and (ii) follows.

Proof of (iii). Under stated assumptions, the regularity of the function f
implies that the same regularity holds for Sn�β�. Let βn�s� = β0 + s�β̂ − β0�
and write S�2�

n �βn�s�	 −S�2�
n �β0� = F1 +F2 +F3 where

F1�s� =
2
n

n∑
i=1

W�Zi�G1�Zi�� F3�s� =
2
n

n∑
i=1

W�Zi�G2�Zi��

F2�s� =
2
n

n∑
i=1

W�Zi�Yi
[
�̂

�2�
βn�s��Zi� − �̂

�2�
β0 �Zi�

]
�

with G1�Zi� = �̂
�2�
βn�s��Zi��̂

�2�
βn�s��Zi�T − �̂

�2�
β0 �Zi��̂�2�

β0 �Zi�T and G2�Zi� =
�̂βn�s��Zi��̂

�2�
βn�s��Zi� − �̂β0�Zi��̂�2�

β0 �Zi�� By linearity of the Fourier transform,

and the regularity of f, we get �̂�1�
βn�s��Zi� − �̂

�1�
β0 �Zi� = s�̂�2�

β� �Zi��β̂−β0��with


β�a
 ≤ 
β̂a − β0
a
, for any integer a in �1�m	. Therefore F1�s� becomes

F1�s� = s
2
n

n∑
i=1

W�Zi��̂�1�
β� �Zi��β̂− β0�

[
�̂

�1�
βn�s��Zi� + �̂

�1�
β0 �Zi�

]T
whence, using the consistency of β̂, the fact that the weight function W���
has a compact support together with the compactness of 
 and arguing as
for (6.5) (see the proof of the consistency), we get

∫ 1
0 F1�s�ds = op�1� and the

same holds for
∫ 1
0 F2�s�ds and

∫ 1
0 F3�s�ds� ✷
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6.4. Proof of Corollary 5�1� Write σ̂2 as σ̂2 = G1 +G2 +G3 +G4� with G1,
G2, G3 and G4 defined by G1 = n−1∑n

i=1Wn�Zi��f2
β0�Xi� − �̂f2

β̂

�Zi�	�

G2 = 2
n

n∑
i=1

Wn�Zi���̂2
β̂
�Zi� − fβ0�Xi��̂β̂�Zi�	�

G3 = 1
n

n∑
i=1

Wn�Zi�ξ2
i and G4 = 2

n

n∑
i=1

Wn�Zi�ξi�fβ0�Xi� − �̂β̂�Zi�	�

The consistency of β̂ and the fact that ξi’s are centered independent from the

Zi’s combined with Assumption (A7) imply that G3
�−→

n→∞ σ2 and G4 = op�1��
Under Assumptions (A4) and (A5) for f2, arguing as in the proof of Theorem
3�1, we infer both that G1 = op�1� and G2 = op�1� which gives the result. ✷

APPENDIX

We first proceed to the proof of Lemma 6.1 and second we state and prove
technical lemmas about U-statistics used in the proofs of Theorem 3�1 and
Theorem 3.2.

Proof of Lemma 6.1. We start with proving that S̃n�β�g� − S�β�β0� =
op�1� where S�β�β0� = Ɛ �W�Z�	σ2 + Ɛ �W�Z� [fβ0�X� −�β�Z�]2�� Write

S̃n�β�g� as

1
n

n∑
i=1

W�Zi�ξ2
i +

1
n

n∑
i=1

W�Zi��fβ0�Xi� −�β�Zi�	2

+ 2
n

n∑
i=1

W�Zi�ξi�fβ0�Xi� −�β�Zi�	�

part (a) arises immediately from the fact that the ξi are centered and inde-
pendent of Zi’s, from the law of large numbers and from Assumption (A9),
(A10) and Theorem 3.2.8, page 126 in [11]. Now write

∂

∂β
S�β�β0� = S�1��β�β0� = −2Ɛ

{
W�Z���1�

β �Z� [fβ0�X� −�β�Z�]} �
By Definition (1.2), S̃�1�

n �β̂� g� = 0. The regularity of f with respect to β and a
Taylor expansion ensures that

