DIFFERENTIAL EQUATIONS AND OPTIMAL CHOICE PROBLEMS

By Anthony G. Mucci

University of Maryland

Asymptotic forms for the optimal payoff and optimal stop rule for a generalized class of "secretary" problems are obtained by the analysis of a related family of ordinary differential equations.

1. Introduction. The stop rule problems to be considered in this paper are generalizations of the "secretary problem" for bounded payoffs. A subclass of such problems is considered in Gusein-Zade [6].

Let q map the positive integers into [0, 1] with $q(k) \downarrow 0$. Let a probability $(N!)^{-1}$ be attached to each permutation σ of the first N integers, and let $\{X_k\}$ $k = 1, \dots, N$ be the sequence of independent random variables where X_k is the rank of $\sigma(k)$ among $\sigma(1), \sigma(2), \dots, \sigma(k)$. The optimal choice problem consists in determining v_N , t_N where

$$(1.1) v_N = \max_t Eq(\sigma(t)) = Eq(\sigma(t_N))$$

as t runs through stop rules on the sequence X_1, X_2, \dots, X_N . This paper is concerned with asymptotic forms for v_N and t_N . Our principal result is expressed in the following theorem.

THEOREM 1.1. Let

$$R_k(\alpha) = \sum_{k=0}^{\infty} q(l) \binom{l-1}{k-1} \alpha^k (1-\alpha)^{l-k}, \qquad \alpha \in (0, 1].$$

Then the differential equation

$$g'(\alpha) = -\alpha^{-1} \sum_{k=1}^{\infty} (R_k(\alpha) - g(\alpha))^+;$$
 $g(1) = 0$

has a unique solution on [0, 1] and

$$|v_N - g(0)| \le C_1 [\ln N/N^{\frac{1}{2}} + q(C_2 \ln N)]$$

where C_1 and C_2 are determined constants.

Analogous results for optimal choice problems involving unbounded functions, q, are treated in [8], and will be the subject of a forthcoming paper. The latter results generalize Chow, Moriguti, Robbins and Samuels [2].

- 2. Basic recursions and difference equations. Let q be a function on the positive integers, I, such that
 - (a) q(1) = 1,
 - (b) $q(l) \downarrow 0$.

We call q a payoff function. Let σ be any permutation of the first N integers; we assume all N! permutations to be equally likely. We define X_r to be the

Received December 17, 1971; revised June 2, 1972.

relative rank of $\sigma(r)$ among $\sigma(1)$, $\sigma(2)$, \cdots , $\sigma(r)$. The random variables, X_r , $r = 1, 2, \dots, N$, called observations, are independent with distributions

$$P(X_r = k) = \frac{1}{r}$$
 if $1 \le k \le r$
= 0 otherwise.

Let us set

$$Q(r, k) = E(q(\sigma(r)) | X_r = k) = \sum_{k}^{N - (r - k)} q(l) \frac{\binom{l - 1}{k - 1} \binom{N - l}{r - k}}{\binom{N}{r}}.$$

Our objective is to find asymptotic forms and estimates for the values $v_{\scriptscriptstyle N}$, $t_{\scriptscriptstyle N}$ defined by

$$(2.1) v_N = \max_t Eq(\sigma(t)) = \max_t EQ(t, X_t) = EQ(t_N, X_{t_N})$$

where t runs through all stop rules on the sequence X_r , $r=1, \cdots, N$. We call v_N the optimal payoff and t_N the optimal stop rule. We sometimes call v_N a utility. A standard recursive technique for generating v_N and t_N is the following. Set

$$v_N(N) = Eq(\sigma(N))$$

 $v_N(N, k) = q(k)$, $k = 1, 2, \dots, N$
 $v_N(r, k) = \max(Q(r, k), Ev_N(r + 1, X_{r+1}))$
 $v_N(r) = Ev_N(r, X_r) = \frac{1}{r} \sum_{1}^{r} v_N(r, k)$.

We then have

(2.2)
$$v_{N}(r) = E \max(Q(r, X_{r}), v_{N}(r+1))$$
$$= \frac{1}{r} \sum_{i=1}^{r} \max(Q(r, k), v_{N}(r+1)).$$

Since $v_N(r) = \sup_{t \ge r} Eq(\sigma(t))$, we see that $v_N(r) \ge v_N(r+1)$ and $v_N = v_N(1)$. This recursive technique, called a "backwards recursion," defines the optimal stop rule, t_N , by the prescription that one stop with the observation $X_r = k$ unless $v_N(r, k) > Q(r, k)$, i.e., unless it pays more to continue.

