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Constructions and optimality results are given for block designs under
_ first and second order (NN1 and NNZ2, respectively) neighbor correlations,
extending the work of Kiefer and Wynn. Conditions for optimality and
minimality are given for the NN2 model and new minimality results are
found for the NN1 case. Construction of NN2 optimum complete block
designs is solved and combinatorial arrays are used for NN2 optimum
incomplete block designs. In many cases these are minimum optimum NN1
designs as well. A new solution for block size 3 is given. A method for
constructing NN1 designs with partial variance balance is introduced and
several series of these designs are shown to enjoy weaker optimality proper-
ties.

1. Introduction. For a block design of b blocks with & plots per block,
arbitrarily label the blocks 1,..., b and the plots within a block 1,..., 2. Then
each of the bk plots may be associated with one of the ordered pairs (I, s),
l=1,...,band s =1,..., k, with corresponding observation denoted Y, ,. The
numbering of the plots within a block may be thought of as an ordering of those
plots, by which the jth-order nearest neighbor (NNj) covariance structure for
the layout is given as

2 , = I’ — gl < .
B S
, otherwise.

To be considered here is the problem of allocation of a set of v treatments to the
bk plots, assuming the usual additive model for block and treatment effects. The
approach taken is that of Kiefer and Wynn (1981):

1. For the set of designs x under consideration, identify the class x* C x which
is optimum for uncorrelated errors.

2. Using least squares estimates, find the subclass x** C x* which is optimum
for the appropriate covariance structure.

For one-way block designs with & plots per block, optimum classes x* are, for
k < v and k = v, the balanced incomplete block designs (BIBD) and the com-
plete block designs, respectively [Kiefer (1958)]. Using the NN1 structure, Kiefer
and Wynn (1981) found conditions for the classes x** and illustrated a construc-
tion for the complete block case. Cheng (1983) gave several constructions for
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optimum BIBDs, including a graph theoretic algorithm for the case £ = 3 and
construction by development of ordinary BIBDs according to optimum complete
block designs. Here, the optimality results of Kiefer and Wynn (1981) are
extended to the NN2 case, and a solution is given for NN2 optimum complete
block designs. NN1 and NN2 optimality conditions are shown to be identical for
k = 3, and another (simpler) solution is given for this case based on combina-
torial arrays. More generally, transitive and semibalanced arrays provide a large
number of NN2 optimum designs. Of special interest is that in many cases NN2
optimality can be had in the same number of blocks as NN1 optimality.

Kiefer and Wynn (1981) also proposed the use of “equineighbored” BIBDs
(EBIBDs), a class of designs which do not necessarily satisfy the strong optimal-
ity conditions for the NN1 case. Here another approach is introduced, analogous
to the use of partially balanced incomplete block designs (PBIBDs) in the
presence of uncorrelated errors, producing a number of designs which enjoy
weaker optimality properties. In particular, Type II optimality is considered. A
design is Type II optimum if it minimizes the maximum variance of estimated
elementary treatment contrasts [Takeuchi (1961)].

We wish to emphasize that the estimation procedure used here is that of least
squares. We refer the reader to Kiefer and Wynn [(1981), pages 738-741] for
detailed justification and explanation of this approach and note especially their
conclusion that “in an approximate sense we are justified in using the ordinary
least squares estimate if we feel that any autocorrelation present is small.” In
extending their work to the NN2 case, it is worth pointing out that in practice
we usually expect p, to be the smaller of the two correlations, say p, = ap,
where 0 < a < 1, so that by their arguments the approach is valid for the NN2
model whenever it is for the NN1 model. Even if one suspects a = 0, the NN2
optimum designs are still NN1 optimum and hence may be thought of as
providing protection against an ‘“unexpected” correlation. In those cases where
the two models require the same number of blocks, the NN2 optimum designs
are to be preferred.

As an alternate approach to block designs with correlated plots, employing
weighted least squares and a different correlation model, we refer the reader to
Kunert (1985a).

Many of the results obtained here employ certain decompositions of graphs. A
brief listing of needed concepts and results from graph theory is given next [see
Berge (1973)].

A graph G = G(E, V) consists of a set V of elements called vertices and a
collection E of unordered pairs of elements of V called edges. An edge (i, j) € E
is said to be incident with the vertices i and j; i and j are adjacent vertices.

A path in a graph is an alternating sequence of vertices and edges, beginning
and ending with vertices, such that no vertex is repeated and such that every
edge is incident with the vertices immediately preceding and succeeding it. The
number of edges in a path is its length. Clearly, a path of length I may be
denoted by the appropriate sequence of [ + 1 vertices. A cycle is a closed path,
that is, a path for which the initial and final vertices are the same. A Hamilto-
nian cycle in G is a cycle that includes every vertex in G. A Hamiltonian cycle
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decomposition of G is a set of Hamiltonian cycles in G that collectively include
every edge of G, but for which no two of the cycles contain a common edge.

A graph is complete if the edges are each of the unordered pairs of distinct
vertices from V exactly once. For |V| = v, this graph will be denoted K. K2 will
be used to denote the graph with v vertices and two edges connecting each pair
of vertices. There is a Hamiltonian cycle decomposition of K, if v is odd and for
K2 for all v.

2. Optimality results. The notation developed here follows that of Kiefer
and Wynn (1981). With the established labeling (and hence ordering) of plots
within a block, call plots 1 and % end plots and plots 2 and %2 — 1 next-to-end
plots. For a binary block design, let A; equal the set of blocks containing
treatment i; let e, equal the number of blocks for which treatment i occurs on an
end plot; let f; equal the number of blocks for which treatment i occurs on a
next-to-end plot; let e;; equal the number of blocks containing both i and j for
which at least one of i and j is on an end plot, where a block is counted twice if
both i and j are on an end plot; let f ; equal the number of blocks containing
both i and j for which at least one of i and j is on a next-to-end plot, where a
block is counted twice if both i and j are on a next-to-end plot; and let N,-‘j equal
the number of blocks in which i and j occur as tth neighbors, that is, are
separated by ¢ — 1 plots (i # j).

