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AN INNOVATION APPROACH TO GOODNESS-OF-FIT
TESTS IN R™

BY E. V. KHMALADZE
Steklov Mathematical Institute and Razmadze Mathematical Institute

We present a solution to the goodness-of-fit problem for mulivariate
observations, using the innovation process for the (sequential) empirical
distribution function with respect to a conveniently chosen linear ordering or
scanning system in R™,

1. Introduction. The aim of this paper is to introduce in m-dimensional
Euclidean space R™ empirical processes, which would, for arbitrary m < oo, play
an analogous role to that of the uniform empirical process and the uniform
sequential empirical process in R!.

To be specific let X|,..., X, be independent random vectors taking values in
R™. Consider the problem of testing a simple hypothesis that these random
vectors are identically distributed and the distribution function (d.f.) of each X;
is some specified absolutely continuous distribution function F. Let v, and z,, be
the empirical and the sequential empirical processes, respectively,

2u(s,x) =072 T [I{X; < 2} — F(x)], 0,(x) = 2,1, ).
i<sn
For m =1 let 2% and v? denote the corresponding uniform sequential empirical
and uniform empirical processes, respectively,

(1.1) 2%s,t) =2,(s,x), 0%t)=v,(x) fort=F(x).

It is common knowledge that if the hypothesis holds, i.e., if the distribution of
the sequence Xj,..., X, is the direct product P, = F' X -+ XF, then

2055, 2% and o0 -, 0°
in the spaces D[0,1]%? and D[0, 1], respectively. Here z° and v° are Gaussian
processes with mean 0 and covariance functions (s A s')(¢ A ¢’ — tt’) and
t A t' — tt’, respectively. The main point is that the distributions of z° and v° do
not depend on the d.f. F, that is, the transformation (1.1) maps z, and v, into
asymptotically distribution-free processes.

Since the ‘work of Simpson (1951) and Rosenblatt (1952) it is understood that
the process v? loses its key property if m > 2—it is no longer asymptotically
distribution free [if F is the d.f. of the m-dimensional random vector X and
m > 2, then the df. of U = F(X) depends on F even when F is absolutely
continuous]. Simpson and Rosenblatt suggested how to avoid the difficulty but
the problem is still alive as is demonstrated by the papers of Bickel and Breiman
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(1983) and of Schilling (1983a, b). Bickel and Breiman considered an empirical
process based on the m-dimensional analogue of uniform spacings and showed
that this process is asymptotically distribution free. Schilling considered some
“weighted” modification of this process to make it more sensitive to local
alternatives.

The opinion of the present author is that the problem of finding a proper
substitute for the uniform sequential empirical process and the uniform em-
pirical process is still open. Let us consider what should be understood as this
“proper substitute.” Rather let us remark what makes the uniform empirical
process v? and the uniform sequential empirical process z? important in good-
ness-of-fit theory.

One important property is, of course, that v and z? are asymptotically
distribution free. But that cannot be the only necessary property —for example,
processes which are identically constant for all x and n are asymptotically
distribution free but useless. Another important property of v? and z? is that
they are very sensitive to “all” deviations from the hypothesis, that is, to “all”
alternatives to F (see the following discussion). To formulate this property
precisely, that is, to formulate necessary conditions on the processes we are
seeking, let us first describe the class of alternatives formally.

Under an alternative hypothesis it is supposed that the X;’s are independent
and that the d.f. of each X; is A,,, i = 1,..., n, with the following properties:

Let A,, = A§, + Af, be the Lebesgue decomposition of A;, into its continu-
ous (with respect to F') and singular parts. Then

n
1) asn—0, Y »(A}) -0,

i=1

where v(P) denotes the total variation of P, and

2) for the functions A, defined by the equality
das, 12 1 A i—1 i
dF (x) _1+En—1/—2_ n(s’x)’ <s< _’;,

there is a function A such that

f |h,(s,x) — h(s,x)|?dsF(dx) >0, n- o,
(s, x)€[0,1]XR™

(1.2)
) h2(s, x) ds F(dx) < oo.
(s,x)€[0,1]X R™

An important special case of the alternatives considered is that when A,, =
<o =A,.,ie, when X,,..., X, are still assumed to be identically distributed

and

nn’

(1.3)

da, 12 1
[ F (x)] =1+ o—mha(x),
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where
[1a(x) = R(x)]’F(dx) > 0, [B3(x)F(dx) < co.

