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A LOWER BOUND ON THE ERROR IN NONPARAMETRIC
REGRESSION TYPE PROBLEMS!
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Let (X, Y1),...,(X,, Y,) be a sample, denote the conditional density of

Y|X, = x, as f(y|x,,0(x;)) and @ an element of a metric space (0O, d). A

lower bound is provided for the d-error in estimating 6. The order of the

“bound depends on the local behavior of the Kullback information of the

conditional density. As an application, we consider the case where © is

the space of g-smooth functions on [0,1]¢ metrized with the L, distance,
1<r<owo.

1. Introduction. In the classical nonparametric regression problem, we con-
sider a sample (X,,Y)),...,(X,,Y,) where X,,..., X, are R? valued measure-
ments that might be random or nonrandom, Y,,...,Y, are the corresponding
responses such that E(Y;|X; = x;) = 0(x;) with 6 in an infinite dimensional

space ©. Conditionally on X, = x,,..., X,, = x,,, the responses are independent
with distributions of the same form f(y|x, 0(x)) dy == By, (dy), but with param-
eters depending on the measurements x;, i = 1,..., n. Under this setup, Stone

(1980, 1982) and Ibraglmov and Khas’ mmskn (1980) have constructed optimal
estimators 6, of § in L., 1 <r, when © consists of g-smooth functions on
[0, l]d Ibraglmov and Khas’'minskii proved that their estimators are almost
minimax modulo a constant, that is, there are constants C;, C; such that
sup{E, |6, — 0]|,; 6 € ®) < Cyn™" and inf{sup{E, |T, — 4|,; 0 € ey T) >
C,n7", vy >0, n € N. Stone has considered other definitions of optimality using
bounds in probability for the loss ||0 — 8|, as described at the end of the paper.

We will relax the condition that 6(x) is a conditional mean as in the classical
regression problem. We will only assume that 6(x) is a parameter of the
conditional density and we will call the problem of estimating 6 a regression type
problem. When @ is an element of a metric space (0, d), we will provide for the
regression type problem a lower bound on the d-minimax risk (Theorem 1). This
theorem can be used as a tool to provide lower bounds for different choices of
(0,d). We will apply the theorem and evaluate the lower bound in the case
where O is a family of smooth functions and d is the L, distance, 1 < r < 0. In
a remark at the end of the paper, we pr0v1de with the same technique, lower
bounds for the d-loss in probability. A minimum distance estimate for the
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regression type problem proposed in Yatracos (1985a) shows achievability of the
lower bound. The error of this estimate depends on the entropy of Kolmogorov
of (O, d) as in the density estimation problem [Yatracos (1985b)].

The method for computing the lower bound comes from Le Cam’s idea in
hypothesis testing [Le Cam (1986) or Kraft (1955)] that you cannot test (and so
estimate) 6, versus © — {6,)} if §, is in the convex hull of ® — {§,}. So it will be
difficult to test 6, versus ©, € ® — {,} when O, consists of functions close to
b,, the difficulty being reflected in the lower bound of the minimax or Bayes risk.
This idea has already been used by Bretagnolle and Huber (1979) to obtain lower
bounds for the risk in the nonparametric density estimation problem. A similar
approach, using Fano’s lemma, has been considered to obtain lower bounds for
minimax risks by Khas’minskii (1978) and Birgé (1983) in density estimation and
by Ibragimov and Khas’minskii (1981) in classical regression with equidistant
design. An observation that a regression problem is almost a density estimation
problem leads to the use of Fano’s lemma and a lower bound for an arbitrary
metric space (0, d). An elegant result of Birgé helps to obtain the best lower
bound when O is the space of (g, L) smooth functions on [0,1]¢ metrized with
the L, distance,1 < r < oo (i.e., ® consists of p times differentiable functions in
[0,1]¢, uniformly bounded in sup-norm with the pth derivative satisfying a
Lipschitz condition with parameters (L, a), g =p + a,0 <p, 0 < a < 1). Note
that Fano’s lemma involves the Kullback information K (P, ., Fy,)), s0 we will
have to evaluate it or find an upper bound for it. It is easy to see that for the
case considered by Stone, K(P,,, Py, ) < C(8(x) — 0y(x))>. It is this condi-
tion that makes the estimators of Ibragimov and Khas'minskii and Stone
asymptotically optimal and not the nature of #(x) in the conditional density. It
is the behavior of the Kullback information K(F,,), Py, ) locally that will
determine the lower bound on the risk and the lower bound of the loss in
probability.