For a BIBD with b blocks, v treatments, £ plots per block, r replicates and
treatment concurrence number A, we have the following relationships among
these quantities (used without further mention in many of the proofs):

E]vi§'=2r_ei7 ZM?‘=2r—ei_fi7

JEi J#i
Eeij=(k_2)ei+2ry Zfij=(k_2)fi+2ra
J#i J#i

Y e;=2b and fork > 3, Y f,=2b.

l

The expected value of an observation is taken to be additive in the block and
treatment effects: E(Y,,) =p + 8, + ), where @ s is the effect of the
treatment allocated to plot (Z, s). Least squares analysis of a BIBD yields 171 as
the best linear unbiased estimator (BLUE) of the contrast 17a, where #, =
k(Av)7'Q; and the @,’s are the adjusted treatment totals. Employing the results
(5.1) and (5.2) of Kiefer and Wynn [(1981), page 748] gives

LEMMA 2.1. Let {; be as previously defined and suppose the NN2 covariance
structure holds. If k > 4,
var(f;) = o%(Ao) 2(r[k(k — 1) — 2(k + 1)p, — 2(k + 2)p,]
+2k(p, + py)e; + 2kp, fi},
cov(f;, &) = 02()\0)_2{—)\[k +2(k + 1)p, + 2(k + 2)p,]
+kpy(RNL + ;) + koy(kNZ + e + f,,) ).
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If k=3,
var(£;) = 20%(Av) "*[r(3 — 4p, + py) + 3e,(p; — po)],

cov(#;, £;) = 6%(Av) *[6(py — p,)NY = A(3 + 2p, — 5p,)].

Optimality conditions may now be found by employing Kiefer and Wynn’s
(1981) analogue of the well known result of Kiefer (1975): Obtain complete
symmetry-of the covariance matrix and minimize the trace [for discussion of this
sense of optimality, called weakly universal optimality, see Kiefer and Wynn
(1981)].

THEOREM 2.1. A BIBD is weakly universally optimum among the BIBDs
with the same values of v, b and k for the NN2 covariance structure if

() the quantities kN}; + e, are all equal (i # j);
(i) the quantities kN> + e;; + f;; are all equal (i # j).

For k = 3, conditions (i) and (ii) are equivalent to equality of the N}; (i # j).

ProOOF. Lemma 2.1 shows that the stated conditions give equality of the
off-diagonal elements, and hence equality of the diagonal elements, since in the
covariance matrix all row sums are zero. That all competitors have the same
trace follows also from Lemma 2.1 upon noting that Y.e, = ¥, f, = 2b.

For k=3, Lemma 2.1 shows that equality of the N,-} yields optimal-
ity. Equivalence with the conditions of the theorem follows since for k2 = 3,
N+ NZ=A, f;;=N})and N, + ¢;;=2\. O

Following the same proof with p, = 0 gives the NN1 result.

COROLLARY 2.1 (Kiefer and Wynn). A BIBD is weakly universally optimum
among the BIBDs with the same values of v, b and k for the NN1 covariance
structure if the quantities kN + e;; are all equal (i # j).

A BIBD which satisfies the conditions of Theorem 2.1 is said to be NN2
optimum or simply a NN2 BIBD. Likewise a BIBD satisfying Corollary 2.1 is
said to be NN1 optimum or a NN1 BIBD. For given v and %, a design is said to
be minimum if it has the smallest possible b satisfying the appropriate condi-
tions. The next two results aid in establishing minimality of NN1 and NN2
optimum designs.

THEOREM 2.2. (i) A NN1 BIBD satisfies k|4\. If k # 0 (mod 4) or if v = 2
or 3 (mod 4), then k|2)\.

(ii) A NN2 BIBD satisfies k(k — 1)|4\. If R # 0 (mod4) or if v=2 or 3
(mod 4), then k(k — 1)|2A.
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Proor. The results are immediate upon summing each of the quantities
kN}; + e,; and kN7 + e;; + f;; over i and j and dividing by v(v — 1). O

THEOREM 2.3. A NN1 BIBD for which 2\ # 0 (mod k) satisfies 8(r — \) >
k2.
Proor.
Xy Nl = Z‘,(Zr —e;) =2vr—2b=2Mv(v—-1)/k

i j#L

= Y X Nj/o(v—1) =2)\/k

i ji
= the N;; are not all equal, since k2.
Hence 3 i’, j’ such that
N, < int(2\/k) = (4\ — k) /2k
= e, ;=2\ +4\/k— KN} , > 2\ + A\ /k — (4\ — k) /2 = (8A + k?)/2k.
But equality of the
kN + e;; = equality of the e; = 4b/v =¢;, + e, > ¢, ;, > (8\ + k?)/2k

and the desired inequality follows. O

The results for complete block designs are derived in a similar fashion and are
stated together as the final result of this section.

THEOREM 2.4. A complete block design with v treatments arranged in b
blocks is NN2 optimum if

(i) the N}; are all equal (i # j);
(ii) the N2 are all equal (i # j).