Another special case is given by the so-called change-point alternatives when
(1.2) is satisfied with A,(s,x) = I{s > sy}h,(x) for some “change-point” s, €
0, 1).

Denote the alternative distributions of the sample X, ..., X, by P= I'f"n(h) =
A,, X -+ XA,, and let us use the notation P, in the case of (1.3), that is
P,=Py(h)=A,X - XA,

It is well known that under conditions (1) and (2) the sequence {ITJ’,,} is
contiguous to the sequence {P,} [see Oosterhoff and van Zwet (1975) and also
Greenwood and Shiryayev (1985)]. In this sense the alternatives considered here
are the “most difficult” to distinguish from the hypothesis. It is also known [cf.
Khmaladze (1975)] that under conditions (1) and (2) the following limit exists:

(14) lim »(B,(h) - P,) = A(h)

and, in particular, ,
(1.5) lim »(P,(h) — P,) = A(R),

where A and A stand for the functional of the functions used in conditions (1.2)
and (1.3), respectively (the precise form of A is simple but we will not need it).

As the last preliminary step recall some known weak convergence results
which we will need in the sequel [see Gaenssler and Stute (1979) and Shorack
and Wellner (1986) for references]. Let z and v be Gaussian processes with
zero mean and covariance functions (s A s')[F(x A x') — F(x)F(x")]
and F(x A x') — F(x)F(x"), respectively, and in the case m = 1 let 2% and v° be
the Kiefer field and Brownian bridge, respectively, that is, Gaussian processes
with mean and covariance functions (s A s') (¢ A t' — tt')and t A ¢ — &',

Then

2, 2o@m, 2 + H, U, o,y 0+ H(1,-),
H(s,x) =/
(0,¥)<(s,x

in D[0,1]™*! and D[0,1]™, respectively, and

)h(o, y) do F(dy)

22 _)Q(ﬁ,,) zO + HO, vr(z) _)Q(I.’n) v+ Ho(l’ ')’

H(s,t) = H(s,x), t=F(x)

in D[0,1]% and D[0, 1], respectively. Under the null hypothesis, i.e., under P,,
these statements hold with H replaced by 0.

Now the following lemma states “sensitivity” properties of z) and o). Let P,
denote the distribution of a process ¢ (in the corresponding functional space).
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LEMMA. The following equalities hold:

(16) WP, = Poog) = ¥(Pa = P, ypo) = A(h)
and if h(s, x) = h(x),
(1.7) ”(P P, + q, )) (Po° = Po,noq, ~)) =(h).

The proof of the lemma is left to the reader.

The second equality in (1.6) shows that.in z? asymptotically nothing is lost
that allows one to distinguish between the null hypothesis and the alternatives
(1) and (2). The second equality in (1.7) shows the same for the uniform empirical
process v in the case of alternatives (1.3).

Now we are in a position to formulate the formal mathematical problem we
are concerned with in the present paper. .

We intend to look for transformations w([z,, F] and w[v,, F] of z, and v
which could depend on F [as in (1.1)], and which possess the following proper-
ties:

(1°) Under the null hypothesis P, the processes w[z,, F] and w[v,, F]
should have limit distributions, P and Q respectlvely, which are mdependent of
F for any absolutely continuous F.

(2°) (a) Under any sequence of alternatives P,(h), satisfying conditions
(1) and (2), the process w[z,, F] should have a limit distribution P’, and
v(P — P’) = A(h).

(b) Under any sequence of alternatives P,( k), satisfying conditions (1) and (2),
the process w[v,, F'] should have a limit distribution ', and »(@ — @) = AA).

