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DIFFERENTIAL EQUATIONS AND OPTIMAL CHOICE PROBLEMS

By ANTHONY G. Mucci
University of Maryland

Asymptotic forms for the optimal payoff and optimal stop rule for a
generalized class of “‘secretary’” problems are obtained by the analysis of a
related family of ordinary differential equations.

1. Introduction. The stop rule problems to be considered in this paper are
generalizations of the “secretary problem” for bounded payoffs. A subclass of
such problems is considered in Gusein-Zade [6].

Let ¢ map the positive integers into [0, 1] with g(k) | 0. Let a probability
(N!)~* be attached to each permutation ¢ of the first N integers, and let {X,}
k =1, ..., N be the sequence of independent random variables where X, is the
rank of (k) among ¢(1), 6(2), - - -, a(k). The optimal choice problem consists
in determining v,, t, where

(1.1) v, = max, Eq(o(t)) = Eq(a(ty))

as ¢ runs through stop rules on the sequence X;, X,, - - -, X;. This paper is con-
cerned with asymptotic forms for v, and t,. Our principal result is expressed
in the following theorem.

THEOREM 1.1. Let

Ry(a) = X7 q()(izDa*(1 — a)'~*, ae(0,1].
Then the differential equation
g'(a) = —a™ 27 (Ry(a) — g(a))*; g(1) =10

has a unique solution on [0, 1] and
vy — 9(0)] < Gln NJN* 4 ¢(C,In N)]
where C, and C, are determined constants.
Analogous results for optimal choice problems involving unbounded functions,

g, are treated in [8], and will be the subject of a forthcoming paper. The latter
results generalize Chow, Moriguti, Robbins and Samuels [2].

2. Basic recursions and difference equations. Let ¢ be a function on the positive
integers, 7, such that

@) q(1) =1,

(b) 9() 1 0.
We call g a payoff function. Let o be any permutation of the first N integers;
we assume all N! permutations to be equally likely. We define X, to be the
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relative rank of ¢(r) among ¢(1), 6(2), - - -, o(r). The random variables, X,,
r=1,2, ..., N, called observations, are independent with distributions
PX, =k =1 if 1<k<r
r
=0 otherwise.

Let us set

0 ) = Ba(er) | X, = k) = ztr-0 g LD
Our objective is to find asymptotic forms and estimates for the values vy, #
defined by
(2.1) vy = max, Eq(a(7)) = max, EQ(t, X,) = EQ(ty, X,,)

where ¢ runs through all stop rules on the sequence X,, r =1, ..., N. Wecall
vy the optimal payoff and ¢, the optimal stop rule. We sometimes call v, a
utility. A standard recursive technique for generating v, and ¢, is the following.

Set
vy(N) = Eq(a(N))

vu(N, k) = g(k) , k=1,2,...,N
Vy(r, k) = max(Q(r, k), Evy(r + 1, X,,,))

vy(r) = Evg(r, X,) = = X1 oy(r, k) .
r

We then have
(2.2) Vy(r) = Emax(Q(r, X,), vy(r + 1))
- % 37 max (Q(r, k), vy(r + 1)) .

Since vy (r) = sup,;, Eq(a(t)), we see that vy(r) = vy(r + 1) and vy = vy(1).
This recursive technique, called a “backwards recursion,” definec the optimal
stop rule, t,, by the prescription that one stop with the observation X, = k
unless vy(r, k) > Q(r, k), i.e., unless it pays more to continue.

We will presently prove that

Q(r, k) =z Q(r, k + 1)
o(r + 1,k) = Q(r, k) .

We can therefore characterize our optimal stop rule ¢,, (which is the collection

of pairs (r, k) such that Q((r, k) = vy(r + 1)) as a tuple (ry, ry, - -+, ry) Where
n<r,<--- <ry and where one stops with observation X, = k provided
r=r.

The procedure outlined above is a rewording of the procedures found in [4],
[6], and [2].

We now state



106 ANTHONY G. MUCCI

PRrROPOSITION 2.1. (Basic Recursion.)
k
0k = 00+ 1 k4 1)+ (1= )00 + 1K)
r4+1
Proor. Straightforward calculation.

This recursion will be used often in this paper. A first application is:

COROLLARY 2.1. () Q(r, k) = Q(r, k + 1)

(b) O(r + 1, k) =z Q(r, k).

Proor. (a) Note first: Q(N, k + 1) = g(k + 1) < q(k) = Q(N, k). Then back-
wards, assuming the result for » 4 1, we have

Q(r,k+1)_"+1Q(r+1 k-|—2)-|—< k:LLl)Q(rJrl k4 1
:;T_IQ(r-l-1,k+2)+<1—m>Q(r+l,k+l)

1
- — + 1,k +
+ - 1[Q(r—]— 1,k+4+2)—Q(r , 1]

k k
- 1, k
§r+1Q(r+1,k+2)+<1 erl>Q(r+ + 1)
k k —
ng(r+1,k+1)+(1—m)Q(rJrl,k)—Q(’,k)-

(b) Use the same procedure as for (a). []

Let us now normalize v,(+) by setting v, (r) = fy(r/N). We have then:

fuh) = + mr o) = )
fo (%) = % %5 max (Q(r, 0. (TE).