The conditions imply that v(v — 1)|2b.
3. Complete block designs. Denote by B, the v X v array with i, j entry
. i+ 1
(i + (—I)Jﬂint(] 3

For even v, let D, be the v/2 X v array given by the first v/2 rows of B,.
Considering the rows of the arrays as ordered blocks, it is well known that

Ni=2, i#jforB,

)) (mod v),i=0,1,...,v—1, j=0,1,...,v — 1.

Ni=1, i+jforD,,

i
so they are minimum optimum complete block designs for the NN1 structure
[compare Theorem 4.2 of Kiefer and Wynn (1981)].
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LEMMA 3.1. For B, with rows as ordered blocks,
NZ=v-2, i-j=+1(modv),
=0, otherwise.
For D,, with rows as ordered blocks,
Ni=(v-2)/2, i-j=11(modv),
=0, otherwise.

The condition i — j = +1 (mod v) of the lemma simply says that i and j are
adjacent in the first column of B, when that column is considered as a cycle.

THEOREM 3.1. There is a complete block design in b = v(v — 1)/2 blocks for
which the N; are all equal (i # j) and the N are all equal (i + j) and thus a
minimum optimum complete block design for the NN2 structure.

PROOF. CASE (i). v is odd. Let c,, c,,..., ¢,_1),» be any Hamiltonian cycle
decomposition of K,. Form a path p; from c¢; by arbitrarily deleting any one
edge and define a permutation f; on {0,1,...,v — 1} by the map of the first
column of B, onto p,, i.e, f(Jj)=p;;, where p, = (Pip, Pir,---> Pi »,—1)- Since
each pair of symbols is adjacent in exactly one of the c;, the required design is
given by the rows of the arrays

fl(Bu)’ fZ(Bv)’ AR f(v—l)/2(Bu)
by virtue of Lemma 3.1 and the comment immediately following it.

CAsE (ii). v is even. Proceed as in case (i) using any Hamiltonian cycle
decomposition of K? to obtain v — 1 permutations of the initial v/2 blocks of
D, O

ExAMPLE 1. NN2 optimum complete block design with v = 6 treatments:

By
015 2 43 p, = (5,3,2,4,1,0)
1 2 03 5 4| Dy p,=(543021)
2 3140 5 p3 = (5,0,4,1,3,2)
342510 p,=(5,1,0,2,4,3)
4 530 21 ps=(5,2,1,3,0,4)
5 0 41 3 2
The rows of the following five arrays form the blocks of the design:

F(Dg) f2(Dg) f5(Dg) f4o(Dg) 15(Ds)
530214 541320 502431 513042 524103
325401 435012 045123 105234 215340
243150 304251 410352 021453 132054

4. Incomplete block designs. In this section combinatorial arrays will be
used to construct optimal designs.
A t X N array of v symbols is said to be semibalanced of strength d and index

l=N/ ( Z) if for any choice of d rows, the N columns contain each of the (;)
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unordered d-tuples of distinct symbols exactly / times. Such an array will be
denoted SB(N, ¢, v,d). A transitive array, TA(N, ¢, v, d) of strength d and
index I = (v — d)!N/v! is a t X N array of v symbols such that for any choice
of d rows, the N columns contain each of the v!/(v — d)! ordered d-tuples of
distinct symbols exactly ! times. Clearly a transitive array of strength d and
index / is a semibalanced array of strength d and index I(d!). Transitive arrays
have been treated by a number of authors, especially for their relationship to
sets of mutually orthogonal Latin squares [e.g. Bose, Shrikhande and Parker
(1960)]. Important here will be that a set of ¢ — 1 mutually orthogonal Latin
squares of order v implies the existence of TA(v(v — 1), ¢, v,2). Semibalanced
arrays have been investigated by Rao (1961). Ramanujacharyulu (1966) and
Mukhopadhyay (1978) who has given the strongest results. Both semibalanced
and transitive arrays provide convenient constructions of NN2 optimum designs.

THEOREM 4.1.  The existence of a semibalanced array SB(lv(v — 1)/2, k, v, 2)
implies the existence of a NN2 optimum BIBD with parameters v, k and
b=l(v-1)/2.

Proor. Taking the columns of the array as ordered blocks, it is easy to see
that the indicated BIBD is obtained. Also, N;; = [(k — 1), N2 = I(k — 2), e, =
2l(k —1)and f;;=2lfork =3, f;;=e;; for k> 3.0

Although not needed here, it may be shown that semibalanced arrays are
optimum for an arbitrary NNj correlation model. For details in the context of
generalized Youden designs, see Kunert (1985b).

COROLLARY 4.1. Each of the following conditions is sufficient for SB(v(v —
1)/2, k, v,2) to be a minimum NN2 BIBD:

(i) & # 0 (mod 4).
(ii) £ = 0 (mod4) and either k > 2v or v = 2 or 3 (mod 4).
(iii) & = 4.
Proor. (i) follows from Theorem 2.2 and (ii) from Theorems 2.2 and 2.3. To
show (iii), it will be shown that & = 4, A = 3 is impossible under NN1 condi-

tions. With k& = 4, a pair of treatments may occur in four distinct orientations a,
B, v and 8 with respective contributions.of 5, 1, 2 and 4 to kNilj + e

B é

L

. e IR
|
| 1~ R

<.
L e ]

<.

If A =3, NN1 optimality implies kN, + e;; =9, so i and j must have either
orientations a,y,y or B, 8,8. Counting over all possible pairs of treatments,
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2(;) = v(v — 1) v and 8 orientations are required, but only 2b = v(v — 1)/2 are
available. O

The next result gives conditions for semibalanced arrays to be NN1 as well as
NN2 minimum optimum. For integers x and y, define (x, y) equal to the
greatest common divisor of x and y.