Condition (2°) means that asymptotically nothing is lost in w[z,, F'] or in
w[v,, F], which would allow us to distinguish between P, and P (h) or between
P, and P,(y), respectively.

As test statistics one can now use various functionals of the transformed
processes w[z,, F] and w[v,, F] such as the Kolmogorov—Smirnov or «®
(Cramér-von Mises—Smirnov) statistics. The question which particular func-
tional should be used is obviously a separate question and should be treated
separately in other work. But for any choice of these functionals, that is, test
statistics, it seems reasonable from a practical point of view to place the
additional heuristic requirements on the transformations w(z,, F]and w[v,, F]:

(3°) The limit distributions P and @ of w[z,, F] and w[uv,, F], respectively,
should be “simple enough” to allow calculation of limit distributions of statistics
based on these processes.

(4°) The transformations w[z,, F] and w[v,, F] themselves should be simple
so that the test statistics can be easily calculated.

2. The scanning innovation process: Examples. Call a Gaussian process
with mean 0 and covariance function F(x A x) a Wiener process w.r.t. F. Put
0 =10,_,and put (¢,,0) = ¢t if m = 1. Let G(s, x) = sF(x) and let us assume that
F(t,0) = ¢, though it is only a matter of notational convenience for Theorems 1
and 2.
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Consider the processes

(2.1) b(s,t,y)=2(s,t,y)+ /Oti(l—s’_T—;QF(dv-, ¥),
@2) w(t, ) = o(t, ) + [V F(ar, ),

where z and v are the Gaussian processes defined in the Introduction.

THEOREM 1. The process b is a Wiener process w.r.t. G. The process w is a
Wiener process w.r.t. F. The relations (2.1) and (2.2) between b and z and
between w and v are one-to-one.

For reasons that will be clarified by Example 4, we will call w a scanning
innovation process for v.

Theorem 1, particularly the part concerning w, expresses the basic point of
this paper. This part relates to certain innovation arguments for the process v,
and we find it necessary to clarify its statistical meaning by some examples.

The first two examples show that when m = 1 the process w is not new in
goodness-of-fit theory. For m = 1 formula (2.2) takes the form

t-D—(i dr

(2.3) w(t) = o(t) +
ol—r

which is the well-known Doob—Meyer decomposition of the Brownian bridge v
[see, e.g., Liptser and Shiryayev (1977); for some statistical discussion see, e.g.,
Khmaladze (1981)]. The Wiener process w is the innovation process of v, that is,
for any ¢ the random variable w(t) is measurable w.r.t. the o-algebra F#(t) =
o{v(7), 7 < t} and the inverse of (2.3) is

: 1
(2.4) o(t)=(1- t)f()l—_—Tw(dT).

EXAMPLE 1. One of the basic purposes of Doob (1949) was to show that the
limiting d.f. of the Kolmogorov test is nothing more than the d.f. of sup,|v(¢)|.
Doob’s approach was to observe that

o(t) A
< PR b
1-1¢ 1-¢

and then to calculate the probability appearing on the right-hand side. This was
convenient because in contrast to v the process o(¢)/(1 —t), t€[0,1], is
Gaussian with independent increments. But just this is properly explained by
the representation (2.4) of v by its innovation process w—it is clear that the
‘integral

1’ P{sup|v(t)| < }\} = P{V te[0,1]:

1—17

/: ! w(dr)



1508 E. V. KHMALADZE

is a Wiener process w.r.t. §, where
t

1
0(t) = = .
0= YT
Rényi (1953) introduced a goodness-of-fit test based on the statistic

R.(e) = v,(t)
e til:pe 1-t
Under the null hypothesis the limit distribution of R ,(¢) for fixed e is that of
o(?)
R(E) til:pe 1-1¢

and according to (2.4), R(¢) is the supremum over [0,1 — £] of a Wiener process
w.r.t. 0. Therefore the d.f. of R(e) is 2®(x/0) — 1, x > 0, where 62 = (1 — ¢)
and ® is a standard normal d.f., as obtained by Rényi.