We will presently prove that

$$Q(r, k) \ge Q(r, k + 1)$$

$$Q(r + 1, k) \ge Q(r, k).$$

We can therefore characterize our optimal stop rule t_N , (which is the collection of pairs (r, k) such that $Q((r, k) \ge v_N(r+1))$ as a tuple (r_1, r_2, \dots, r_N) where $r_1 \le r_2 \le \dots \le r_N$ and where one stops with observation $X_r = k$ provided $r \ge r_k$.

The procedure outlined above is a rewording of the procedures found in [4], [6], and [2].

We now state

PROPOSITION 2.1. (Basic Recursion.)

$$Q(r,k) = \frac{k}{r+1} Q(r+1, k+1) + \left(1 - \frac{k}{r+1}\right) Q(r+1, k).$$

PROOF. Straightforward calculation.

This recursion will be used often in this paper. A first application is:

Corollary 2.1. (a)
$$Q(r, k) \ge Q(r, k + 1)$$

(b)
$$Q(r + 1, k) \ge Q(r, k)$$
.

PROOF. (a) Note first: $Q(N, k + 1) = q(k + 1) \le q(k) = Q(N, k)$. Then backwards, assuming the result for r + 1, we have

$$Q(r, k+1) = \frac{k+1}{r+1} Q(r+1, k+2) + \left(1 - \frac{k+1}{r+1}\right) Q(r+1, k+1)$$

$$= \frac{k}{r+1} Q(r+1, k+2) + \left(1 - \frac{k}{r+1}\right) Q(r+1, k+1)$$

$$+ \frac{1}{r+1} [Q(r+1, k+2) - Q(r+1, k+1)]$$

$$\leq \frac{k}{r+1} Q(r+1, k+2) + \left(1 - \frac{k}{r+1}\right) Q(r+1, k+1)$$

$$\leq \frac{k}{r+1} Q(r+1, k+1) + \left(1 - \frac{k}{r+1}\right) Q(r+1, k) = Q(r, k).$$

(b) Use the same procedure as for (a). []

Let us now normalize $v_N(\cdot)$ by setting $v_N(r) = f_N(r/N)$. We have then:

$$f_N(1) = \frac{1}{N} \sum_{1}^{N} g(l) = \frac{s(N)}{N}$$

$$f_N\left(\frac{r}{N}\right) = \frac{1}{r} \sum_{1}^{r} \max\left(Q(r, k), f_N\left(\frac{r+1}{N}\right)\right).$$

We extend f_N by linear interpolation to the entire unit interval and we rewrite this recursion in the form

$$f_N\left(\frac{r}{N}\right) - f_N\left(\frac{r+1}{N}\right) = \frac{1}{r} \sum_{i=1}^{r} \left(Q(r,k) - f_N\left(\frac{r+1}{N}\right)\right)^{+}.$$

$$f_N(1) = \frac{s(N)}{N}.$$

We note that $v_N = f_N(0)$.

These last equations resemble

$$g(1) = 0$$

$$g_N\left(\frac{r}{N}\right) - g_N\left(\frac{r+1}{N}\right) = \frac{1}{r+1} \sum_{1}^{r+1} \left(R_k\left(\frac{r+1}{N}\right) - g_N\left(\frac{r+1}{N}\right)\right)^+$$

where

$$R_k(\alpha) = \sum_{k=0}^{\infty} q(l) \binom{l-1}{k-1} \alpha^k (1-\alpha)^{l-k}$$
 $\alpha \in [0, 1]$.