THEOREM 4.2. (i) Ifkisodd,(a)(k — 1,0 — 1) = 2 = SB(v(v — 1)/2, k, v,2)
is minimum optimum for the NN1 and NN2 models; (b) (k— 1,v—1)=1=
SB(v(v — 1), &, v,2) is minimum optimum for the NN1 and NN2 models.

(ii) If k = 2 (mod4) and (k — 1,v — 1) = 1, then SB(v(v — 1)/2, k, v,2) is
minimum optimum for the NN1 and NN2 models.

(iii) If (k(k — 1), v(v — 1)) = 2, then SB(v(v — 1)/2, k, v,2) is minimum op-
timum for the NN1 and NN2 models.

Proor. For any BIBD, r=Av—-1)/(k—1)=(k—1|(k—1,0—1)A.
From Theorem 2.2(i), if & is odd, then kA = k(k — 1)|(k — 1, v — 1)A. Likewise

k = 2(mod 4) = k|2\ = k(k — 1)|(k — 1,0 — 1)2A.

In general, b = Av(v — 1)/k(k — 1) and (k(k — 1), v(v — 1)) = 2 = v(v — 1)|2b.
O

A few of the many possible corollaries are listed next.

COROLLARY 4.2. If k — 1 is a power of 2 and v is even, SB(v(v — 1), k, v,2)
is minimum optimum for the NN1 and NN2 models whenever it exists.

ExaMPLE 2. Setting & = 5 in Corollary 4.2, TA(v(v — 1),5, v,2) exists for
any even v for which there are at least four mutually orthogonal Latin squares
of order v. Included for v < 100 are v = 8,12, 16, 32,40,50,54,56 and v = 2s,
s = 32,33,...,50 [see Raghavarao (1971)].

COROLLARY 43. If v=2" and v—1 is prime, TA(v(v — 1), k,v,2) is
minimum optimum for the NN1 and NN2 models for k=4t—-1, t=
1,2,...,2"" 2 — 1.

ExaMPLE 3. v = 32 in Corollary 4.3 yields the minimum optimum designs
with & = 3,7, 11, 15, 19, 23 and 27.

COROLLARY 4.4. If k — 1 is a power of 2 and v = 3 (mod 4), then SB(v(v —
1)/2, k, v,2) is minimum optimum for the NN1 and NN2 models whenever it
exists.

ExaMmpLE 4. For k = 5, arrays satisfying Corollary 4.4 can be constructed by
(4.1) for v = 7, 19, 23, 43, 47 and 59 (mod 60).
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The case £ = 3 can also be solved by array constructions. If v is odd, an
NN1/NN2 design must have a multiple of v(v — 1)/2 blocks. The results of
Mukhopadhyay (1978) imply the existence of the appropriate semibalanced
arrays, but it is simpler to take the columns of the array [Gassner (1965)]:

i(o—1
place (i + r7) (mod v) in row r, column -—(———) + 7,
(4.1) 2

(v-1)

2 ’
which is also semibalanced. (In fact, r may range up to one less than the
smallest prime divisor of v.)

For k = 3 and even v, a minimum of v(v — 1) blocks is required [Theorem
4.2(1)]. Hence a three rowed transitive array of strength 2 will suffice.

r=0,1,2;i=0,1,...,v—-1; y=1,2,...,

THEOREM 4.3. Let v > 4 be an integer and form a 3 X v(v — 1) array as
follows. Fori=0,1,...,0v— landj=1,2,...,v — 1 putiin columni(v — 1) +j
of row 1 and put (i + j) (mod v) in column i(v — 1) + j of row 2. For row 3, for
t=1,2,...,0 — 2, put (t + 1) (mod v) in column

I-D(vo-1D+¢t-1+1, [1=1,2,...,¢
(o—-1)+t—-1l+o, l=t+1,...,0—1.

Also, put 1 in column v — 1 and put v — 2 in column (v — 1)? + 1. Finally, for
i=1,...,(v —4)/2 put

2i (mod v) in columni(v —2) + v,
2i + 1 (mod v) incolumni(v—2)+0v—1
and fori = (v — 2)/2,...,v— 2, put
2i (mod v) incolumni(v—2) +v -1,
2i + 1 (mod v) in columni(v — 2) + v.

The array is TA(v(v — 1),3,0v,2).
PRoOF. The array is discussed in Morgan (1984). O

EXAMPLE 5. v = 6 in Theorem 4.3 gives TA(30, 3, 6, 2):

3
2 33333
1
3

00000 11111 2222 44444 55555
12345 23450 3450 45012 50123 01234
23451 45032 0145 20145 23501 40123

Two NN1 or NN2 optimum designs may be said to be equivalent if they can
be made identical by relabeling of blocks and treatments and by reversing the
order of blocks. This leads to a characterization of the minimum optimum
BIBDs for & = 3.
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THEOREM 4.4. A NN1/NN2 minimum optimum BIBD with k = 3 is equiv-
alent to a semibalanced array.

ProoF. The result will be proven for even v, the similar proof for odd v
being even simpler. With v even, the minimum optimum design must have
b=ov(v—1), A =6, N} =4and N? = 2forall i # j. Arrange the blocks side to
side in any order to form a 3 X v(v — 1) array, arbitrarily orienting each block
(e.g., the block b may also be taken as 2, one orientation being the reverse of the

other). For anyC column of the array, call the pair formed by rows 1 and 2 an
upper pair and the pair formed by rows 2 and 3 a lower pair. Let N,-b-" be the
number of times symbols i and j occur as an upper pair and let

U=#{(i,j):i<jand N¥ =3} + 2 x #{(i, j): i <jand N =4},

If U = 0, the array is semibalanced. Suppose U > 0; it will be shown that U can
always be reduced by 1.