EXAMPLE 2. Let 0=1¢,<¢, -+ <ty =1 be some partition of [0,1] and
consider the Gaussian vector {Av(¢;)} of increments Av(¢;) = o(¢;.,) — v(¢)).
Associate with this vector an increasing sequence { #y(t,)} of o-algebras #y(¢;) =
o{v(t,), ..., v(t;)}. Consider the vector {Aw(t;)}, where

t.
oft) .,
l_tj J

(2.5)

) +
In contrast to {Av(¢;)} the Gaussian vector {Aw(t;)} has independent coordi-
nates, and (2.5) is a discrete time analogue of (2.3). Define increments Aw,(¢;)
using (2.5) with Ao(¢;) replaced by Av,(¢;), the increments of the empirical
process v,. After a simple rearrangement one can easily verify that

xy,- 5 L2t

Jj=0 E[Awn(tj)]2

coincides with the classical Pearson x?2 statistic.

The next example shows that some care must be exercised in extending (2.3) to
the multidimensional case.

For x < y let [x, y) be the rectangle {x": x < x’ < y}. For simplicity, let

m=2andlet0=¢,<t < -+ <ty=1,0=uy,<u, < -+ <uy=1be par-
titions of [0, 1]. Consider the partition of [0,1]* by the rectangles [x;}, x; -y i+1)s
where x;; = (;, u;). Let Av(x;;) be the increment of v on [x;;, x; ., ;.1), i,

Ao(x;;) = 0(x4q j1q) — 0(%i00, ;) — o(x; j41) + o(x;;)

and denote by AF(x;;) a similar increment of the d.f. F. As opposed to the
one-dimensional case there are several natural choices of increasing families of
o-algebras, which one can associate with {Av(x;;)}.
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EXAMPLE 3. Put fN(xU) = U{U(xlm), xlm < xij}. ObViouSly, .gz'N =
{Z#n(x;;)} is an increasing but not linearly ordered family of ¢-algebras. Because
of this the increments {AM'(x,;)}, where

AM'(x;;) = Ao(x,;) - E[Av(xij)l'aer(xij)]

v(xij)
1- F(xij)

(26) = Av(x;;) +

AF (xi J ):
are not independent random variables, in contrast to the m = 1 case. Conse-
quently, the simple equality (2.6) is not the proper analogue of (2.3), which we
seek.

Consider another natural family of o-algebras #y = {#y(x;;)}, where
Hn(x;;) = Fn(t,1) V Fy(1, u)). The increments {AM?(x;;)}, where

AMz(xij) = Ao(x;;) - E[Av(xij)l‘#N(xij)]
(2.7) o(1,1) — o(1,4;) — o(t;,1) + v(t;, u;)

= Av(xi,-) T 1= F(l, uj) - F(¢;,1) + F(t,-, u,-)

AF(xij),

are also not independent random variables-and therefore (2.7) is still not what is
needed.

REMARK. For readers familiar with the theory of martingales in two-dimen-
sional time [see Cairoli and Walsh (1975) and Wong and Zakai (1976); see also
Gihman (1982) for references] Example 3 shows that if #= {#(x)}, #(x) =
o{v(y), y < x} and

M'(x) =o(x) + Lsx‘l—;'(—g()T)F(dy),

then the process {M?, #} is only a weak martingale, and not a strong martingale.
The process {M?, 7},

Ag P
)=o)+ TS

where, say, A, ;v(y) is an increment of v on [y,(1,1)), is also not a strong
martingale. °

F(dy),

The last example explains the nature of (2.2).

ExAMPLE 4. Consider the o-algebras
En(x;;) = G{Av(xmj)’ m<i-— 1},
In(x;) = Fy(xy;) Vv En(x;;).