Now g_N , extended by linear interpolation to [0, 1], can be shown to be a piecewise differentiable function which in the limit tends to the function g which uniquely satisfies

$$g(1) = 0$$

$$g'(\alpha) = -\frac{1}{\alpha} \sum_{1}^{\infty} (R_k(\alpha) - g(\alpha))^+ \qquad \alpha \in [0, 1].$$

One employs the standard Picard method for ordinary differential equations to establish the existence of g and the fact that $\lim g_N = g$. The details, lengthy but straightforward, can be found in [8]. Using estimates for the difference $R_k(r/N) - Q(r, k)$, one deduces

THEOREM 2.1.

$$||f_N - g|| \leq 10 \frac{\log N}{N^{\frac{1}{2}}} + 30q \left(\left[\frac{\alpha_*}{2} \log N \right] \right)$$

provided $\log N \ge \max(4, 12\alpha_*)$ where $R_1(\alpha_*) \le .25$.

REMARK 2.1.

- (i) Since $|v_N g(0)| = |f_N(0) g(0)| \le \sup_{0 \le \alpha \le 1} |f_N(\alpha) g(\alpha)| = ||f_N g||$, we see that $v_N \to g(0)$.
- (ii) If q is truncated, i.e., if there exists m such that q(l) = 0 all l > m, then $||f_N g|| < 10 \log N/N^{\frac{1}{2}}$. Actually, much more can be said. We have the stronger inequality:

$$||f_N - g|| \le C_m/N$$
 for large N

where C_m is a constant that depends only on m. Again, the details are spelled out in [8].

- (iii) Note that g is non-increasing.
- (iv) The functions R_k play an important role in this paper. We list some properties:
 - (a) $R_{k}'(\alpha) = k\alpha^{-1}(R_{k}(\alpha) R_{k+1}(\alpha)) = k \sum_{k=1}^{\infty} (q(l) q(l+1))\binom{l}{k}\alpha^{k-1} \times (1-\alpha)^{l-k}$.
 - (b) If q(k) > 0, then R_k is strictly increasing and $R_k(\alpha) > R_{k+1}(\alpha)$, all $\alpha \in (0, 1]$.
 - (c) $\sum_{1}^{m} R_{l}(\alpha) = \alpha s(m) + m\alpha \int_{\alpha}^{1} t^{-2} R_{m+1}(t) dt$.
 - (d) $R_k(0) = 0$; $R_k(1) = q(k)$.
- (v) The properties listed above imply that $g'\equiv 0$ on $[0,\alpha_1]$ where α_1 is the unique solution for the equation $R_1(\alpha_1)=g(\alpha_1)$. Thus, $\lim_{N\to\infty}v_N=R_1(\alpha_1)$.

We described t_N , the optimal stop rule, as an N-tuple of increasing integers (r_1, r_2, \dots, r_N) where one stops on observation $x_r = k$ provided $r \ge r_k$. The value r_k was the minimal integer for which $Q(r, k) > v_N(r+1)$. This condition, in the limit as $N \to \infty$, leads to

THEOREM 2.2. The optimal stop rule
$$t_N = (r_1, r_2, \dots, r_N)$$
 satisfies

$$\lim_{N\to\infty} r_k/N = \alpha_k$$

where $0 < \alpha_1 < \alpha_2 < \cdots$ is a sequence uniquely determined by the equations:

$$R_k(\alpha_k) = g(\alpha_k)$$
.

There is a converse of sorts to the last theorem, namely, that if \bar{v}_N is the utility associated with the stop rule $\bar{t}_N = ([\alpha_1 N], [\alpha_2 N], \dots, N)$, then $\lim_{N\to\infty} \bar{v}_N = \lim_{N\to\infty} v_N = g(0)$. We will sketch a proof of this result in the last section of this paper.

3. Applications. Our objective in this section is to determine the sequence $\{\alpha_n\}$ and the utility $v = R_1(\alpha_1)$. Our differential equation

(3.1)
$$g' = -\frac{1}{\alpha} \sum_{1}^{\infty} (R_k - g)^+; \qquad g(1) = 0$$

reduces on the interval $[\alpha_n, \alpha_{n+1}]$ to the equation

$$(3.2) g' = -\frac{1}{\alpha} \sum_{1}^{n} (R_k - g)$$

with boundary conditions

(3.3)
$$g(\alpha_n) = R_n(\alpha_n) g(\alpha_{n+1}) = R_{n+1}(\alpha_{n+1}).$$

Equivalently, we can write (3.2) in the form $(g(\alpha)/\alpha^n)' = -\alpha^{-(n+1)} \sum_{1}^{n} R_k(\alpha)$ on $[\alpha_n, \alpha_{n+1}]$. Now for $n \ge 2$, $[\alpha^{-n} \sum_{1}^{n-1} R_k(\alpha)]' = -\alpha^{-(n+1)}(n-1) \sum_{1}^{n} R_k(\alpha)$ follows immediately from the properties of R_k' . Thus, on $[\alpha_n, \alpha_{n+1}]$ we have $(g(\alpha)/\alpha^n)' = (n-1)^{-1}[\alpha^{-n} \sum_{1}^{n-1} R_k]'$ for $n \ge 2$. Using our boundary conditions (3.3) we conclude