√
n�β̃g − β0� = −

[
S̃

�2�
n �β0� g� +Rn

]−1 √
nS̃

�1�
n �β0� g��

with

Rn =
∫ 1

0

[
S̃

�2�
n

(
β0 + s�β̃− β0�� g

)
− S̃�2�

n �β0� g�
]
ds�
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Part (b) follows from Assumptions (A7) and (A8), from the consistency of
β̃g and from the central limit theorem and the law of large numbers which give

that −√
nS̃

�1�
n �β0� g� 	−→

n→∞ 
 �0� @1�� S̃�2�
n �β0� g� �−→

n→∞ Ɛ ���1�
β0 �Z���1�

β0 �Z�T	 and

Rn = op�1�� ✷

Lemma A.1. Assume that f satisfies Assumptions (A4) and let F�Zi� be
a continuous function and Cn be such that f satisfies Assumption (A5). Now
consider the following quantity:

Un = n−1
n∑
i=1

W�Zi�F�Zi�
[̂
#f�Zi� − #f�Zi�

]
�

Then we have the following results�
(a) Un = Op

{
n−1/2Ɛ 1/2Ɛ 2 �W�Z1�F�Z1��n�Z1�Z2� 
Z2� +Bn�f�

}
�

(b) If f ≡ 1 then replacing #̂f�Zi� in ĥ�Zi� we have that Un = Op�n−1/2	.

Proof. Part (a) arises from both Ɛ �Un� = O�B2
n�f�	 and from Ɛ �U2

n� =
O�n−1Ɛ �Ɛ 2�W�Z1�F�Z1��n�Z1�Z2�
Z2�	��

Let us start with the study of Ɛ �Un�. Denoting by ψn�Zi�Zj� the function

ψn�Zi�Zj� =W�Zi�F�Zi���n�Zi�Zj� − #f�Zi�	�
Un is a U-statistic of order 2 which can be written as follows:

Un = �n�n− 1�	−1
n∑
i=1

n∑
j=1�j �=i

ψn�Zi�Zj��

Arguing as for Proposition 3.1 we get 
Ɛ ��n�Zi�Zj�
Zi	 − #f�Zi�
 ≤
�T�f�Zi�Cn

�1. Hence, from the independence between Zi and Zj (i �= j) we
obtain


E�Un�
 = 
Ɛ �ψn�Zi�Zj�	
 ≤ Bn�f�Ɛ �W�Zi�
F�Zi�
	�
Now, some crude calculations provide the decomposition

Ɛ �U2
n	 = �@1 + @2 + @3 + @4	�1 +O�n−1��

where

@1 = Ɛ 2�ψn�Z1�Z2�	� @2 = n−2Ɛ �ψ2
n�Z1�Z2�	�

@3 = n−1Ɛ �ψn�Z1�Z2�ψn�Z3�Z2�	� @4 = n−1Ɛ �ψn�Z1�Z2�ψn�Z1�Z3�	�
Arguing as for Ɛ �Un� we easily obtain that @1 ≤ B2

n�f�Ɛ 2�W�Z1�
F�Z1�
	�
and applying Proposition 3.1 provides that Var��n�Zi�Zj� − #f�Zi�
Zi	 ≤
λn�f�Zi� and

Ɛ
[
ψ2
n�Z1�Z2�

] ≤ [σ2
n�f� +B2

n�f�
]
Ɛ
[
W2�Z1��2�Z1�

]
�

Since f satisfies Assumption (A4), Bn�f� = o�1� and hence @2 = O�n−2σ2
n�f�	�
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The following step is to study @3. Since the Zi’s are i.i.d. random variables