In contrast to #y and #y, the family ¢y = {_Zy(x;;)} is not only increasing
but also' linearly ordered—for any two x;; and x,, either #(x;;) C ?(x,,) or
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F(%),) € F(x;;). This implies that the increments {Aw(x,;)}, where
Aw(xij) = Av(xij) - E[Av(xij)lfzv(xij)]

(2.8) o(t;,1) + o(x; ;44) — o(x;;)
= Av(xij) + 1- F(ti’ 1) + F(xi,j+1) - F(xij)

_
AF(x,;)

are independent Gaussian random variables. Equality (2.2) is nothing more than
a continuous time version of (2.8), and Theorem 1 states that the o-algebras
% n(x;;) can be neglected as N increases.

Let {Aw,(x;;)} be the increments obtained by replacing v by v, in (2.8). Then
the process

| g Aw,(x; j) 2
nI=1 (E[Awn(xij)] )
is a discrete time analogue of the process w,* in Theorem 3, and

Xwn= i,12=1 .E[Awn(xij)]2

w (%) = (% < x}

is again the classical x2 statistic.

ProOF OF THEOREM 1. Since z is a Gaussian process with mean 0 and b is a
linear transformation of z, the process b is also Gaussian with mean 0. By direct
calculation the covariance function of b can be shown to be (s A s")F(x A x').
Therefore b is a Wiener process w.r.t. G, and, consequently, w is a Wiener
process w.r.t. F. It can easily be shown that

2(s,t,y) =b(s,t,y) - j(;tj:l

is the inverse of (2.1) and all that remains is an argument showing that this
inverse is unique. But the equation

1
—— b(s, du,1)F(dr, y)

(2.9) 0=t y) + /O‘qbl( !

has the unique solution ¢ = 0. Indeed, if we put y = [ we get an equation for
¢(+,1), which obviously has the unique solution ¢(:,1) = 0. Therefore the in-
tegral term in (2.9) is 0 and this implies that ¢ = 0. O

F(dr, y)

3. Convergence in distribution. Define the process b,, a sequential em-
pirical scanning process, and w,, an empirical scanning process, by

. ba(s, t, ¥) = z4(s, 8, y) + ft "(s = H)F(df ¥)s
(3.1) ¢t ('T II)
w(t,y) = o(t, y) + | S -F(dr, 5).
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THEOREM 2. Let b and w be Wiener processes w.r.t. G and F, respectively.
Then as n — o0,

b, 2o, b, W, 2op,) W
in the spaces D[0, 1]™*! and D[0,1]™, respectively. Under any sequence of
alternatives P, (h), n = 1,2,..., satisfying (1) and (2),
b, 2a@, b+ 1, w, >gm,, W+ 11, ),
where the shift function p is
W(o,t,9) = H(s,t,9) + [ (ar, )
and H is as defined in the Introduction.

REMARK. The process b, (and w,) can be written in the simple form

bn(s’x) =n"V? Z [I{Xi = x} - /:1 - I{fi_ST(T,n)} F(d'r, y) ’

i<sn

@.2) %= (7).

w,(x) = b,(1,x).
By the way, this allows us to view (3.2) as Doob—Meyer decomposition of a
multiparameter point process

€u(s, ) = ¥ H{X;<x)

i<sn

PROOF OF THEOREM 2. The mapping ¢(s, x) = ¢(1, x) from D[0,1]™*! to
D[0,1]™ is continuous and hence the statement for w, follows from that for b,.
Consider b,. The mapping ¢(s, ¢, y) = ¢(s, t,1) from D[0,1]™*! to D[0,1]? is
continuous and the convergence of ¢, to continuous ¢ in D[0,1]™*! implies
convergence of ¢,(s, t,1) to ¢(s, t,1) for all s and ¢. Besides,

sup|o(s, t,1)] < o
s, t

and
sup|¢,(s, £,1) > Suplqb(s t,0)|

s, t
as n — oo. Hence for any T < 1 the operator
inr (s, 7,1)
Kro(s,t, ) = ¢(s, t, y) + fo 1—1"’(61T y)
is continuous in a neighborhood of any continuous ¢ € D[0,1]™*. Since almost
all paths of z + H are continuous and z, =g , 2 + H we have that

(3.3) Krz, »9@,) Kr(z + H)
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in D[0,1]™*!. Now we prove that, under the hypothesis,

(3.4) P{ sup|Krz,(s,x) — K,z,(s, x)| > s} -0, T-1,
s, x

uniformly in n and

(3.5) P{sup|KTz(s,x) - K,2(s,x)| > s} -0, T-1.