$$(3.4) \qquad \frac{1}{\alpha_{n}} \sum_{1}^{n-1} \left(R_{k}(\alpha_{n}) - R_{n}(\alpha_{n}) \right) = \frac{1}{\alpha_{n+1}^{n}} \sum_{1}^{n-1} \left(R_{k}(\alpha_{n+1}) - R_{n+1}(\alpha_{n+1}) \right).$$

When n = 1, we see that (3.2) becomes $(g(\alpha)/\alpha)' = -R_1(\alpha)/\alpha^2$ or, using (3.3),

$$\frac{R_2(\alpha_2)}{\alpha_2} - \frac{R_1(\alpha_1)}{\alpha_1} = -\int_{\alpha_1}^{\alpha_2} \frac{R_1(\alpha)}{\alpha^2} d\alpha.$$

Now

$$\frac{d}{d\alpha} \sum_{1}^{\infty} \frac{s(k)}{k} (1-\alpha)^{k} = -\sum_{1}^{\infty} s(k) (1-\alpha)^{k-1} = -\frac{R_{1}(\alpha)}{\alpha^{2}},$$

the integrand in (3.5). So we can rewrite (3.5) in the form:

(3.6)
$$\sum_{1}^{\infty} \frac{s(k)}{k} (1 - \alpha_1)^k - \frac{R_1(\alpha_1)}{\alpha_1} = \sum_{1}^{\infty} \frac{s(k)}{k} (1 - \alpha_2)^k - \frac{R_2(\alpha_2)}{\alpha_2}.$$

DEFINITION 3.1. Set

$$H_1(\alpha) = \sum_{1}^{\infty} \frac{s(k)}{k} (1 - \alpha)^k - \frac{R_1(\alpha)}{\alpha}$$

$$G_1(\alpha) = H_1(\alpha) + \frac{1}{\alpha} (R_1(\alpha) - R_2(\alpha))$$

and for $n \ge 2$

$$\begin{split} H_n(\alpha) &= \frac{1}{\alpha^n} \sum_{1}^{n-1} \left(R_k(\alpha) - R_n(\alpha) \right) \\ G_n(\alpha) &= \frac{1}{\alpha^n} \sum_{1}^{n-1} \left(R_k(\alpha) - R_{n+1}(\alpha) \right). \end{split}$$

From (3.4) and (3.6) we see that our sequence $\{\alpha_n\}$ must satisfy

$$(3.7) H_n(\alpha_n) = G_n(\alpha_{n+1}).$$

Let us now list some properties for H_n and G_n which will be useful for examining (3.7).

REMARK 3.1.

- (A) $0 \le H_n(\alpha) \le G_n(\alpha) \le H_{n+1}(\alpha)$ for $n \ge 2$.
- (B) $H_n'(\alpha) = -(n-1)H_{n+1}(\alpha)$ for $n \ge 2$.

Thus, H_n is non-increasing.

- (C) $G_n(\alpha) = H_n(\alpha) + \alpha^{-n}(n-1)(R_n R_{n+1}), n \ge 2.$
- (D) $G_{n}'(\alpha) \leq -(n-1)H_{n+1}(\alpha), n \geq 2.$

Thus, G_n is non-increasing.