Choose any pair i, j such that N* > 2 and reverse one of the columns in
which i and j occur as an upper pair. Either U is reduced by 1 or N}J'-‘, is
increased by 1 to 3 or 4 for some pair #’, j, in which case U is unchanged. In the
latter case, choose another column in which i’ and j’ occur as an upper pair and
reverse it. Again either U is reduced or N}‘; is increased by 1 to 3 or 4 for some
pair i, j”. If again the latter occurs, choose another column in which i” and j”
occur as an upper pair and reverse it, being sure not to reverse any previously
reversed column. Continue reversing columns in this manner, subject to the
constraint that no column is reversed more than once, until either U is reduced
by 1 or no column is available for reversing. It will now be shown that the second
possibility cannot occur.

Suppose the algorithm stops without reducing U. Let ¢, be the last column
reversed and let i, j be the upper pair of ¢,. Then Ni}" > 2 and there are s > 2
other columns containing i, j as an upper pair which by assumption have all
been previously reversed. Since the algorithm did not stop upon reversal of any
of these s columns, there are s corresponding columns for which i, j is a lower
pair. Hence there are at least 2s + 1 > 5 columns containing i and j as first
neighbors, which contradicts N, = 4. O

That a minimum NN1 BIBD with k2 = 3 and even v need not be equivalent
to a transitive array is shown by Example 6.

EXAMPLE 6.
1 11 2 1 2 2 2 3 3 3 4
2 2 2 1 3 3 4 3 1 4 4 1
3 4 4 4 2 1 3 4 4 1 2 3

By Theorem 4.4, this array is equivalent to a semibalanced array. But column
reversals cannot give transitivity with respect to the pair (1, 2).
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5. Partially variance balanced designs. By developing an ordinary BIBD
according to the blocks of a NN1 optimum complete block design on k treat-
ments, Cheng (1983) obtained the following construction technique for NN1
BIBD:s.

THEOREM 5.1. The existence of a BIBD D, with parameters v,, k, = k and
A, implies the existence of a NN1 BIBD with parameters v = v,, k and
A = Aok/2 or Ak, where the value of A is for even or odd k, respectively. The
developed design is minimum optimum if any one of the following conditions
holds:

() Ag=(k—-1)/(k—1,v—1) and either k# 0 (mod4) or v=2 or
3 (mod 4).

(i) k=0(mod4), \(=k—1,(k—1,v—1)=1and k > 2v.

(iii) Ay = 1.

The minimality conditions (i)—(iii), which follow from Theorems 2.2(i) and 2.3,
may be used to sharpen some of the results of Cheng [(1983); see his Theorem 3.3
and Corollary 4.5].

In this section, a different development technique is proposed, producing
designs in fewer blocks at the expense of sacrificing the complete symmetry of
var(t). These designs may be compared to the EBIBDs of Kiefer and Wynn
(1981): BIBDs with equality of the N}, which when not NN1 optimum (i.e., e;;
all equal as well) also lose complete symmetry of var(t). For EBIBDs, the
number of distinct variances for estimation of elementary treatment contrasts
equals the number of distinct e;;’s with the range of these variances proportional
to the range of the e, ’s. The approach taken here is to avoid overly disturbing
the symmetry by introducing imbalance in the whole terms kN + e;; while
maintaining equality of the e;’s. Noting from Lemma 2.1 (with p, = 0) that
var(£,) depends only on e; and cov(Z,, fj) only on kN}; + e, J» the resulting design
will have elementary treatment contrasts estimated with m distinct variances,
where m is the number of distinct 2N} + e, .

Let % be odd and arbitrarily give the name “end” to one of the vertices of K.
Assign the % treatments of one of the blocks of an initial BIBD D, (with
parameters as in Theorem 5.1) to the vertices of the graph and decompose it into
(k — 1)/2 Hamiltonian cycles. Form two paths of length £ — 1, and hence two
ordered blocks, from each cycle by deleting first one of the edges incident with
the end vertex, then replacing it and deleting the other. Since the end vertex is
adjacent to each other vertex in exactly one cycle, e, = £ — 1 or 1 for this set of
blocks, where the value is £ — 1 if treatment i is assigned to the end vertex and 1
otherwise, and since every other pair of vertices is also adjacent in just one cycle,
EN}; + e,; = 2k or 2k + 2 for this set of blocks, where the value is 2k if one of i
and j corresponds to the end vertex, and 2%k + 2 otherwise.

Repeating this process for each block of D,, all the e;’s will be equal if each
treatment can be assigned to the end vertex an equal number of times. This is
equivalent to choosing one treatment from each block of D, as representative of
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that block in such a way that each treatment is representative an equal number
of times. For this, it is necessary and sufficient that b, = sv, for some integer
s > 1 [Hartley, Shrikhande and Taylor (1953)]. The resulting common value for
e; is(k—1)s + (r,—s)=2s(k — 1).

For i # j, let A;; be the number of blocks containing both treatments i and j
for which either i or j is the representative. Then in the developed design

ENY + e, = (2k + 2)(Ag — A;;) + 2kA;; = 2Xo(k + 1) — 2),;.

A choice of block representatives for a BIBD such that each treatment is a
representative an equal number of times and such that the numbers A;; take on
only m distinct values Aj, A,,..., A, will be called an m-class representative
scheme.

THEOREM 5.2. If there exists a BIBD D, with parameters b, = sv,, v, and
ko = k odd, which has an m-class representative scheme, then there exists a
BIBD with parameters b = s(k — 1)v, v = v, and k that is partially balanced
for the NN1 covariance structure in the sense that elementary treatment con-
trasts are estimated with m distinct variances.