We extend f, by linear interpolation to the entire unit interval and we rewrite
this recursion in the form

V)

N .

() -5 = Lzl 1
M

(1) =

We note that v,, = f,(0).
These last equations resemble

9(1) =0
() = o () = g 5 (R (1) - o (5))

Ry(@) = X7 q(HGz)et(l — a)'* ael0,1].

where
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Now g¢,,, extended by linear interpolation to [0, 1], can be shown to be a piece-
wise differentiable function which in the limit tends to the function g which

uniquely satisfies
9(1) =0

7@ = —— Tt (Ra) — gla)* ae[0,1).

One employs the standard Picard method for ordinary differential equations to
establish the existence of ¢ and the fact that lim gy = g. The details, lengthy
but straightforward, can be found in [8]. Using estimates for the difference
R\(r/N) — Q(r, k), one deduces

THEOREM 2.1.
log N o
1 — ol = 10282 - 30q (| %2 1og N )

provided log N > max (4, 12a,) where R(a,) < .25.

REMARK 2.1.

(i) Since [v, — g(0)] = [£,(0) — 9(O)] < SUPyzp fr(@) — 9(@)] = Iy — gl
we see that v, — g(0).

(i) If g is truncated, i.e., if there exists m such that ¢(/) = 0 all | > m, then
Ilfx — 9]l < 10log N/Nt.  Actually, much more can be said. We have the
stronger inequality:

lfy — 9|l £ C./N for large N
where C,, is a constant that depends only on m. Again, the details are spelled
out in [8].

(iii) Note that g is non-increasing.

(iv) The functions R, play an important role in this paper. We list some
properties:

(2) Ry/(a) = ka {(Ry(@) — Ryu(@) = k 7 (4(0) — q(l + D)
(I — a)i=*.

(b) If g(k) > 0, then R, is strictly increasing and R,(«) > R, (@),
all a € (0, 1].

(¢) X7 Ry(a) = as(m) + ma % t°R,, () dt.

(d) R(0) = 0; Ry(1) = q(k).

(v) The properties listed above imply that g’ = 0 on [0, a,] where a, is the
unique solution for the equation R,(a,) = g(a;). Thus, lim,__ Uy = Ry(ay).

We described ¢, the optimal stop rule, as an N-tuple of increasing integers
(r1 1y + -+, ry) Where one stops on observation x, = k provided r > r,. The
value r, was the minimal integer for which Q(r, k) > v,(r + 1). This condition,
in the limit as N — co, leads to

THEOREM 2.2. The optimal stop rule ty, = (r,, 1y, - - -, 1y) satisfies

lim, 7 /N = a,
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where 0 < a; < a, < - - is a sequence uniquely determined by the equations:

Ry(a,) = 9(a,)
There is a converse of sorts to the last theorem, namely, that if 7, is the utility
associated with the stop rule #, = ([a;N], [@,N], -+ -, N), then lim, ¥, =
lim,_, vy = g(0). We will sketch a proof of this result in the last section of
this paper.

3. Applications. Our objective in this section is to determine the sequence
{a,} and the utility v = R,(a;). Our differential equation

’ | ¢ .

(3.1) g = “x 2T (R, —9)*; 9(1) =0
reduces on the interval [a,, @, ,,] to the equation

, l s
(3.2) 9=——2t R~ 9)
with boundary conditions

9(@p41) = Rppa(@ ) -
Equivalently, we can write (3.2) in the form (g9(a)/a™) = —a~®*" 377 R (a) on

[a,, @,;1]- Now for n =2, [a~* 32 'R (a)] = —a~ " (n — 1) 33* R, () fol-
lows immediately from the properties of R,’. Thus, on [«,, a,,,] We have
(g(@)fa™y = (n — 1) a— 3327 R,]) for n = 2. Using our boundary conditions
(3.3) we conclude

3.4

1 ! (Rk(an) - Rn(an)) = ?—1 (Rlc(an+1) - Rn+l(an+l)) .

n+1

When n = 1, we see that (3.2) becomes (g(a)/a)’ = — R,(a)/a* or, using (3.3),

(3.5) Ry(ay) _ Ry(a) = —{a Rl(z,a) da .
a, a, a
Now
2w W1 - = — st —apt = RO
(44 [44

the integrand in (3.5). So we can rewrite (3.5) in the form:

(3.6) Z;o%l(l — )t — Rale) _ st(k) (1 — ayt — Ralet)

a, ay
DErFINITION 3.1. Set

Hy(a) = Z;”s(kﬁ(l - Rlc(za)

Gi(@) = Hy(@) + — (Ry@) — Ry(a)
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and forn > 2

H@) = - 51 (R(@) — R,(@)

Gu(e) = - T (R@) = Rona(®) -

From (3.4) and (3.6) we see that our sequence {a,} must satisfy
3.7) H (a,) = G, (a,,,)

Let us now list some properties for H, and G, which will be useful for examin-
ing (3.7).