- (E) $H_n(\alpha) = \sum_{k=0}^{\infty} {n-2+k \choose k} [s(n+k-1)-(n+k-1)q(n+k)](1-\alpha)^k, n \ge 2$. For by repeated application of (B), we get $H_n(k) = (-1)^k k! \, {n-2k+1 \choose k} H_{n+k}$ and further $H_{n+k}(1) = s(n+k-1) (n+k-1)q(n+k)$, so we simply take the Taylor expansion of H_n around $\alpha = 1$.
 - (F) $\lim_{\alpha\to 0^+} H_n(\alpha) = \infty$. $n \ge 2$. For we can write

(3.8)
$$H_2(\alpha) = \alpha^{-1}R_1'(\alpha) = \alpha^{-1}\sum_{l=1}^{\infty}l(q(l) - q(l+1))(1-\alpha)^{l+1},$$

and clearly $\lim_{\alpha\to 0^+} H_2(\alpha) = \infty$. Now use the fact that $H_n \ge H_2$ for $n \ge 2$. We clearly have also that $\lim_{\alpha\to 0^+} G_n(\alpha) = \infty$, $n \ge 2$.

- (G) $H_n(1) = s(n-1) (n-1)q(n), n \ge 2.$ $G_n(1) = s(n-1) - (n-1)q(n+1), n \ge 2.$
- (H) If q(m+1)=0, then $k\geq 1$ implies $H_{m+k}(\alpha)=H_{m+1}(\alpha)=s(m)/\alpha^m$, $G_{m+k}(\alpha)=G_{m+1}(\alpha)=s(m)/\alpha^m$, since $R_{m+k}\equiv 0$ and $\sum_{1}^{m}R_k(\alpha)=\alpha s(m)$.
- (I) H_n is strictly decreasing on (0, 1] for $n \ge 2$. G_n is strictly decreasing on (0, 1] for $n \ge 2$.
- (J) $H_1'(\alpha) = -H_2(\alpha)$, $G_1'(\alpha) \leq -H_2(\alpha)$. In particular, H_1 and G_1 are strictly decreasing on (0, 1].
 - (K) $\lim_{\alpha\to 0^+} H_1(\alpha) = \infty$.
- (L) Given any $\alpha \in (0, 1]$, there exists a unique $\bar{\alpha} \in (0, 1]$, $\bar{\alpha} \leq \alpha$ such that $H_n(\bar{\alpha}) = G_n(\alpha)$. This result follows from the facts that $G_n \geq H_n$, H_n is strictly decreasing, and $H_n(0^+) = \infty$.

PROPOSITION 3.1. Let q be truncated at m. Then the sequence $\{\alpha_n\}$, $n=1,\dots,m$ which defined the limiting optimal stop rule is generated recursively by the formulas:

$$\alpha_{m+1}=1\;,\qquad H_n(\alpha_n)=G_n(\alpha_{n+1})\qquad \qquad n=1,\;\cdots,\;m\;.$$

EXAMPLE 3.1. (a) Let

$$q(l) = 1$$
 if $l = 1$
= 0 otherwise.

Then $R_1(\alpha) = \alpha$, $R_k(\alpha) = 0$ for k > 1. $H_1(\alpha) = \sum_{1}^{\infty} k^{-1}(1-\alpha)^k - 1 = -\log \alpha - 1$, $G_1(\alpha) = -\log \alpha$. Now $\alpha_2 = 1$, and α_1 is the solution to $-\log \alpha_1 - 1 = -\log \alpha_2 = -\log 1 = 0$, i.e., $\log \alpha_1 = -1$ so $\alpha_1 = 1/e$.

(b) Let

$$q(l) = 1$$
 if $l = 1, 2$
= 0 otherwise.

Then $R_1(\alpha) = 2\alpha - \alpha^2$, $R_2(\alpha) = \alpha^2$. So $H_1(\alpha) = 2\alpha - 2\log \alpha - 2$, $H_2(\alpha) = 2\alpha^{-1} - 2$, $G_1(\alpha) = -2\log \alpha$, $G_2(\alpha) = 2\alpha^{-1} - 1$. Thus, starting with $\alpha_3 = 1$, we have $2\alpha_2^{-1} - 2 = \frac{2}{1} - 1 = 1$, i.e., $\alpha_2 = \frac{2}{3}$ and $2\alpha_1 - 2\log \alpha_1 - 2 = -\log \frac{2}{3}$, i.e., $\alpha_1 - \log \alpha_1 \sim 1.40$ so $\alpha_1 \sim .35$. Let us note that in case (a), our utility v satisfies $v = R_1(1/e) = 1/e$, and in case (b) we have $v = R_1(.35) = 2(.35) - (.35)^2 \sim .58$.