Designs developed according to Theorem 5.2 will be denoted NN1 PBD(m) or
NN1 PBD. With equality of the e;’s [var(;)’s], the A;;’s determine the extent
and pattern of dispersion of the elementary contrast variances. In this manner,
these designs function in this setting as do the m-associate class partially
balanced incomplete block designs in the setting of uncorrelated errors. However,
the representative scheme does not necessarily lead to a PBIBD-type association
scheme (although it sometimes does [Morgan (1983)]).

In choosing a representative scheme, the first goal will be to keep the number
(m) of distinct A;;’s small; one can then consider other factors such as their
range and pattern. In particular, the optimality considerations of the next
section demand that the A;;’s be as equal as possible. We begin with some simple
methods for obtaining representative schemes.

LEMMA 5.1. A BIBD with treatment concurrence number A for which v|b
has a representative scheme with at most min(1 + A, 1 + 2b/v) classes.

PRrOOF. Since v|b, a set of representatives can be chosen which includes
every treatment b/v times. So a pair of treatments occurs in at most 2b/v
blocks for which one is the representative and because the pair occurs in A
blocks, they are in at most A blocks for which one is the representative. O

THEOREM 5.3. A BIBD with A\ =1 for which v|b has a two-class repre-
sentative scheme.

THEOREM 5.4. A symmetric BIBD has a representative scheme with at most
three classes.
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These simple results are quite useful in producing NN1 PBD’s with fewer
blocks than the corresponding minimum NN1 BIBD’s. For instance, if ¢t = 27,
the BIBD series with parameters

bp=v,=t>+t+1, ky=ry=t+1, Ay=1
based on PG(2, ¢) can be developed to give the NN1 PBD(2) series with

b=t(t?+t+1), o=t2+t+1, k=t+1,

r=tt+1), A=t A =0, A, =1

and a savings of ¢2+ ¢+ 1 blocks over the corresponding minimum NN1
BIBDs. Likewise, the symmetric BIBDs with v = 3 (mod 4) a prime power and
k = (v — 1)/2 may be developed to NN1 PBD’s with at most three representa-
tive classes and v fewer blocks than the corresponding minimum NN1 designs.

Another method for finding representative schemes is based on BIBDs cycli-
cally developed from a set of initial blocks. The following is easily proved.

THEOREM 5.5. Suppose that for a BIBD with parameters b = sv, v, k and \
cyclically generated from the s initial blocks (a;, a;5,..., @), i =1,2,...,8
(with elements from an additive group), there are elements a;;, i =1,2,...,s
(called initial representatives), such that

ij,?
t(a;; —ay), i=12,...,51=12,. , kandl+j,

are all the nonzero group elements either A, \,,... or X\, times. Then there is
an m-class representative scheme for the BIBD with parameters Aj, Ay, ..., A ..

More complicated versions of Theorem 5.5 may be written to cover cases of
periodic blocks, fixed elements, etc.

ExampPLE 7. B, = (0,6,8,9,11,15,25,32, 33) (mod 37) is a difference set. Since
no two elements of B, sum to 0 (mod37), 0 may be taken as the initial
representative, yielding a two-class scheme with A, = 0 and A, = 1.

The choice of any element as initial representative in a difference set neces-
sarily produces a representative scheme with at most three classes; a choice of
initial representative yielding two-class schemes has in many cases proved
impossible. For s = 2 and 3 in Theorem 5.5, trial and error experience has shown
that initial representatives yielding three-class schemes are usually easily found.

Now we shall construct some series of designs which will be proved Type II
optimal in Section 6. For 2 = v — 1, Theorem 5.5 gives a representative scheme
with two associate classes. Consider the initial block [0,1,2,...,v — 2]. The set
of symmetric differences with respect to 0 is +1, +£2,..., £ (v — 2) which re-
duced (mod v) gives the residues 2,3, ..., v — 2 twice each and the residues 1 and
v — 1 once each. Hence 0 is an appropriate choice for initial representative,
giving A, = 1 and A, = 2.
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As an alternative construction, take v/2 as the initial representative. This
choice also yields a two-class representative scheme, but with A; = 0 and A, = 2.

THEOREM 5.6. For even v, there is a symmetric BIBD with k = v — 1 and
two-class representative scheme and, hence, an NN1 PBD(2) with parameters

b=v(v-2), v, k=v-1, r=(v—-1)(v-2), A= (v—-2)>

which has v less blocks than the corresponding NN1 minimum optimum design.
The parameters of the representative scheme may be taken as A\, = 1, A, = 2 or
AL=0,A,=2.

Which of the two types of designs is to be recommended? If the experimenter
has no interest in the manner of dispersion of variance imbalance across the
various pairs of treatments, then the optimality results of Section 6 support
the first approach [A; = 1, to be called the “cyclic series,” owing to properties of
the resultant var(t)]. The practical worth to the experimenter of the second
construction (to be called the “group divisible series”) is found in the pattern it
imposes on the off-diagonal elements of var(t): The treatments may be divided
into v/2 groups of two, (i,i + v/2) for i = 1,2,...,v/2, so that comparisons
within groups are made with one precision and those between groups with
another. If the nature of the treatment set is such that this assignment of the
variance imbalance is of value, then this approach should be used.

Now, consider the case k= 3. If v is odd, the NN1 minimum optimum
designs have parameters b =v(v—1)/2, r=3(v —1)/2 and A = 3. Since
k — 1 = 2, the method of Theorem 5.2 can be used to construct an NN1 PBD
with smaller b only if the initial BIBD satisfies v|b and A = 1. Hence one must
find representative schemes for BIBD’s in the series

(5.1) b=v(v-1)/6, r=(v-1)/2,

k=3, A=1, v =1 (mod6).