For sample size n, we will compute a lower bound on the sup{E, d(ff‘n, 0);
6 € ©) by considering a bound on sup{E, d(T,,0); 6 € ©,} with ©, an ap-
propriate subset of ® according to Le Cam’s idea. It turns out that when ® is
the set of g-smooth functions on [0,1] one can use a set ©, similar to the one
used by Kolmogorov and Tihomirov (1959) to compute a lower bound for the
entropy of smooth functions on [0, 1]¢. We should also mention, at this point, the
work by Boyd and Steele (1978) and Assouad (1983). The former proved that in
the nonparametric density estimation problem, considering all densities with
squared error loss, the minimax risk cannot be better than O(n~'). The latter
provided a lower bound on risks for any loss and related the O(n~'/%) minimax
risk with dimensionality properties of the space of probability measures under
consideration.

Khas’minskii (1978) provides lower bounds on the risks of nonparametric
estimates of densities in the uniform metric. Devroye (1986) computes minimax
bounds on the L, loss for the class of kernel estimates. For a detailed study on
lower bounds on minimax risks, the reader could consult Devroye and Gyorfi
(1985) and Devroye (1987).
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2. Notation. Definitions. The results. Let (%, &), (%,, %,),..., (%,, 8,)
be spaces with their o-fields. Let (X, Y)),...,(X,,Y,) be a sample with X,
taking values in £, i = 1,..., n, Y; taking valuesin %, i = 1,..., n.

DEFINITION. For any two functions f, g on (&, .%/), L)) integrable,
1 < r < oo, their L, distance is

1/r
1~ gl = ( [ ) - g M)

DEFINITION. For any two probability measures P, @ on (%, ®), their
Kullback information K(P, Q) = E_ log(dP/dQ) if P is absolutely continuous
with respect to @; otherwise, K(P, Q) = + .

In the case of product measures K(P, X Py X -+ XP,, @ X @, X --+ XQ,) =
£, K(P, Q).

Fano’s LEMMA [Birgé (1983) or Ibragimov and Khas'minskii (1981)]. Let
(¥, #) be a space with a o-field, P,,..., P, probability measures on # and &
an estimator of the measures defined on %. Then

1 m~’L, ;K(P, P;) + log2
m .ZIP,-[S(y) #Pl=z1- log(m — 1)

1=

DEFINITION. Let d be a distance on a subset 2 of the L,(\) functions on
(%, &), X a probability measure on &7, ® a function, ®: R*— R™. The function
® o d is called superadditive if for every finite partition {A; 1 <i </ } of &, we
have for f, g in &

o(d(f,8)) = ¥ 0[d( L, l,)].

i=1

This property has been introduced by Bretagnolle and Huber (1979) and is
satisfied by || f — g||Z on L()A), r > 1.

BIRGE’Ss THEOREM [Birgé (1983), Proposition 3.8]. Let {A; 1<i< U}
be a partition of %, and f, g, and g/ be elements of L(\) with support
on A. Let ®={f+Xl_ A\ =g; or g/} and assume that for all i
d(f+ g, f+8&!)=aand that d" is superadditive for some r > 1. Then there
is a subset ®* of © such that d(f*, g*) > a(0.1251)"/" for f* + g* elements of
©* and log(card ©* — 1) > 0.316! for any I > 8.

THEOREM 1. Under the regression setup of the Introduction for the sample
(X, Y)),...,(X,,Y,), for ®, a subset of ©® with finite cardinality, d a distance
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on O and ’ﬁn an estimator of the regression type function 6,
sup{E,, d(Tn, 0); 0 e @}

1
2 Einf{d(ﬂl, 8,); 0, * 0,,(6,,6,) € 93}

(card @n) ‘22(@,02) 693, Z?-l K(I)ol(xz)’ 1)02(X,)) + 10g2
log(card ©, — 1)

XE|{1l —

the last expectation taken with respect to the probability measure of (X, ..., X,).