We also note that for any q truncated at m we have: $H_m(\alpha) = s(m)\alpha^{-(m-1)} - mq(m)$. Since $G_m(1) = s(m-1)$, we have $\alpha_m = [s(m)/\{s(m-1) + mq(m)\}]^{(m-1)^{-1}}$; a generalization of a formula found in [6].

REMARK 3.2. It may happen that, although q is not truncated, we can still find $(\alpha_1, \alpha_2, \cdots)$. The idea is to set up the recursion in a form which expresses α_m as a limit depending in an essential manner on the fact that $\lim_{n\to\infty} \alpha_n = 1$, which is proven in [8]. Let us illustrate this.

A special class of payoffs. Let $\beta \in (0, 1)$. We set

(3.9)
$$q_{\beta}(k) = 1 \qquad \text{if} \quad k = 1$$
$$= \frac{\beta(\beta + 1), \dots, (\beta + k - 2)}{(k - 1)!} \qquad \text{if} \quad k \ge 2.$$

We can write this payoff in the form $q_{\beta}(k) = (-1)^{k-1} {\binom{-\beta}{k-1}}$. We note that

(a)
$$q_{\beta}(k+1)/q_{\beta}(k) = 1 - (1-\beta)/k \le 1$$
,

(b)
$$q_{\beta}(k) = \prod_{1}^{k-1} (1 - (1 - \beta)/l).$$

Thus, for large k, we have $\log q_{\beta}(k) \leq -(1-\beta)\sum_{1}^{k-1}l^{-1} \to -\infty$, i.e., $q_{\beta}(k)\downarrow 0$. In fact, let us note that $\log q_{\beta}(k) \leq -(1-\beta)\int_{1}^{k}s^{-1}ds = -(1-\beta)\log k$, so $q_{\beta}(k) \leq k^{-(1-\beta)}$ while $\log q_{\beta}(k) \geq -(1-\beta)\{1+\int_{1}^{k}s^{-1}ds\}$, from which $q_{\beta}(k) \geq e^{-(1-\beta)}k^{-(1-\beta)} \geq e^{-2} \cdot k^{-(1-\beta)}$. This last inequality shows that $\sum_{k=1}^{\infty}q_{\beta}(k)=\infty$ for all $\beta \in (0,1]$.

- (c) $\beta \geq \bar{\beta}, q_{\beta} \geq q_{\bar{\beta}}.$
- (d) $R_1(\alpha) = \alpha^{1-\beta}$.
- (e) $R_n(\alpha) = q_{\beta}(n)\alpha^{1-\beta}$. This follows immediately from the recursion $R_{n+1} = R_n \alpha n^{-1}R_n'$. In what follows, $\beta < 1$.
 - (f) $H_2(\alpha) = (1 \beta)\alpha^{-1-\beta}$.

So
$$H_1(\alpha) = (1 - \beta)\beta^{-1}\alpha^{-\beta} - \beta^{-1}$$
 since $H_1' = -H_2$ and $H_1(1) = -1$.

(g) $H_n(\alpha) = (1-\beta)\beta^{-1}(n-1)q_{\beta}(n)\alpha^{-\beta-(n-1)}, n \ge 2$. Here we simply use the recursion: $H_n' = -(n-1)H_{n+1}$.

(h)
$$G_1(\alpha) = (\beta^{-1} - \beta)\alpha^{-\beta} - \beta^{-1}$$
.

(i)
$$G_n(\alpha) = (1 - \beta)\beta^{-1}(n + \beta)n^{-1}(n - 1)q_{\beta}(n)\alpha^{-\beta - (n-1)}, n \ge 2.$$

These formulas allow a straighforward calculation for the sequence $\{\alpha_n\}$.

We have the recursion $H_n(\alpha_n) = G_n(\alpha_{n+1})$ reducing to $\alpha_n^{-\beta - (n-1)} = (n + \beta)n^{-1}\alpha_{n+1}^{-\beta - (n-1)}$, i.e.,

$$\frac{\alpha_n}{\alpha_{n+1}} = \left(1 + \frac{\beta}{n}\right)^{1/(-\beta - (n-1))}$$

for $n \ge 2$. Now since $\alpha_n \to 1$, we have

$$\alpha_m = \prod_m^{\infty} \left(1 + \frac{\beta}{n}\right)^{-1/(\beta + (n-1))}, \qquad m \geq 2.$$

Further, the recursion $H_1(\alpha_1) = G_1(\alpha_2)$ reduces to

$$\alpha_1/\alpha_2 = (1 + \beta)^{-1/\beta}.$$

So

$$\alpha_1 = \prod_{1}^{\infty} (1 + \beta/l)^{-1/(\beta + (l-1))}$$
.