This problem is solved by Theorem 5.3 and the parameters of the representative
scheme are A, = 0 and A, = 1.

If =3 and v is even, NN1 minimum optimum designs have parameters
b=v(v—1), r=3(v— 1) and A = 6. Theorem 5.2 will produce a design with
b < v(v — 1) for initial BIBD’s such that v|b and A = 2, that is, for the series

(5.2) b=o(v-1)/3, r=(v-1), k=3,

A=2, v=4(mod6).

One construction of this series is given by developing (mod 6¢ + 3) the set of
initial blocks (0,%,2¢+1—1i), i=1,2,...,¢ (0,2{,3t+1+1i), i=12,...,¢
(00,0,3t + 1) and (0,2t + 1,4t + 2) of period 2¢ + 1. It can be verified that the
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following choice of representatives yields a two-class representative scheme with
A,=1land A, =2:

Block Representative
©,7,2t+1-1) 0 = initial representative, i = 1,..., ¢
0,2:,3t+ 1+ 1) 0 = initial representative, i = 1,...,¢t — 1
(5.3) 0,2t,4t + 1) 4t + 1 = initial representative
(00, ,3t+1+)) oo = representative, j = 0,1,...,2¢
J = representative, j = 2t + 1,2¢ + 2,...,6¢ + 2
(J,2t+ 1+ j,4t+ 2 +)) J = representative, j = 0,1,...,2¢

ExXAMPLE 8. ¢t =1in (5.3) gives b = 30, v = 10 and k = 3. The representa-
tives are underlined.

012345678 0123456738 00 0 0 00 00 0 00 00 0 012
123456780 234567801 0123 456 7 8 345
234567801 567801234 456 78 0123 678

Hamiltonian cycles may also be employed to construct partially balanced
NN1 complete block designs. Since variances of estimated contrasts depend only
on the Nilj, an obvious approach is to keep the N;“as equal as possible,” and as
N,b =1 (i # j) is achievable for even v, only odd v are considered here. Decom-
pose K, into (v — 1)/2 Hamiltonian cycles. Form a path from each cycle by
deleting an edge in such a manner that among the vertices that were incident
with the set of (v — 1)/2 deleted edges, no one appears more than once (this can
always be done). With paths as ordered blocks, N,lj =1 for all but (v — 1)/2
unordered pairs (i # j) and no treatment is involved in more than one pair such
that N = 0. This construction saves just over half of the blocks required for
complete balance and it can be shown that the designs enjoy several optimality
properties, including Type II optimality and, for p > 0, E-optimality [Morgan
(1983)].

6. Optimality results for partially variance balanced designs. The
optimality considerations here are essentially the same as in Section 2: Within
the class of BIBDs find the optimum designs for least squares estimation under
the NN1 model. Because Theorem 2.1 does not apply to the designs of Section 5,
Type II optimality is considered and established for the three constructed series
of designs £k =3, k=v—1and A\j=1:

Type II optimality requires minimizing max; , j var( £ — fj). From Lemma 2.1,
for a BIBD and the NN1 model, this is equivalent to minimizing max;, iple; +
e; — (kN}; + e;,)]. Let D, be a BIBD with parameters b, = sv, v, = v, ko = k,
T, and A, and m-class representative scheme (A,, A,,..., A,,). Development of
D, according to Theorem 5.2 results in a BIBD with parameters

(6.1) b=s(k—-1)v, v, k, r=sk(k—1) and A= (k- 1)A,.

For this developed design, the values of e; + e; — (kN}; + e,;) are, from Section
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54s(k — 1) — 2Ao(k + 1) + 2\, fort = 1,2,..., m. If the e; + e, — (N, + ¢;))
were all equal, the common value (by averaging over all i # j) would be

4b/v — (2N + 4AN/k) = 4s(k — 1) — 2(k + 1)Ao + 4Ay/k.
The differences between this “optimum” value and the attained values are
(6.2) 4N/ k — 2),,
which will be useful in checking for Type II optimality. More precisely:

LEMMA 6.1. Consider the BIBD with parameters (6.1) obtained by develop-
ing a BIBD with m-class representative scheme (A, A,,...,\,,) according to
Theorem 5.2 and suppose 4\, # 0 (mod k).

() If 4No,/k — 2N, > =1, t = 1,2,..., m, the design is Type II optimum for
the NN1 model with p > 0.

(i) If 4No/k — 2N, <1, t=1,2,..., m, the design is Type 11 optimum for
the NN1 model with p < 0.

Here we have taken advantage of the fact that 4A,/k is not integral, while
e; + e; — (KN}, + e;;) must be: (i) simply means that max,, /[e; + e; — (kN]; +

e;;)] is as small as possible and (ii) means that min,, ;[e; + ¢; — (kEN} + e;))] is

13

as large as possible. A useful technical lemma (proven in the Appendix) follows.

LEMMA 6.2. A BIBD for which v|b must have equality of the e;’s if either of
the following conditions holds:

gt - B0
() mas{e = 4+ ) < 22— 2L DAL D)

For designs with parameters (6.1),
int(2b6(k — 1)(k + 2)/v(v — 1)) = int(2\ + 47\ /k),

so for these designs the conditions (6.3) and (6.4) are equivalent to conditions (i)
and (ii), respectively, of Lemma 6.1. Now optimality results can be obtained for
series of designs from the previous section.

THEOREM 6.1. The series of NN1 PBD(2)’s with parameters b = v(v — 1)/3,
k=3 v=6t+1(t>1), A\, =0 and A, =1, obtained from the BIBD series
(5.1), is Type 11 optimum for the NN1 model.