REMARK 3.1.

(A) 0 < H,(a) < Gy(a) < Hyya) forn 2 2.
(B) H/(a) = —(n — 1)H, \(a) for n = 2.
Thus, H, is non-increasing.
(©) Gu(@) = Hy(@) + a=*(n — 1)(R, — Ryy), n 2 2.
D) GJ(a) £ —(n — H)H, ,(a), n = 2.
Thus, G, is non-increasing.

(B) Hy(@) = S 39)s(n + k — 1) — (n + k — 1)g(n + b1 — @), n 2
2. For by repeated application of (B), we get H,*® = (—1)k! ("~%+)H,,, and
further H, (1) = s(n + k — 1) — (n + k — l)g(n + k), so we simply take the
Taylor expansion of H, around a = 1.

(F) lim,_ o+ H,(a) = co. n = 2. For we can write

(3.8) Hya) = a7 'R/(a) = a™* 332 l(q()) — q(I + 1))(1 — a)**?,

and clearly lim,_y+ Hy(a) = co. Now use the fact that H, > H, forn = 2. We
clearly have also that lim,_+ G, (@) = oo, n = 2.

(G) Hy(1) = s(n — 1) — (1 — D)q(n), n = 2.

G()=s(n—1)—(n—1)g(n+ 1), n = 2.

(H) If g(m+ 1) =0, then k=1 implies H, (a) = H,,(«) = s(m)/a™,
G,(@) =G, () = s(m)/a™, since R,,,, = 0 and 37 R, (a) = as(m).

(I) H, is strictly decreasing on (0, 1] for n > 2. G, is strictly decreasing on
(0, 1] for n = 2.

(J) H/(a) = —Hya), G/(a) < —sza). In particular, H, and G, are strictly
decreasing on (0, 1].
(K) lim,_o+ Hy(a) = oo.

(L) Given any a € (0, 1], there exists a unique a e (0, 1], @ < « such that
H, (@) = G,(a). This result follows from the facts that G, = H,, H, is strictly
decreasing, and H,(0%) = oo.

ProrosITION 3.1. Let g be truncated at m. Then the sequence {a,},n =1,.--, m
which defined the limiting optimal stop rule is generated recursively by the formulas:

A =1, H,(a,) = G, (a,41) n=1,.-..,m.
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ExampLE 3.1. (a) Let
=0  otherwise.

Then Ry(a) = a, R (a) =0fork > 1. Hi(a)= Y} k(1 —a)—1= —loga—1,

G,(@) = —log a. Now a, =1, and qj, is the solution to —loga, — 1 = —log a, =
—logl =0,ie., loga, = —1s0a, = l/e.
(b) Let

q(l):l if l:1,2
=0 otherwise.

Then R () = 2a — a?, Ry(a) = a®. So Hy(a) =2a —2loga — 2, Hy(a) = 2a7' —
2, Gy(a) = —2loga, Gy(a) = 2a~' — 1. Thus, starting with a, = 1, we have
20,7' —2=2—-1=1, ie., a,= % and 2a, —2loga, — 2 = —log4, i.e.,
a, — log @, ~ 1.40 so &; ~ .35. Let us note that in case (a), our utility v satisfies
v = Ry(1/e) = 1/e, and in case (b) we have v = R,(.35) = 2(.35) — (.35)* ~ .58.

We also note that for any ¢ truncated at m we have: H, (a) = s(m)a=""" —
mgq(m). Since G,(1) = s(m — 1), we have a,, = [s(m)/{s(m — 1) + mgq(m)}]™>7";
a generalization of a formula found in [6].

REMARK 3.2. It may happen that, although ¢ is not truncated, we can still
find (ay, @,, ---). The idea is to set up the recursion in a form which expresses

a,, as a limit depending in an essential manner on the fact that lim, ., a, = 1,
which is proven in [8]. Let us illustrate this.