Finally

(3.10)
$$v = g(\alpha_1) = R_1(\alpha_1) = \prod_{1}^{\infty} \left(1 + \frac{\beta}{l}\right)^{\frac{1}{1 - (l/(1 - \beta))}}$$
$$g(\alpha_n) = R_n(\alpha_n) = q_{\beta}(n) \prod_{n}^{\infty} \left(1 + \frac{\beta}{l}\right)^{\frac{1}{1 - (l/(1 - \beta))}}.$$

REMARK 3.3. Note that

$$\begin{split} \ln\frac{1}{\alpha_1} &= \sum_{1}^{\infty}\frac{1}{\beta + (l-1)}\log\left(1 + \frac{\beta}{l}\right) \\ &\leq \sum_{1}^{\infty}\frac{1}{\beta + (l-1)}\frac{\beta}{l} \\ &\leq 1 + \beta\sum_{2}^{\infty}\frac{1}{l(l-1)} = 1 + \beta \;. \end{split}$$

Thus $\alpha_1^{-1} \leq e^{1+\beta}$ or $\alpha_1 \geq e^{-1-\beta} \geq e^{-2}$. So α_1 is bounded away from zero uniformly in β .

On the other hand,

$$\begin{split} \log \frac{1}{\alpha_1} &= \sum_1^\infty \frac{1}{\beta + (l-1)} \log \left(1 + \frac{\beta}{l}\right) \\ &\geq \sum_1^\infty \frac{1}{\beta + (l-1)} \frac{1}{1 + \beta/l} \frac{\beta}{l} \\ &= \beta \sum_1^\infty \frac{1}{(\beta + l)(\beta + l - 1)} = \beta \sum_1^\infty \left\{\frac{1}{\beta + l - 1} - \frac{1}{\beta + l}\right\} \\ &= \beta (1/\beta) = 1 \ ; \end{split}$$

therefore $\alpha_1 \leq 1/e$.

Proposition 3.2. Let $\beta \in (0, 1)$, q_{β} as defined above. Then $1/e^2 \leq \alpha_1 \leq 1/e$.

4. Asymptotically optimal stop rules. Our objective in this section is to sketch a proof of the following:

THEOREM 4.1. Let
$$\bar{t}_N=([\alpha_1N],[\alpha_2N],\cdots,N), \bar{v}_N=Eq(\sigma\bar{t}_N))$$
. Then
$$\lim_{N\to\infty} \bar{v}_N=g(\mathbf{0}) \ .$$

We begin by defining:

$$\begin{split} p_1 &= 1 \\ p_{l,l+1} &= p(x_t > l, [\alpha_l N] \leq t < [\alpha_{l+1} N]) \\ p_k &= \prod_{1}^{k-1} p_{l,l+1} \\ u_k &= \sum_{\substack{[\alpha_k + 1^N]^{-1} \\ [\alpha_k N]}}^{[\alpha_k + 1^N]^{-1}} \sum_{l=1}^k p(x_t = l; x_s > k \text{ for } [\alpha_l N] \leq s < t) \cdot Q(t, l) \;. \end{split}$$

Then, for any fixed m we have

$$\overline{v}_N \ge \sum_{1}^{m} p_k m_k$$
 for $N \ge m$.

