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ON RESAMPLING METHODS FOR VARIANCE AND BIAS
ESTIMATION IN LINEAR MODELS!

By JuN SHAO
University of Wisconsin-Madison

Let g be a nonlinear function of the regression parameters 8 in a
heteroscedastic linear model and § be the least squares estimator of 8. We
consider the estimation of the variance and bias of g(f) [as an estimator of
2(B)] by using three resampling methods: the weighted jackknife, the un-
weighted jackknife and the bootstrap. The asymptotic orders of the mean
squared errors and biases of the resampling variance and bias estimators are
given in terms of an imbalance measure of the model. Consistency of the
resampling estimators is also studied. The results indicate that the weighted
jackknife variance and bias estimators are asymptotically unbiased and
consistent and their mean squared errors are of order o(n~?2) if the imbalance
measure converges to zero as the sample size n — co0. Furthermore, based on
large sample properties, the weighted jackknife is better than the unweighted
jackknife. The bootstrap method is shown to be asymptotically correct only
under a homoscedastic error model. Bias reduction, a closely related problem,
is also discussed.

1. Introduction. In statistical applications involving the point estimation
of an unknown parameter 6, one needs to estimate the accuracy of 0 as an
estimator of . Some important and commonly used measures of accuracy are
the variance, the bias and the mean squared error (MSE) of 8. Having good
estimators of accuracy not only provides some information about the perfor-
mance of 8, but often suggests improvements to 8 and provides ways of making
other statistical inferences (e.g., confidence regions). Resampling methods such as
the jackknife [Quenouille (1956) and Tukey (1958)] and the bootstrap [Efron
(1979)] provide convenient and widely applicable methods of estimating the
accuracy of the chosen estimator in the independent and identically distributed
(i.i.d.) setting. These methods are computer-based and can handle problems
which are far too complicated for traditional statistical analysis. For certain
types of estimators in the i.i.d. situation, the resampling methods were proved to
be asymptotically correct [Miller (1964), Bickel and Freedman (1981), Parr (1985)
and Shao and Wu (1986)].

The main objective of this paper is to study resampling variance and bias
estimation in the context of linear modéls. Throughout the paper the following
model is assumed:

(1.1) y=XB+e,
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where X = (x,...,%,), x; € R* is known, i=1,...,n, y=(¥,---, %) €R"
are the observed data, B € RF is the unknown parameter, e = (e,,...,e,) € R"
are the random errors and the e; are independent with zero means and unknown
variances o2. We assume that the o? are bounded.

The model (1.1) is said to be homoscedastic if o2 = o for all i and hetero-
scedastic otherwise. We will assume that the model is heteroscedastic unless
otherwise specified. Also, x;, e; and ¢ may depend on n, but the subscript n
will be suppressed for simplicity.

It is assumed that M = X'X = X" ,x,x/ is positive definite and

(1.2) M =0(nY).

Let g be a real-valued nonlinear function defined on R”. (The case of vector g
can be treated similarly.) The parameter of interest and its point estimator are
0 = g(B) and 6 = g(PB), respectively, where 8 = M~'X'y is the ordinary least
squares estimator (LSE) of B. We focus on B instead of the weighted least
squares estimator (WLSE) for the following reasons:

1. Choosing adequate weights in WLSE involves estimation of each individual
2. Unless there are many replicates at the design point x; or o2 is a smooth
function of x;, a consistent estimator of o? is not available.

2. If v, ! are used as the weights and v, is an inconsistent estimator of o7, the
asymptotic distribution of the WLSE is complicated and generally unknown.
On the other hand, the asymptotic distribution of the LSE is well known and
therefore statistical inferences can be made based on it, if we have a suitable
estimate of the variance of the LSE.

3. As a point estimator of B8, the WLSE may not be better than the LSE,

especially when the o? are not very different from each other [Jacquez,

Mather and Crawford (1968)].

Denote the variance and bias of § by Vard and B(@), respectively. If x; are
observations of random vectors x*, Vard and B(8) are defined to be the
conditional variance and bias. We study the properties of the resampling estima-
tors of Var § and B(8) (conditional on x;, i = 1,..., n, if x; is the observed value
of x*). The problem of improving 0 is considered only in Section 5, where we
discuss the use of the jackknife estimator for reducing bias.