But o

|Kpz, — K,2,| < su
s T 1-

R

(3.6) 1|zn(s,7,ﬂ) d
l:p fT 1-1
where the last inequality is true because v — F(r, y) = F(1,0) — F(1, y) > 0.
Since the process z,(s, 7,1) for each 7 is a process with independent increments
the process |z,(s, 7,1)| is a submartingale in s. Therefore the integral on the
right-hand side of (3.6) is a submartingale, and hence

z(s,,l
P{ sup fll—-i—————)ld'r>s}

0<s<1'T 1-r7

IA

T,

(3.7 . : .
< —Efll—vM dr < —2(1-T)".
e Jp 1—r1 €
This proves (3.4). Since for all v the process z(s, 7,l) in s is a process with
independent increments we can use the inequalities (3.7) and (3.6) with z,
replaced by z to prove (3.5). But now since our sequence of alternatives {Il3n} is
contiguous to {P,}, (3.4) holds under the alternatives too. Since the distribution
of z + H is absolutely continuous w.r.t. the distribution of z the relation (3.5)
holds for z + H as well. An application of Theorem 4.2 in Chapter 1 of
Billingsley (1968) finishes the proof. O

The processes b, and w, satisfy conditions (2°), (3°) and (4°) but not yet
condition (1°). What is needed is a transformation of a Wiener process w.r.t. F to
a standard Wiener process. For m =1 we have the simple transformation
w(t) = w(x), t = F(x). For m > 2 one can use the following lemma.

Let

0, f=0,00,

fEVD =
fVD, 0<f<oo.

LEMMA. Let w be a Wiener process w.r.t. the absolutely continuous d.f. F
and let A € [0,1]™ be a support of the density f of F. Then

w(z) = [ _1V2)uld)

is a Wiener process w.r.t. the uniform d.f. on A. In particular, if A = [0,1]™,
then w* is a standard Wiener process.
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For a proof of the lemma simply calculate the covariance function of the
Gaussian process w* by applying the equality
Ef gnuwd)| gw(@)=[  g()Fd),
y<x y<x Y<xAx

which holds for any function g which is square integrable w.r.t. F.
Now consider the transformations

wlz,, F1(s,x) = b2(s,x) = [ [CV2(3)by(s, dy),
(3.8) e
wlo, F1(s,x) = wr(x) = [

y(xf‘“‘/""(y)wn(dy)-

THEOREM 3. Let b* and w* denote the standard Wiener process on [0,1]™*!
and [0,1]™, respectively. Suppose that the support A of the density f in (3.8) is
the whole of [0,1]™. Then

by “oP,) b*, w,* o, w*

in the spaces DI0, 1]™*! and D[0,1]™, respectively. Under any sequence of
alternatives {P,(h)},
b: o®,) b* + p‘*’ wn* ~a@®,) w* + ""*(1’ '):
where the function p* is given by
(s, %) = [ FCV(y)u(s, dy)
y<x
and p is defined as in Theorem 2.

Proor. It is sufficient to prove the convergence of b* (cf. the proof of
Theorem 2). Let
f1/2(,r, y/)

Lro(s,t,y) = y Ty 1) ——————drdy’

ro(sity)= [ els )T drdy

and

22(s,%) = [ fCV()z(s,dy),  2(s,x) = [ [CVD(y)a(s, dy).
ysx y<x

Then

b =zX + %2,
The proof will follow from the next four statements.
(1) Z: —)Q(i’)n) 2+ H*: H*(s’ x) = fysxf(_l/2)(y)H(s’ dy)'
) {2}, 2,} 2a@, (z* + H*, z + H} in the space D[0,1]™*" X D[0,1]™*".
(3) For any T < 1 the operator .#, is continuous in a neighborhood of any

continuous function.
. (4) Under the hypothesis,

P{ sup|Lrz,(s, x) — Lz,(s,x)| > s} -0, T-1,
s, x
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uniformly in n, and

P{sup|$Tz(s,x) - Zz2(s,x) > e} -0, T-1.
S, Xx

Indeed since almost all paths of z + H are continuous it follows from (2) and (3)
that for all T < 1,

2} + Lz, 2gp,, 2* + H + Lp(2 + H).