Ɛ �ψn�Z1�Z2�ψn�Z3�Z2�	 = Ɛ
[
Ɛ 2�ψn�Z1�Z2�
Z2�

]
�

But Ɛ �Ɛ 2�ψn�Z1�Z2��
Z2	 equals

Ɛ
[
Ɛ
(
W�Z1�F�Z1�Re

〈
T�f�Z1

�η��−1� h�n�2
〉 
Z2

)
− Ɛ �W�Z1�F�Z1�#f�Z1�	

]2
which is bounded from above by

Ɛ
[
Ɛ 2 (W�Z1�F�Z1��n�Z1�Zj� 
Z2

)]+ Ɛ 2�W�Z1�F�Z1�#f�Z1�	�
Consequently,

@3 = O
{
n−1Ɛ �Ɛ �W�Z1�F�Z1��n�Z1�Z2� 
Z2�	2

}
�

When precise calculations are impossible we only use the upper bound

Ɛ �ψn�Z1�Z2�ψn�Z3�Z2�	 ≤ Ɛ
[
W2�Z1�F2�Z1���n�Z1�Z2� − #f�Z1��2

]
= O [σ2

n�f� +B2
n�f�	Ɛ �W2�Z1��2�Z1�

]
�

which implies, in these cases, @3 = O�n−1σ2
n�f�	� Now,

Ɛ �ψn�Z1�Z2�ψn�Z1�Z3�	 ≤ B2
n�f�Ɛ �W2�Z1�F2�Z1�	�

which entails that @4 = O�n−1B2
n�f�	� Finally, part (a) of Lemma A.1 follows

since

Ɛ �U2
n� = O

{
n−1Ɛ �Ɛ �W�Z1�F�Z1��n�Z1�Z2� 
Z2�	2 +B2

n�f�
}
�

When f ≡ 1 we have

Ɛ
(
W�Z1�F�Z1�� h

n �Z1�Z2� 
Z2

)
= Ɛ �W�Z1�F�Z1�Vn�Z2 −Z1�
Z2	�

According to the definition of ĥ�Zi�, Ɛ �W�Z1�F�Z1�Vn�Z2 −Z1�
Z2	 equals∫
W�Z2 + uhn�F�Z2 + uhn�h�Z2 + uhn�V�u�du�

which is bounded from above by �WFh�2
∞�V�1. Therefore the expectation

Ɛ �Ɛ 2�ψn�Z1� Z2�
Z2	� is bounded. This combined with (3.1), entail that Un =
Op�n−1/2�� ✷

Lemma A.2. Assume that for any integer a in �1�m	, f�1�
a satisfies Assump-

tion (A4) and let F�Zi� be a continuous function. Let Cn be such that f�1�
a

satisfies Assumption (A5) and consider the following quantity�

Un = n−1
n∑
i=1

W�Zi�F�Zi��Yi −�β0�Zi�	
[̂
#
f
�1�
a
�Zi� − #f�1�

a
�Zi�
]
�

then, for any integer a in �1�m	 we have Un = op�n−1/2	�
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Proof. Denoting by Ti = �Yi�Zi� and by ψn�Ti�Tj� the function

ψn�Ti�Tj� =W�Zi�F�Zi��Yi −�β0�Zi�	��̇n�j�Zi� − #f�1�
a
�Zi�	�

Un can be writtenUn = �n�n−1�	−1∑n
i=1
∑n
j=1�j �=i ψn�Ti�Tj�� Since �̂β0�Zi�−

�β0�Zi� depends only on the observations Zi, Ɛ �Un� = 0. Now arguing as in
the proof of Lemma A.1 we have

Ɛ 2�ψn�T1�T2�	 = Ɛ �ψn�T1�T2�ψn�T3�T2�	 = 0�

Ɛ
[
ψ2
n�T1�T2�

] = O [n−2σ2
n�f�1�

a �
]

and

Ɛ �ψn�T1�T2�ψn�T1�T3�	 = O
[
n−1B2

n�f�1�
a �
]
�

It follows by Assumption (A4) that Un = Op�Bn�f�1�
a �/√n	 = op�n−1/2�. ✷

Lemma A.3. Assume that f and f�1�
a satisfy Assumption (A4) for any integer

a in �1�m	 and let F�Zi� be a continuous function. Let Cn be such that f
and f�1�

a satisfy Assumption (A5) for any integer a in �1�m	 and consider the
following quantity�

Un = n−1
n∑
i=1

W�Zi�F�Zi��̂#f�Zi� − #f�Zi�	
[̂
#
f
�1�
a
�Zi� − #f�1�

a
�Zi�
]
�

Then�
(a) Un = Op

[
Mn�f�Mn�f�1�

a �/n3/2
]
+ op�σn�f�/

√
n+Bn�f�	�

(b) If f�1�
a = 1, then replacing #̂

f
�1�
a
�Zi� in ĥ�Zi� we get that Un = op�n−1/2	�

Remark A.1. Note that we also have

Un = Op
[
Mn�f�Mn

(
f
�1�
a

)
/n3/2

]
+ op

[
σn

(
f
�1�
a

)
/
√
n+Bn

(
f
�1�
a

)]
�

Proof of Lemma A.3. Denote by φn�Zi�Zj�Zk� the quantity

W�Zi�F�Zi���n�Zi�Zj� − #f�Zi�	
[
�

�1�
n �Zi�Zk� − #f�1�

a
�Zi�
]

and write Un as the sum of two U-statistics respectively of order 3 and order
2: Un = �n− 2�/�n− 1�U�1�

n +U�2�
n , where U�1�

n and U�2�
n are defined by

U
�1�
n = 1

n�n− 1��n− 2�
n∑
i=1

∑
j �=k �=i

φn�Zi�Zj�Zk�

and

U
�2�
n = 1

n�n− 1�2
n∑
i=1

∑
j �=i
φn�Zi�Zj�Zj��
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Calculations similar to those done in the proof of Lemma A.1, provide

Ɛ �U�1�
n 	2 = O

[
B2
n�f�B2

n

(
f
�1�
a

)
+ n−1B2

n�f�B2
n

(
f
�1�
a

)
+n−1B2

n

(
f
�1�
a

) [
σ2
n�f� +B2

n�f�
]

+n−1B2
n�f�
[
σ2
n

(
f
�1�
a

)
+B2

n

(
f
�1�
a

)]
+n−2B2

n

(
f
�1�
a

) [
σ2
n�f� +B2

n�f�
]

+n−2B2
n�f�
[
σ2
n

(
f
�1�
a

)
+B2

n

(
f
�1�
a

)]
+n−2 [σ2

n�f� +B2
n�f�
] [
σ2
n

(
f
�1�
a

)
+B2

n

(
f
�1�
a

)]
+n−3 [σ2

n�f� +B2
n�f�
] [
σ2
n

(
f
�1�
a

)
+B2

n

(
f
�1�
a

)] ]
�

SinceCn is such that f and f�1�
a satisfy Assumption (A5), we have Ɛ �U�1�

n 	2 =
o�n−1σ2

n�f� + B2
n�f�	� Note that by symmetry we also have that Ɛ �U�1�

n 	2 =
o�n−1σ2

n�f�1�
a �+B2

n�f�1�
a �	 and Ɛ�U�1�

n 	=o�Bn�f�	=o�Bn�f�1�
a �	� Finally, Var�U�1�

n �=
o�n−1σ2

n�f� + B2
n�f�	 and Var�U�2�

n � = O�n−2σ2
n�f�σ2

n�f�1�
a � + n−3M2

n�f�
M2
n�f�1�

a �	� where the result for U�2�
n follows from the fact that Ɛ �U�2�

n � =
O�n−1σn�f�σn�f�1�

a �	 = o�n−1/2σn�f�	�
When f�1�

a ≡ 1, σ2
n�f�1�

a � = O�√log n�, Mn�f�1�
a � = O�√log n� which together

with (3.1) provide the result. Indeed, since Cn is such that fβ satisfies As-
sumption (A5) we have n−1σn�f��log n�1/4 = o�n−1/2� and n−3/2Mn�f�

√
log n =

o�n−1/2�� ✷

Lemma A.4. Assume that f and f�1�
a satisfy Assumptions (A4) for any inte-

ger a in �1�m	 and let F�Zi� be a continuous function. Let Cn be such that f
and f�1�

a satisfy Assumptions (A5) for any integer a in �1�m	 and consider the
following quantity�

Un = n−1
n∑
i=1

W�Zi�F�Zi��Yi −�β0�Zi�	
[̂
#f�Zi� − #f�Zi�

] [
ĥ�Zi� − h�Zi�

]
�

Then Un = op�n−1/2	�

Proof. We proceed as for the case of Lemma A.3 using the fact that
Ɛ �Yi −�β0�Zi�
Zi	 = 0� ✷
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