Note that under model (1.1), the observations y; are independent but not
identically distributed. Because of this model unbalancedness, the straightfor-
ward extension of the jackknife method to the linear model, which will be called
unweighted jackknife method henceforth, does not provide good estimators for
Var® and B(9). Hinkley (1977) modified the delete-1 jackknife by putting
weights on the pseudovalues. Wu (1986) proposed a weighted delete-d jackknife
method for arbitrary d with a different weighting scheme. The variance estima-
tors obtained from these weighted jackknives possess some desirable properties
[Shao and Wu (1987)]. For the jackknife bias estimator, Hinkley (1977) conjec-
tured that his weighted jackknife bias estimator (which coincides with Wu’s
weighted delete-1 jackknife bias estimator although their weighting schemes are
different) estimates B(8) unbiasedly up to the order O(n~2) [hence the resulting
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jackknife estimator of @ eliminates the bias up to the order O(n~?2)]. His
justification was heuristic but is valid only in some special cases. In fact,
determining the order of the second order term of B(9) [i.e., the term of lower
order than the leading term in the expansion of B(#)] is not a trivial matter due
to the complexity of the model. As the results in Section 2 indicate, the first
order term (i.e., the leading term) of B(6) is generally of the order O(n~1), but
unlike the i.i.d. case, the order of the second order term of B(#) is between
O(n~3/%) and O(n~?). Hence it is reasonable to expect that the bias estimator
estimates B(8) unbiasedly up to the order of the second order term of B(8)
rather than O(n~2), as it usually does for the i.i.d. case.

In Section 2, we obtain asymptotic expansions of Var # and B(8) which will
be used in studying the properties of the resampling estimators. A technical
lemma used in the proofs of the main results in Sections 3 and 4 is also given.

The asymptotic properties of several resampling variance estimators are
studied in Section 3. In particular, we obtain asymptotic orders of the MSE of
the resampling variance estimators. The bias of a variance estimator is also an
important issue. It is found that the bias of the variance estimator based on
bootstrapping residuals may become the dominating factor in its MSE under
heteroscedastic models. As a consequence, the bootstrap variance estimator has
larger MSE than the jackknife variance estimators and therefore is not pre-
ferred. A finite sample comparison of some variance estimators is made in an
example.

Although B(#) is shown to have a lower order than the standard deviation of
0 in Section 2, knowing the magnitude and the direction of the bias is still
important in practice. Section 4 is devoted to studying the resampling bias
estimators. The asymptotic properties and the orders of the MSE of resampling
bias estimators are obtained after establishing a mathematical equivalence
between the estimation of B(#) and the estimation of Varf. The weighted
jackknife bias estimator is shown to be asymptotically unbiased and consistent.
The reason for the poor performance (inconsistency, large MSE) of the un-
weighted jackknife bias estimator is explored: The order of the unweighted
jackknife bias estimator does not match that of B(#). It is also shown that the
bias estimator based on bootstrapping residuals has the same asymptotic proper-
ties as the weighted jackknife bias estimator if the model is homoscedastic but
otherwise performs poorly.

The quantity

h

= maxuw;,
i<n

w; = x!M~'x, = the ith diagonal element of “hat” matrix XM ~'X’,

n

(1.8)

plays a crucial role in the asymptotic analysis throughout the paper. It was
termed an imbalance measure of the model (1.1) by Shao and Wu (1987) and its
importance was first stressed by Huber (1973). Most of the results obtained are
in terms of A,. In the extreme case where the model is asymptotically balanced
in the sense that A, = O(n™1), all the jackknife estimators are indistinguishable.
No weighting procedure is needed in this case since the model has nearly the
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same nature as the ii.d. situation. However, for an unbalanced model [i.e., the
order of h, is higher than O(n~')], the gain in using the weighted jackknife is
substantial.

The jackknife method was originally proposed to reduce the bias of §. Bias
reduction iz actually equivalent to asymptotically unbiased estimation of bias,
i.e., the reduction of bias of # amounts to finding an asymptotically unbiased
estimator of B(8) up to the order of the second order term of B(8). Hence the
results of Section 4 show that the weighted jackknife reduces bias and the
unweighted jackknife does not. A discussion of whether to use the jackknife for
bias reduction is provided in Section 5.