Proor.
sup{E, d(7,,0);0 € 0} > sup{Eo d(T,,6);6 <0,
= card(i)n 0629 By d(T,, )

~ Y E(d(T,,0)X,,..., X,)|.

card @n Ppr:y

Define T* taking values in ©, such that d( w1, )— inf{d(T,, 9); 6 € ©,).
Then we have for 0 € 0, d(T'*,0) < d(T*,T) + d(T,, 0) < 2d(Tn, 0). So

ard 6, , 5, L B [d(T,,0)X,,.... X,]

1
> Sint{d(0,,6,); 6, # 6,,(6,,6,) < 67}

1 N
T *
card ©, 0;)”1’0[ A0 Xn]

1
> Einf{d(01,02); 8, + 0,,(6,,6,) € ©2}

(card ©,) "Ly, 4,y c 02X K( Py sy Poygey) + log2
log(card ®, — 1)

X1 -

by applying Fano’s lemma to the measures Py, , X -+ X Py, ,, § € 0,, on the
product space %, X %, X --- X%,.0O

REMARK 1. The selection of an appropriate (almost least favorable) subset
0, of O (as in Corollary 2) will lead to an almost minimax lower bound.
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CoroLLaRY 1. If K(Fy ., Py.)) < c, and inf{d(6,, 6,); 6, + 0,,
(8,,0,) € 2} > a,, then

P 1 nc, + log2

sup{Eod( ) 06@} 2%n 1- log(card ©, 1) |

PROPOSITION 1.  Assume for the conditional density f( y|x, t) that:

@ [, O(dy) =

(i) If I(y|x, t) = log f(y|x, t), there are positive constants g, and K, and a
function M(y|x, t) such that |l"(y|x, t + €)| < M(y|x,t) for le] < ¢, and

[ M, ) (o, () < K,

(f', U are partial derivatives with respect to t, the parameter of the conditional
density.) Then K(P, P,) < C(t — s) [Conditions (i) and (ii) were used in Stone
(1982).]

ProOOF. When |t — s| is small, making a Taylor expansion, we have

K(F, P,) = ff(ylx t logfgyl| ;#(dy)

f'(ylx, t) N (t—s)*
f(ylx, t) 2

_f@f(-ﬂx’t) (s —t) U(ylx, ) [n(dy)

K
71(t - 3)21

IA

where c is in the open interval determined by ¢ and s. O

Let © be the space of (¢, L) smooth functions on [0, 1]. We introduce a family
0, but we will use a subset ©* of it to apply Theorem 1.
Let /

. x-050i-1)5,\*]" .
¢, n(x) = aby|1 - 05b , if (i - 1)b, <x < ib,,

0, otherwise,

i=1,2,..., b, ", where a > 0 can be chosen appropriately to make the constant
of the LlpSChltZ condition less than or equal to L. The set ©, will consist of
functions 6(x) of the form £ v,¢, (x), v, = 0 or 1.
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Note that the L, distance between functions of ©, will be greater than or

equal to
x—0s5\7" 1”7
1—( 0.5b, )] @

b,

ab? [f "

0

a 1 qr r

= ngﬂl/r)[f_l(l - »?) dy] =C, , b2 V"

It is also easy to see that I.= (1, (1 — y%)dy=2r/(2r + D)I,_, for r > 1,
I, = 2, and that |6,(x) — Oy(x)| < ab? for all 4,, 6, in B, and for all x € [0,1].

In the case & = [0,1]%, we consider functions ;... ju, n Of the form
¢jlsj2 )))) jdv n(xl"”’xd)
q
d x; — 05(2j, - 1)b,\"
ab?[1|1 - 2/-1) ,
= i=1 0.5b,
if (j,—1)b, <x,<jib,,i=1,...,d,
0, otherwise,

Ji=12,...,bL
Note that there are b, ¢ such rectangles in [0,1]%. Let us enumerate

them as I, ,,..., Iy-a . So, we can write ¢ FEERER AT instead of
b1 1, 1m0 0s Pt bt e SO, the functions 8(xy,..., x4) of ©, will be of the
form Zfﬂ?ﬁi’l, (%y,...,%4), ¥;=0 or 1. The lower bound on the L, distance

between functions of ©, will be greater than or equal to C, , , ;b7*(“/".