Using the equation

$$p_{l,l+1} = \prod_{[\alpha_l N]}^{[\alpha_{l+1} N]-1} (1 - l/t)$$

and letting $N \to \infty$, we get

$$p_{l,l+1} \longrightarrow \left(\frac{\alpha_l}{\alpha_{l+1}}\right)^l$$

and

$$u_k \to \alpha_k^{\ k} \int_{\alpha_k^{k+1}}^{\alpha_{k+1}} \frac{1}{\lambda^{k+1}} \sum_{1}^k R_l(\lambda) \ d\lambda$$

so that

$$\lim\inf v_N \geq \sum_{k=1}^m \left(\prod_1^k \alpha_l\right) \int_{\alpha_k}^{\alpha_{k+1}} \frac{1}{\lambda^{k+1}} \sum_1^k R_l(\lambda) d\lambda.$$

Now for $k \ge 2$ we have

$$\frac{1}{\lambda^{k+1}} \, \textstyle \sum_{1}^{k} R_{l}(\lambda) \, = \, -\frac{1}{k-1} \left(\frac{1}{\lambda^{k}} \, \textstyle \sum_{1}^{k-1} R_{l}(\lambda) \right)' \, .$$

So we can write

$$\begin{split} \lim\inf \overline{v}_N & \geqq \alpha_1 \int_{\alpha_1}^{\alpha_2} \frac{R_1(\lambda)}{\lambda^2} \, d\lambda - \sum_{k=1}^m \frac{1}{k-1} \left(G_k(\alpha_{k+1}) - H_k(\alpha_k) \right) \prod_{k=1}^k \alpha_k \\ & - \sum_{k=1}^m \left(\frac{R_{k+1}(\alpha_{k+1})}{\alpha_{k+1}^k} - \frac{R_k(\alpha_k)}{\alpha_k^k} \right) \prod_{k=1}^k \alpha_k \, . \end{split}$$

The second term is zero while the third term reduces to

$$\begin{split} \frac{\alpha_1}{\alpha_2} \, R_2(\alpha_2) \, - \, \frac{\prod_1^m \alpha_l}{\alpha_{m+1}^m} \, R_{m+1}(\alpha_{m+1}) \, &\geqq \, \frac{\alpha_1}{\alpha_2} \, R_2(\alpha_2) \, - \, R_{m+1}(\alpha_{m+1}) \\ &\geqq \, \frac{\alpha_1}{\alpha_2} \, R_2(\alpha_2) \, - \, q(m+1) \; . \end{split}$$

Now

$$\int_{\alpha_1}^{\alpha_2} \frac{R_1(\lambda)}{\lambda^2} d\lambda = \frac{R_1(\alpha_1)}{\alpha_1} - \frac{R_2(\alpha_2)}{\alpha_2},$$

so we have

$$\lim\inf \overline{v}_N \geq R_1(\alpha_1) - q(m+1).$$

Letting $m \to \infty$ we have $\lim \inf \overline{v}_N \ge R_1(\alpha_1)$. Since $v_N \ge \overline{v}_N$ and $v_N \to R_1(\alpha_1) = g(0)$, we have

$$\lim \bar{v}_N = g(0)$$
.

Note. To be completely rigorous,

$$\lim u_k = \alpha_k^k \int_{\alpha_k}^{\alpha_k+1} \frac{1}{\lambda^{k+1}} \sum_{1}^k R_l(\lambda) d\lambda$$

is true only if q is truncated. One can get around this restriction quite easily, however, and the end result is the same. Again, details can be found in [8].

REFERENCES

- [1] Breiman, L. (1964). Stopping rule problems, in Applied Combinatorial Mathematics, ed. E. Beckenbach. Wiley, New York.
- [2] CHOW, Y. S., MORIGUTI, S., ROBBINS, H. and SAMUELS, E. (1964). Optimum selection based on relative rank (The 'Secretary Problem'). *Israel J. Math.* 2 81-90.
- [3] CODDINGTON, E. and LEVISON, N. (1955). Theory of Ordinary Differential Equations. McGraw-Hill, New York, Chapter 1.
- [4] DYNKIN, E. B. and YUSHKEVICH, A. A. (1969). Markov Processes; Theorems and Problems. Plenum Press, New York, Chapter 3.
- [5] GILBERT, J. P. and Mosteller, F. (1966). Recognizing the maximum of a sequence. J. Amer. Statist. Assoc. 61 35-73.
- [6] GUSEIN-ZADE, S. M. (1966). The problem of choice and the optimum stopping rule for a sequence of independent trials. *Theor. Probability Appl.* 11 472-476.
- [7] LINDLEY, D. V. (1961). Dynamic programming and decision theory. Appl. Statist. 10 39-51.
- [8] Mucci, A. G. (0000). Differential equations related to optimal selection problems. Ph. D. dissertation.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND 20742