2. Preliminaries. We first develop some more notation and terminology.
For a matrix A, its trace and determinant are denoted by trA and |A]|,
respectively. Let ||A|| = [tr(A’A)]*/2. Denote a nonnegative (positive) definite
matrix A by A>0 (A >0),and A>B means A — B>0. ¢ is used as a
positive generic constant, i.e., ¢ is positive and independent of n but may have
different values in different places. We say that the order of a sequence {a,} is
no higher than that of {b,} iff

(2.1) la,| < c|b,| foralln

and is higher than that of {b,} if (2.1) does not hold for any constant c.

The exact form of B(#) and Var 8 is not easy to obtain under model (1.1). An
approximate form is obtained via a Taylor expansion. Thus, similar to the i.i.d.
case, some smoothness conditions of the function g are required. Assume that
25,..., 2, are iid., Z=n"'L" 2z, and g has a third order Lipschitz-continuous

derivative. Then, under certain moment conditions,

E(8(2) = b + o-g"(1)e* + O(n"?)

and
2

Var(g(2)) = —(g/(w)" + 0(n"?),

where p = EZ and o2 = Var(z,).
Under model (1.1), using a Taylor expansion, we can expand

(2.2) B(8) = 27 'tr[v%(B)Varf] + R,
and
(2.3) Vard = vg(B)Varf(vg(B)) + R,,

where Vg(B) and v2g(B) are the gradient and Hessian matrix of g at S,
respectively, and R, and R, are the remainder terms. From (1.2) and the
uniform boundedness of o?, tr[v %g(8)Var 8] and vg(8)Var f(vg(B)) are of
the order O(n~'). Due to the model imbalance, the orders of R, and R, are not
necessarily O(n~2) as in the i.i.d. case. The following results show that the orders
of R, and R, depend on A, (1.3), the imbalance measure of the model (1.1).
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THEOREM 2.1. (i) Suppose that

(2.4) maxEe! <p <o foralln
i<n

and g has a second order derivative satisfying
L

(25) Ive(x) - v(I<cXllx—yY  A;<2withmink;=A>0
j=1 =

for an intéger L and some constants \ ;. Then the remainder term R, in (2.2)
J 1
satisfies
R, = 0(n"17/2),

(ii) If (2.4) holds and g has a third order Lipschitz-continuous derivative,
then

R, = O(n=%2RY/?).

(iii) Suppose that (2.4) holds and g and g* have third order Lipschitz-continu-
ous derivatives. Then the remainder term R, in (2.3) satisfies

R, = O(n=%?hY?).
(iv) Suppose that

(2.6) maxEel < ¢ < 0 foralln

and g has a third order Lipschitz-continuous derivative. Then
R, = 0(n=%?hY?).
(v) If g satisfies condition (2.5) and either g* satisfies condition (2.5) or (2.6)
holds, then the order of R, is either O(n~'"*/2) or O(n~%2h}/?).

REMARK 2.1. The conditions in Theorem 2.1 are sufficient for

(2.7) B(8) = 27 'tr[v %(B)Var ] + o(n™")
and
(2.8) Vard = vg(B)Varf(ve(B)) + o(n™?).

That is, 2~ 'tr[v2g(B)Varf] and vg(B)Varf(ve(B)) are valid asymptotic
approximations of B(#) and Var 8, respectively. (2.7) and (2.8) can hold under
very weak conditions for regular statistics. See also Parr [(1985), Remark (ii) of
Theorem 2].

REMARK 2.2. From Theorem 2.1, we not only have (2.7) and (2.8), but also
obtain asymptotic orders of R, and R,. The restriction A; < 2 in condition (2.5)
can be relaxed if we assume higher moment conditions on the errors. In most
applications, 0 < A < 1. If A is close to zero, the orders of R, and R, are much
higher than O(n~2). In parts (ii)—(iv) of Theorem 2.1, by assuming a stronger
smoothness condition on g, more precise orders of R, and R, are obtained in
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terms of the imbalance measure h, (1.3). The order of A, is no lower than
O(n~?') since h,>n 'Y w,=n lk. Hence the orders of R, and R, are
between O(n~3%" 2) and O(n~2%) and are O(n~2) if the model is asymptotically
balanced in the sense that A, = O(n™!).