ProoF. The values of (6.2) are 4/3 and —2/3, so Lemma 6.1 gives the result
for p > 0. A competitor will perform better for p < 0 only if Lemma 6.1(ii) and,
hence (6.3), is satisfied so that the e;’s must all be equal. Hence the competitor
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must satisfy

C [26(kE—-1)(k+2)
e;; + kN}; < int +1=7.
J / o(v—1)

Since £ = 3,
e,;=2\—N,=kN}+e;=4+2N,<7=N,<1, i+
But X%, ;N}/v(v — 1) = 4/3 = N}, > 1 for some i # j. O
THEOREM 6.2. The series of NN1 PBD(2)'s with parameters b = 2v(v —
1)/3, k=3, v=6t+4(t>0), A\, =1 and A, = 2, obtained from the BIBD
series (5.2), is Type 11 optimum for the NN1 model.

PROOF. Similar to the proof of Theorem 6.1. O

THEOREM 6.3. For k = v — 1 (v even), the cyclic and group divisible series
of NN1 PBD(2)’s are each Type II optimum for the NN1 model with p > 0. If
p < 0, the cyclic series is superior with respect to the Type 11 criterion.

Proor. A direct application of previous results. It should be noted that the
cyclic series has less pairs that obtain the Type II bound for p > 0 and so may be
considered superior in that sense. O

Calculation of eigenvalues shows that for p > 0 the cyclic series is also
superior to the group divisible series with respect to E-optimality (for p < 0 they
are equivalent). With Theorem 6.3, a reasonable argument in favor of the cyclic
series is obtained. But as discussed in the previous section, the structure of the
group divisible series may be useful for particular sets of treatments, in which
case optimality considerations may be secondary.

The final lemma is valuable in showing optimality for those designs with
Ao = 1 (proof in the Appendix).

LemMma 6.3. A BIBD with parameters b = s(k — 1)v, v =sk(k — 1) + 1,
r=sk(k—1), A\=%k — 1 and k odd, for which all the e;’s are equal, satisfies
kN + e;; < 2k for at least one pair i + j.

THEOREM 6.4. Developing a BIBD with odd k and A, = 1 by the method of
Theorem 5.2 produces a NN1 PBD(2) that is Type 11 optimum.

Proor. If k = 3, the result is given by Theorem 6.1. The values of (6.2) are
4/k and 4/k — 2, so for k > 5, the result for p < 0 is given by Lemma 6.1.

The values of e; + e; — (kN + e;) for this series are 4b/v — 2k and 4b/v —
2(k + 1). If a competitor is to perform better for p > 0, it must satisfy e, + e; —
(lej + e;;) <4b/v — (2k + 1) for all i # j, i.e., it must satisfy (6.4). Hence the
e;’s are all equal and the competitor must satisfy e;; + kNilj > 2k + 1 for all
i # J, which contradicts Lemma 6.3. O
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APPENDIX

ProoF oF LEMMA 6.2. By contradiction. Suppose (6.3) holds and the e,’s are
not all equal, say e, = 2b/v — p, p > 0. Then

) 46  (2b(k—-1)(k+2)
kN1j+e1jSe1+ej——v—+1nt oo = 1)

)+1, Jj=2,...,v,

<

4b 2b
= (kN11j+e1j)=2r(k+1)— _D_ +2p$2b+(v—2)(—? —p)

+(v - 1)[— 4—:3 + int( 2b(kv(—013(f)+ 2)) + 1}.
|

Rearranging gives
. (v—-1) [_ 2b(k—1)(k+2)  (2b(k—1)(k+2)
- o(v—1) ( o(v—1)

_ (v—-1) [1 ~ frac( 2b(k —1)(k +2) } -1

v o(v—1)
Proor or LEMMA 6.3. By contradiction. Suppose kNilj +e;; > 2k + 1forall

i#j.SinceA=k—-10<e;<2k—1)and0 < N}, < k — 1. Thus N}’;, > 1 for
all i # and

v

(6.4) is shown similarly. O

IVl5=l=>eUZk+1.

Also, equality of the e’s = e, =2b/v=2s(k—-1)=1L%,,;
2s(k — 1)2. Let some treatment be given, say treatment 1. Let

a, = #{j: N,=1,j¢€ {2,...,0}},
ay,=#{j: NL>2, je (2,...,0}}).

1 _ — =
Ni=2r—e =

1j =
Then
a,+a,=v—1=sk(k—-1)
and
a, +2a,< ) N =2s(k— 1)
j=2
=a, >2s(k—1).

Hence there are at least 2s(k — 1) treatments ; such that e,; > £ + 1.

Let A, be the set of blocks containing treatment 1, A{ the subset of A, for
which 1 is on an end plot and A® = A, — Af. Then

#A4, =sk(k—1), #A°=2s(k—1), #A"=s(k—1)(k - 2).

Let a set V| of 2s(k — 1) treatments j with Nllj = 1 be given. These treatments
take up 2s(k — 1) plots in A,. If treatment j occurs on an end plot of A¢, there
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is a contribution of 2 to e,; and if it occurs on any other plot of Af, there is a
contribution of 1 to e, ;. Occurrence of j on one of the 2s(k — 1)(k — 2) end plots
of A" contributes 1 to e,;; occurrence on any other plot of A" makes no
contribution. Hence by counting over the 2s(%2 — 1)? plots,

Y e, <2[2s(k - 1)] + [25(k — 1)* — 2s(k — 1)] = 2sk(k - 1).
JEWV
But since N}, =1 = ¢,; > (k + 1), it must hold that

> e >2s(k—1)(k+1),

JEV

IA

the desired contradiction. O
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