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AN ASYMPTOTICALLY OPTIMAL SEQUENTIAL PROCEDURE
FOR THE ESTIMATION OF THE LARGEST MEAN

By YunG LiaANG TONG
University of Nebraska

Interval estimation of the largest mean of k normal populations (k = 1)
with a common variance ¢ is considered. When ¢2 is known the optimal
fixed-width interval is given so that, to have the probability of coverage
uniformly lower bounded by y (preassigned), the sample size needed is mini-
mized. This optimal interval is unsymmetric for k > 2. When ¢2is unknown
a sequential procedure is proposed and its behavior is studied. It is shown
that the confidence interval obtained, which is also unsymmetric for k > 2,
behaves asymptotically as well as the optimal interval. This represents an
improvement of the procedure of symmetric intervals considered by the
author previously; the improvement is significant, especially when k is
large.

1. Introduction. Let there be k normal populations (k = 1) with unknown
means p,, - - -, #,, respectively, and a common variance ¢*>. In some statistical
problems it is required to estimate the largest mean p* = max,;, #; when
there is no prior knowledge regarding the order of the x;’s. The point and
interval estimations of y* based on the sample means have been considered by
several authors; and in a recent paper Dudewicz and Tong [3] showed that, to
maximize the probability of coverage when ¢® is known, symmetric intervals
are optimal if and only if k¥ < 2. When k > 2, due to the fact that the largest
sample mean always overestimates p*, the optimal interval is always unsym-
metric and its performance is significantly better than that of the symmetric
intervals for large k.

In this paper we consider a sequential procedure for the construction of fixed-
width confidence intervals for x* when ¢? is unknown. It is shown that when
the width of the interval is small, the confidence interval obtained behaves ap-
proximately as well as the optimal confidence interval which could be obtained
only if ¢* were known. This procedure represents an improvement over a pro-
cedure of symmetric intervals considered by the author in a previous paper [6],
and the improvement is significant, especially when k is large.

In Section 2 we first construct an optimal confidence interval under the single-
stage procedure when ¢’ is known; it minimizes the number of observations
needed to achieve the probability requirement. The sequential procedure is
then given for the case of unknown ¢* and its probability of coverage is derived.
In Section 3 asymptotically optimal properties of this procedure are proved. A
comparison of this procedure with the procedure of symmetric intervals and
an extension of the solution to the estimation of the smallest mean are provided
in Section 4.
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2. The procedure and its probability of coverage. Let X,,, --., X,, denote the
sample means with a common variance ¢*/n after n observations are taken
from each of the k populations, and let X, * = max,,, X;, denote the largest
sample mean. For preassigned L > 0 let the interval for x* be given by I =
(X,* — (L — d), X,* + d). Since there is no prior knowledge about the mean
vector g = (g, « - -, ), it is a natural thing to require inf, P [p* € I] = 7 where
the probability of coverage r e (0, 1) is arbitrary but preassigned. Following
from Theorem 1 of [3] for every L, d, ¢%, n and k we have

(1) inf, P [p* € I = min{®*(c — x) — O¥(—x), P(c — x) — O(—x)}
= ay(e, 1) (say),
where ¢ = ntL/s, x = ntdjo and @ is the N(0, 1) cdf. Clearly for every ¢ and

k there is an optimal value of x (which depends on ¢), x, = x,(c) (say), such that
a,(c, x,) = sup, a,(c, x). Let ¢, and n, satisfy
) ¢, = inf{c: a,(c, x)) = 71}, n, = the smallest integer = (c,4)?
where 2 = g/L. Then with n = n, we observe X* and construct
I, = (/?:,, — (L — d,), "7:0 + d,)

with dy = x,a/n,}t, I, is the optimal confidence interval for p* and n, is the smallest
sample size needed to satisfy the probability requirement. The values of (c,, x,)
are tabulated in the attached table for y = 0.75, 0.90, 0.95, 0.975, 0.99 and
k =2(1)14. We note that ¢* is needed to determine both the sample size n, and
the location of the interval through d,, and that d, = L/2 fork < 2and d, < L/2
for k > 2 as proved in [3].

We now consider the following sequential procedure when ¢ is unknown.

For given k and for arbitrary but preassigned y and L, let (c,, x,) be the corre-
sponding optimal values of ¢ and x given in Table 1.

Procedure R. (a) Take n* observations from each of the k populations where
n* > 2 is arbitrary but preassigned.

b) After nobservations{X;.}j=1,.-..-,n;i =1, ..., k are taken from each
(®) i}

of the k populations compute

3 Sp=_L yeosw (x._Lse oy

( ) n m Zi:l i=1 L7 _n‘ Zj:l ij ’

and stop with stopping variable N where
4 N = the smallest integer n such that n > ¢;S,2/L* .
(c) When sampling is stopped observe X, * and S,?, and construct

(%) Iy = (XN* — (L — xoSN/Ni)’ Xy* + xOSN/N*) .

We first give a lower bound on the probability of coverage under R. It is
easy to see from [4] that for every g and ¢* and for every given (N, Sy) = (n, 5)
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the conditional probability that I, will cover p* is

(6) P, alp* el (n, )] = [1i @(n*d;)0 + nt[2 — x,5/0)
— IIi. ©(ntdifo — x,5/0)

where 8 = (9,, - - -, d,) issuch that §; = p* — p, > 0@(i=1, ..., k)and at least
one of the 9;’s is 0. Applying Theorem 1 of [3] it follows that for every (n, s)
the r.h.s. of (6) is lower bounded by

™ 9u(o, L, n, s) = min{®*(nt/2 — x,5/7)
— O —x,5/0), @(nt|2 — x,5/0) — D(—x,5/0)}.