We give the proof of Theorem 2.1(ii) for illustration. Other proofs are in Shao
(1986).

PRrOOF OF THEOREM 2.1(ii). Let /;, be the pth component of M~ x,,
L _res)
pam— 3B, 3B, 3B,
Then by the Lipschitz-continuity of the third order derivative of g,
g(B) =a(B) +va(B)(B-B)+27(B-B)v’e(B)(B-B)

+671 f ,,q,,,(E H,,)(E s ’)(Z j"”)

p,q,m=1

with |T| < || — B]||*. Since e, are independent with mean zero,

k
(29) B(8) =2 'u[vig(B)Varf] +67 ¥ 1 qu,,,f, LyliglimEe? + ET.
p,q,m= J=

From Lemma 2.1, |ET| < cE||8 — B||* = O(n"2). Note that
Ll < (x]’-M'zxj)l/2 < en” Vw2,

The result follows since the second term on the right-hand side of (2.9) is
bounded in absolute value by

k n
Z pqm| Z |l i Jq Jm| |Eej-’| <cn 32 E w}’/2 = O(n'3/2hln/2). O
p,q,m= 1 j=1

Lemma 2.1 was used in the preceding proof and will be used frequently in the
sequel. Its proof can be found in Shao (1986).

LEMMA 2.1. Suppose that

(2.10) maxElel’ < ¢, < o foralln,
i<n

where p is an even integer. Then for any q satisfying 0 < q < p,

maxE|rj|? < ¢, < oo foralln
i<n

and
E||f - BII? = O(n=?),

where ¢, and c, are independent of n and r; = y, — x{ﬁ is the ith residual from
fitting model (1.1).
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3. Resampling variance estimators. In this section, we study the proper-
ties of the resampling variance estimators. Theorem 3.1(i) gives the order of the
MSE of the weighted delete-d jackknife estimator of Varf. The result is
extended in Theorem 3.2 to the case of estimating Var 8, 8 = g(8). The orders of
the MSE of other resampling estimators of Var ,é are given in Theorem 3.1(ii).
Some of these results will be used later for the estimation of the bias of 8.

We first define the weighted delete-d jackknife estimators. For any fixed
integer d < n — k, let r = n — d. Define S, to be the collection of subsets of size
rin{l,...,n}. Let s = {i,,...,i,} €8S,. For an n X m matrix A, let A, denote
the submatrix of A consisting of the i;th, ..., i,th rows of A. Denote XX, by M,
and assume that M, is positive definite for all s € S,. Let B, = M 'X/y, be
the least squares estimator of 8 for the model y, = X,8 + e, and 98 = g( ﬁs).
Denote |M|~!|M,| by w,. Then the weighted delete-d jackknife estimator of
Var § [Wu (1986)] is

3 n—k\! A p)\2
vJ(d)(a)—_- (d_l) E “’s(os—o) .
sEeS,
The preceding forrpula has the obvious extension when @ is a vector. For the
estimation of Var B, the weighted delete-d jackknife estimator is

-1
= (52%) L wlfi-B)A-BY.
sE€S,

We consider the estimation of Var 8 first. There are several other resampling
variance estimators: the modified weighted delete-1 jackknife estimator »,,/(c)
[Wu (1986), rejoinder], which is very close to »,,) and thus has the same
asymptotic properties as »,,,, the unweighted jackknife estimator [Miller (1974)]

vu=n"Y n-1DM'Y (1-w) r2xxM ' - (n-1)M 'RRM™,
i=1
where R=n"'S"% (1 - w,) 'rx; and r,=y, - x{ﬁ, the weighted jackknife
estimator [Hinkley (1977)]

n
vy=n(n—k) "M 'Y rixx/M!

i=1

and the bootstrap estimator [ Efron (1979)],

n
vy = [(n -k Y ri2]M_l’
i=1
which is identical to the classical variance estimator in the homoscedastic linear
model.