A special class of payoffs. Let fe (0, 1). We set
(3.9) gs(k) =1 if k=1
—PEAD - (Brk=2) g,
(k — 1! -
We can write this payoff in the form g,(k) = (—1)¥-'(;24). We note that

(@) gp(k + 1)/gek) =1 — (1 — Bk = 1,

(b) gs(k) =TI (1 — (1 — B)/D).
Thus, for large k, we have log g,(k) < —(1 — ) 177" — —oo, i.e., g4(k) | O.
In fact, let us note that log g,(k) < —(1 — B) §fs~'ds = —(1 — B)logk, so
q5(k) < k==# while log g4(k) = —(1 — B){1 + §fs'ds}, from which gy(k) =
e 1=Pf—1-P > ¢=2. ==~ This last inequality shows that } 7, g4(k) = co for
all ge (0, 1].

(€) B= 5, 95 = g5

(d) Ry(a) = a'*.

() R,(a) = g4 (n)a'~f. This follows immediately from the recursion R, ,, =
R, — an™'R,’. In what follows, 8 < 1.

(f) Hye@) = (1 — Ba'4.
So Hy(a) = (1 — B)f~'a=# — B! since H' = —H, and H\(1) = —1.
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(g) Hu(a) = (1 = B)p~(n — 1)gy(nya=#~"-1, n > 2. Here we simply use the
recursion: H,' = —(n — 1)H,,,.

(h) Gya) = (7" — Bla~f — p~%

(1) Gu(@) = (1 — P)B~H(n + P)n~!(n — 1)gy(m)a=t="0, n = 2.
These formulas allow a straighforward calculation for the sequence {a,}.

We have the recursion H,(a,) = G,(a,,,) reducing to a, "V = (n 4

Byn~laf"Y, e,
a 1/(=p=(n—1)

[44 n

n+1

for n > 2. Now since a, — 1, we have

‘B =1/(f+(n-1))
am:H:(l—}——> , m=2
n
Further, the recursion H,(a;) = G,(a,) reduces to
afa, = (1 + B)y~V¢.
So
a, = HT (1 _|_ ‘B/l)—l/(ﬂ+(l—l)) .
Finally
1
(3.10) v = gla) = Rya) = TI7 (1 + _é*_)“"/“""”
1
9(a) = Ru(ey) = g, Tz (1 + £)777
REMARK 3.3. Note that
1 1 B
mloye_ 1 1o (1 _>
N T A grao B T
1 B
<vye__ - P
SRR EN
1
<1 g | .
S1+pTT oy =1+8
Thus a,"' < e*?or @, = e™'~# > e~%. So «, is bounded away from zero uniforml
1 'y 'y
in B.
On the other hand,
1 1 B
log — = o -1 (1 L
= 2 Fr(—1 & * 1>
1 1 B
=7 sl
= 2i B+(I—11+p1 1
1 1 1
= bl = ‘B m{ — }
R RS P VR -y ey R By

=p(1/p) =1;

therefore a, < 1/e.
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ProrosiTION 3.2. Let Be(0, 1), q, as defined above. Then 1/’ < a; < 1fe.

4. Asymptotically optimal stop rules. Our objective in this section is to sketch
a proof of the following:

THEOREM 4.1. Let fy, = ([a; N}, [a,N], - - -, N), ¥, = Eq(oty)). Then
limNﬁm ’171\, = g(O) .

We begin by defining:

p=1
P =px, > L[a, N1 =t < [a111 N])
P =TI P k>1

b, = SR Tk px, = Lx, > k for [ N]<s<1)-0(11).
Then, for any fixed m we have
Uy 2 27 Pt for Nzm.

Using the equation
Py = HEZ%}N]—I (1 =1y

and letting N — oo, we get

i
Pz,z+1—*< il )
LLIFST
and
1
u, — ak Szllz+1 o ¥ R(4)d
so that
1

lim inf v, > Sp, ([1F @) §2+ - Tt Ry(2) dA.

2k+1
Now for k = 2 we have

1 1
— R = ————
TER() = ——

Ak+1

1 ’
(3 ZHR®) -
So we can write

1
k—1
-3 ( Ry 1(®p41) _ Ry(a) ) It e -

% P
Q41 Ay

N R, '
lim inf 7, = & §23 X a2 — Bp S Gulewn) — Hu(w) Tl ey

The second term is zero while the third term reduces to

a Ta a
— Ry(a) — H; L Rpi1(@pyn) = =2 Ry(ay) — Ry i1 11)
A, m+1 Qa,

= %Rz(aa) —q(m+1).

2
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Now

o« Ri(4) dl = Ri(a)) _ Ry(ay) ,
ape a, a,
so we have

liminf ¥, > R/(a;) — q(m + 1).

Letting m — oo we have lim inf ¥, > R,(a,). Since v, > ¥, and v, — Ry(ay) =
9(0), we have

limv, = ¢(0).
Note. To be completely rigorous,
. 1
limu, = a,* {3en i ¥ R(A)da

is true only if ¢ is truncated. One can get around this restriction quite easily,
however, and the end result is the same. Again, details can be found in [8].
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