From (4) [cf. the reasoning immediateiy after (3.8)] it follows that
2f + %2, o9p, 2t + H* + (2 + H) = b* + p*.

Therefore we need only prove statements (1)-(4). But z* is a sum of indepen-
dent random functions .
zx(s,x) =n" V2 ¥ [fCVA(X)IX, < x} - Ux)],
1<sn
where U denotes a uniform d.f. on [0,1]™. Thus the proof of (1) follows the same
line as that of z, =4 ) 2 + H, so there is no need to repeat it here. To prove
(2), recall that z*(s x) and z,(s,x) for all s and x are sums of independent
random variables. Consequently, the convergence of the finite-dimensional distri-
butions of {2}, z,} easily follows from the central limit theorem. Since z} and
z,, separately are convergent in distribution the sequence of distributions of the
pair {2}, z,} is tight in D[0,1]™*! X D[0,1]™*! and this finishes the proof of
(2). Statement (3) holds because the mapping ¢(s, ¢, y) — ¢(s, ¢,1) is continuous
and the function f/%(t, y)/(1 — t) is integrable on [0, T'] X [0,1]™ . To prove
(4), observe that
SuplgTzn(s’ x) - glzn(s’ x)l

s, x

(3.9) 112,(s, 7,0)| d

g(r )d7<su j;'

< su

fllz a(8: 7, I1)I
SP T 1-— 1—-17

where the function g is given by

1/2
g(r) = /;slfl/z('f, y)dy < (fyslf('r, y) dy) <1.

An application of (3.7) establishes the first relation in (4). The second relation
can be proved in the same way. O

For computational convenience the processes b} and w}* can be rewritten in
the simple form (cf. the remark following Theorem 2)

b¥(s,n) =n""2 ¥ [f‘ VX)X, < x}

i<sn

‘{-r, Y)<x

wX*(x) = b*(1,x).

1-— I{X < (T “)} fY%(r, y)drdy|,
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4. Concluding remarks. According to Theorem 3 the transformations (3.8)
satisfy condition (1°). According to Theorem 1 the transformations (3.8) are
one-to-one and hence condition (2°) is satisfied. One can say that these transfor-
mations satisfy conditions (3°) and (4°) too. Regarding, in particular, the use of
Kolmogorov—Smirnov and «? statistics, an approximation for the probability

P{ sup |w*(x)] > A},

x<l,

when A is large can be found in Piterbarg and Fatalov (1983). The distribution

P{fxs.m[w*(x)]zU(dx) < )\}

can be easily calculated as described in Martinov (1978). However although we
have found a solution to the problem we originally posed, it is clear that it is not
the unique solution. In particular, the scanning process defined by scanning
row-wise as before leads to a different transformation and hence to different test
statistics from when one scans column-wise. Put another way, we have an
unpleasant dependence on the choice of first, second, ... coordinate of our vector
observations X;. We are currently looking at other solutions, e.g., scanning in
concentric and increasing circles or ellipses. It will be important that, for
instance, a system of ellipses can be determined by the data through preliminary
estimates of multivariate location and dispersion. This is similar to using
estimated rather then given cell boundaries in a x? test.

In practical situations, goodness-of-fit problems nearly always involve esti-
mated parameters, i.e., a composite null hypothesis, whereas we have only dealt
with the simple null hypothesis case. For the case m = 1 we already have a
solution to this problem in Khmaladze (1981), and it is now quite easy to
combine this approach with the present one, since both are based on innovation
processes. This synthesis will be the topic of a future paper.
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