Theorem 3.1 shows that the MSE of »,,), »; and vy are all of the order
O(n~%h,), which implies that these variance estimators are consistent in a
stronger sense that n times the difference between the variance estimator and
Var 8 converges to zero in L, when &, — 0. On the other hand, the MSE of », is
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generally of a higher order than the other variance estimators. Under the
heteroscedastic models, », is neither consistent nor asymptotically unbiased [Wu
(1986)]. See also Remark 3.3.

A heuristic explanation of the poor performance of », in the heteroscedastic
models is: The bootstrap method depends on the exchangeability of the distribu-
tion of the data from which the bootstrap sample is taken [see Efron (1979)]. v,
is obtained by bootstrapping the normalized residuals r,/(1 — k/n)/?, i=
1,..., n (see Section 4), which are nearly i.i.d. under the homoscedastic model
but are not under the heteroscedastic model. Beran (1986) described a hetero-
scedastic bootstrap method which yields the same variance estimator as the
jackknife method. Wu [(1986), Sections 6 and 7] gave some other bootstrap
methods which are robust against heteroscedasticity.

Denote the (p, g)th element of the MSE of a variance estimator » by
MSE, (»).

THEOREM 3.1. (i) Assume that (2.4) and

(3.1) sup dh, < 1
hold. Then
(3.2) MSE, (vy4)) = O(n"2h,,).

(i) Under (2.4) and sup,h, < 1, (3.2) holds with v, ,, replaced by v; or vy.
(iii) Under (2.4), we have

(3.3) MSE, (v;) = O[max n~’h,,a? pq)]

where a, ., is the (p, q)th element of
Z(o —o)xaxM™Y,  F=(n-k) 'Y (1-w)el
io i=1

REMARK 3.1. If the model is asymptotically balanced in the sense that
= O(n™"), then the MSE of ¥ ,), v, and vy are of the order O(n‘3), which is
the same as in the i.i.d. situation.

REMARK 3.2. The MSE of unweighted jackknife variance estimators has the
same order as that of weighted jackknife estimators. However, the performance
of v, is not as good as the weighted jackknife variance estimators, especially
when the model is unbalanced. An example is given later. See also the discussion
in Shao and Wu [(1987), Sections 5 and 6] and the simulation results in Wu
[(1986), Section 10 and rejoinder] and Tibshirani (1986).

REMARK 3.3. From the proof of Theorem 3.1(iii), a,, ,, is the leading term of
bias ,(v;), the ( p, ¢)th element of the bias of ub Under the homoscedastic
model, a, ,, = 0 since (n — k)~ e Q- w)oe? =02 , MSE,, (v,,) has the same
order as the MSE of jackknife estimators. In general if the o} are not close to
each other, o . is of the order O(n"%) and therefore n2b1as 47s) and

2MSE «7s) do not converge to zero. See Example 3.1.
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Before proving Theorem 3.1, we state Lemmas 3.1-3.3, which are used in the
proofs of the main results in this and the next sections. Their proofs are given in
the Appendix.

LEMMA 3.1. Assume (2.10) and (3.1) hold. Let 0 < q < p. Then
E|, - BI? < en™9* ¥ wi”?,

i€s
where § is the complement of s € S,.

LEMMA 3.2. Assume (2.4) and (3.1) hold. Let v§) be the (p, q)th element of
(ﬁs — B)(ﬁs — BY for a given s € S,. Let s and t be two subsets in S,. Then

|Cov(yl(,f,), y},f,’)' <c¢n%h,.

Furthermore, if 5 and t (the complements of s and t, respectively) do not share
any common element, then

ICov( () (‘))l <cn?h,y w) w.

Ypq'» Ypa . —
€S 1€t
If 5 and t have only one common element 1, then

lCov(Y,(,f,), y,‘,f})' < c3n"2hn( w+ Y wy, wi),
ies i€l
where c; are independent of n, l, sand t, i = 1,2,3.
LEMMA 3.3. Assume (2.4) and (3.1) hold. Let v,, be the ( p, q)th element of
Vya)- Then
|Ee;v,,| < cn”'w;, j=1,...,n,

where c is independent of j and n.