COROLLARY 2. If © is the set of q-smooth functions on [0,1]¢ for condi-
tional densities such that K(Py ., Py, .,) < C|0,(x) — 0,(x)|* for some K > 0,
the L, minimax risk is greater than or equal to C*n~9/Ka+d),

Proor. Consider the preceding set of functions ©, of the form
Ef’i'i Yi¢r (%1,-.., %4)- By Birgé’s theorem, there exists a subset 6% of ©, such
that |16, — 6,||, > (0.125b;%)/"C, , , 4bg"¥/" for all 6, # 6, in ©F and
log(card ®* — 1) > 0.3165, %. By assumption,

K(Py ), Poyay) < Clby(x) — 8y(x)|¥ < CbKe forall 6, 6,in®,.

By Corollary 1 for any estimator Tn,
1 1 C'nbX7 + log2
. /r n
sup(E, |7, — 61,0 € 0} = £C,,, 4,a(0125)""b] [1 T Tost60 7
For [1 — (C'nbX? + log2),/0.316b, %] to be greater than a positive number, it is

enough to take b, ~ n~!/(X9+d) The minimax risk cannot be better than
C*n-9/(Ka+d)
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COROLLARY 3. When O is the space of all regression functions on [0,1]¢ and
the conditional densities have the property K(P, ), By, x) < C|0,(x) — 0(x)|,
K > 0, the L, minimax risk, 1 < r < co, is greater than or equal to n~'/X,

ExaMPLE 1. In the case of conditional densities f(y|x, 8(x)) that are one of
the following, Bernoulli (6(x)), binomial (N, 6(x)), geometric (6(x)) and ex-
ponential ((x)), we see that K(B) ), P (.)) < C(8)(x) — 0,(x))* so the lower
bound for the L,-minimax risk is of the order n~9/29*9), The same holds for the
normal (6,(x), 62(x)) when we are interested in 6,(x) and 8,(x) is bounded away
from O or when we are interested in 6,(x) and it is bounded away from 0 and oo.

ExXAMPLE 2. In the case the conditional density is either uniform (6(x)) or
has the form e, K(B, ,), P .,) < C|0,(x) — 8,(x)|, so the lower bound of
the L,-minimax risk is n~9/(?*%, One could also derive lower bounds in the case
K(Pol(x): B,y < 8(|0:(x) — Oy(x)))-

REMARK 2. When the X’s are nonrandom and equidistant, the set O,
considered is a least favorable set since at the design points b,,2b,,..., the
value of 4 is 0.

REMARK 3. One can define d-optimality for a sequence {f,} of estimators of
# in a regression type problem using bounds in probability for the loss d( é:,, 9)
[Stone (1980)]. We say {0:,} is d-optimal in probability for 8 if there is a sequence
a,, n=1,2,..., decreasing to zero such that

lim liminf inf sup P [d(7,, 0) > Ca,] =1
C-0 po00 T, 96

and

lim limsup supPo[d(BAn,B) > Ca,,] =0.

Co0 pnoson 0O

To verify the former relation, we can use as a tool a variant of Theorem 1
under the additional assumption that d(6,,6,) > 2Ca, for all (,,0,) € 62,

A

8, # 0,. For every estimator 7,,, we have then

sup P;[d(T,,8) > Ca,]
(2=1C

(Card @n) _22(01,02)66,2l K( 'Pol(xi)’ 'P02(Xx)) + 10g2
log(card ©, — 1)

> E|l-

Under the previous setup, when ©® is the set of g-smooth functions
on [0,1]%, ©,=0% C=050125""C,, ¢ a,= bl K(Py. P ) <
Cl0,(x) — 0,(x)|¥ and d is the L, distance, 1 < r < oo, we have that for every
estimate 7}, and ¢ > 0, sup, coP[IIT, — ]|, > CbZ] > 1 — ¢ for n > n(e) if b, ~
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(e/n)/Ka+d) go

lim liminf inf supP,,[||T 9, > Cn‘q/(Kq+d)] =1.
C—-0 n—oo T fe
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