Since the probability of coverage is the expection of the r.h.s. of (6) taken over
the distribution of (N, Sy), for every p, ¢* we have

(8) P, olp*el] = Egy(o, L, N, Sy) .

3. Asymptotically optimal properties of the Procedure. We now show that the
confidence interval I obtained under the Procedure R behaves asymptotically
as well as the optimal interval J, which cannot be obtained when ¢ is unknown.
We first observe the asymptotic behavior of the random sample size N.

THEOREM 1. Under the Procedure R we have,
%) P, N < 0] =1 for every p and o*,

(10) lim, N =co a.s., lim,_, Nj(c,A)* =1 a.s.,
lim,_, EN/(c,2)? = 1.

Proor. (9) follows from the a.s. convergence of the sample variances to 2.
(10) follows from Lemmas 1 and 2 of Chow and Robbins [2] with y, = S,%/d?,
f(n) = nand t = (¢,4)’>. The additional condition in Lemma 2 on the existence
of Esup, y, can be justified by an argument similar to that given in the proof
of Theorem 3.3 of [5].

To prove the convergence of the probabilities of coverage we first observe a
lemma on the convergence of a sequence of estimators based on a random number
of observations. Since the proof is elementary it is not given here. Let {T,} be
a sequence of estimators of § so that T, is based on the first n observations only,
let N be any stopping variable which depends on a parameter 1, and let 2, be
either a finite real number or infinity.

LEMMA. (a) If T, >0 a.s. asn— oo and N— oo a.s. as 2 — A, then T, — 0
a.s.as A— 4. (b) If T, 5,0 asn— oo and N—, co as 2 — A, then Ty —, 0
asl—»l,,.

Note that Ty and N are not necessarily independent random variables.

THEOREM 2. Under the Procedure R, for every u, a* we have

(11) lim, P, o[e*el/]= 7.
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Proor. Frem (8) it suffices to show the convergence of the expections of
9«(a, L, N, Sy) taken over the joint distributions of (N, S), which depend on
4. From (10) and the lemma we have N}/ —¢, a.s. and S,/o0 — 1 a.s. as
L — 0 (4— o0). Since a.s. convergence is preserved by continuous mappings,
9.(o, L, N, S) converges to

(12) min{®*(c, — x5) — P*(—x,), P(c, — xo) — P(—Xp)} = ax(Co» Xo)
a.s. as L — 0. Therefore for every g we have
lim, 4 P, o[p* € l/] = lim,_, Eg,(a, L, N, Sy)
= Elim,_,9,(s, L, N, Sy) = a,(co, X)) = 1
where the first equality follows from the fact that 9i(o, L, N, Sy) is uniformly

bounded and the second equality follows from the definition of (c,, x,). This
completes the proof of the Theorem.

4. Comparison and extension. We can now compare the Procedure R with the
procedure of symmetric intervals considered in [6]. Let N be defined in (4) and
N’ be the random sample size under the sequential procedure defined in [6]. It
follows that for every fixed y we have

(13) lim,_ EN'/EN = (2z]c})* = Bu(r) (say),

where 7 satisfies, ®*(z) — ®*¥(—z) = y. Some of the B,(y) values are computed
and an excerpt is given below:

TABLE 1
Values of Bi(y)
Tl o 0.90 0.95
3 1.297 1.19% 1.147
8 1.941 1.535 1.406
12 2.098 1.647 1.484

Clearly the improvement is significant, especially when k is large.

The procedure can also be extended to obtain a confidence interval for the
smallest mean g, = min,;_, p, in the following way: for fixed k, y and L let
(cos X,) be given in the attached table and consider

Procedure R': (a) Apply the same stopping rule given in Procedure R.

(b) When sampling is stopped observe S,* and X,, = min,,, X,,, and
construct

(14) I = Xy — %oSy/NE, Xy + (L — x,Sy/NY)) .

Then following from arguments similar to that given in Section 5 of [6] and in
the previous section of this paper it is easy to see that the procedure R’ is asymp-
totically optimal for the estimation of the smallest mean g,.
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TABLE 2
Values of co (upper entry) and xo (lower entry) for the largest normal mean

e N E 0.90 0.95 0.975 0.99

) 2.3007 3.2897 3.9200 4.4830 5.1510

1.1503 1.6448 1.9600 2.2415 2.5755

3 2.3357 3.3290 3.9590 4.5204 5.1870

0.9936 1.5094 1.8375 2.1295 2.4752

4 2.3946 3.3899 4.0173 4.5760 5.2380

0.9118 1.4466 1.7833 2.0816 2.4325

5 2.4534 3.4473 4.0717 4.6270 5.2860

0.8627 1.4108 1.7530 2.0547 2.4092

6 2.5070 3.4983 4.1200 4.6722 5.3280

0.8303 1.3878 1.7338 2.0376 2.3942

7 2.5550 3.5435 4.1622 4.7121 5.3650

0.8073 1.3718 1.7201 2.0257 2.3837

8 2.5981 3.5837 4.2000 4.7480 5.3980

0.7903 1.3600 1.7102 2.0172 2.3761

9 2.6369 3.6197 4.2340 4.7800 5.4280

0.7771 1.3509 1.7027 2.0106 2.3704

10 2.6722 3.6524 4.2644 4.8083 5.4550
0.7667 1.3437 1.6966 2.0050 2.3659

11 2.7044 3.6821 4.2923 4.8350 5.4790
0.7581 1.3379 1.6917 2.0010 2.3620

12 2.7340 3.7094 4.3180 4.8590 5.5020
0.7511 1.3330 1.6877 1.9974 2.3592

13 2.7613 3.7346 4.3416 4.8810 5.5220
0.7450 1.3289 1.6843 1.9942 2.3562

14 2.7868 3.7580 4.3635 4.9020 5.5410
0.7400 1.3255 1.6813 1.9919 2.3538
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