ProOF OF THEOREM 3.1. (i) Let V,, be the variance of the (p, ¢)th element
of v, From Theorem 1 of Shao and Wu (1987), the bias of »;,, = Oo(n"'h,).
Hence it suffices to show that '

qu = O(n_2hn)'
Using the notation in Lemma 3.2 and w, < 1, we have
n— k)22
Vs (B2%) L Z[Cov(12 %42) .
v= v

where ¥, is over all the pairs of s, ¢ such that § and ¢ do not share any common
element, ¥, is over all the pairs of s, ¢ such that § and ¢ have only one common
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element and ¥, is over the remainder of the pairs of s, £. By Lemma 3.2,

-2
(52%) Eloov(x. %)l

-2
<2t TEwEuw
0

= iet
-2 2
2. —2, [R—Fk n—-1
< ck’n hn(d_l) (d_l)
= 0(n?h,),

—2
(22%) Zleov(r2.%)]
1

. cn—2h,,(g:';)‘2[(g:f) S Yu+¥ zw,-zwi]

s€S, i€s 1 ies i€t
. , —k\ *(n-d\(n-1
< 0(n?h,) + ckn 2h"(3— 1) (:;_ 1)(3_ 1)
= 0(n"h,)

and

-2
(52%) loov(ne. )l

- n—*k\ }n\[(n n—-d\_4n-d
<o, (5 =) (B)](3) - (72 ) - 4]
= 0(n?n,),
where the last equality follows from

n\ (n n—d n—d -
(2) 12 - (" 2) - (3= 9)] - o
Hence (i) is proved.

(i) The bias of v, or vy is of the order O(n~'h,) [Shao and Wu (1987),
Section 5]. The variance of the (p, g)th element of »; or », is of the order
O(n—2h,) since from (2.4) and Lemma. 2.1, Var(r?) < ¢, and from (A4) in the
Appendix, lCov( r, rf) l < ch,, for i # j. Hence (ii) follows.

(iii) From the proof of (ii), the variance of the ( p, g)th element of », has order
O(n~%h,). Let m,, and bias,(v;) be the ( p, ¢)th elements of M~ and the bias
of »,, respectively. Then

n n
bias, (vp) = @, pq + Mpe(n — 'Y Y w,%-(oj2 - o,?) =a, ,,+0(n7?),
i=1j=1

where the last equality follows from (1.2) and X2 ,Y7_w; = L?_w; = k. This
proves (iii). O
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The MSE of », may be dominated by the squared bias, which has the order

2 This usually occurs when », is inconsistent. An example is the following:

An, pg-

ExampLE 3.1. We compare v,,,, »; and », in the model
y‘]=ﬂj+e‘j, i=1,...,nj,j=1,2,

with independent e;;, Ee,; = 0 and Var(e;,) = 67, j = 1,2. The variance of LSE

is a diagonal matrix
diag(n; o2, n3'e}).
Let n = n, + n,. Then
vy = diag(ny(n, = 1) 7SS, nyY(n, — 1)7'SS, ),
v, = n"Y(n — 1)diag((n, — 1) 7*SS,, (n, — 1) °SS,),
v, = (n—2)7(SS, + SS,)diag(n;', n3'),

where SS; = X% (y,;— %)% ¥ =n;'L%,y; J=12 Assume that A, =
max(n; ', ny') = O(n™"). It is easy to see that »,,, and », are consistent, but »,
is inconsistent unless 67 = o5. For the biases of these estimators, ,,, is unbiased

and the biases of », and », are, respectively,

2 2
nyo; n,0y )

nny(n; — 1) " nny(n, — 1)

diag(

and

4 (ny — 1)(022 - 012) (n, — 1)(012 - 022)
188 (n - 2)n, ’ (n—2)n, ’

The bias of v, is positive, but of the order O(n~?). However, the bias of », is of
the order O(n ") unless of = o;. From Theorem 3.1, the MSE of »,,, and », are
of the order O(n~?). The MSE of », is dominated by the squared bias of », [note
that the variance of », is of the order O(n~%)] and is of the order O(n~2). Hence
v, is not as good as the jackknife variance estimators.

A comparison of »,,, and »; shows that »,,, is preferred to »;: v, is
unbiased and has smaller variance (hence smaller MSE) than », since
(n—-1)/n(n,—1)>1/n,.

We now consider the estimation of Varlé, 6 = g(B). We focus on the weighted
Jackknife only, since the preceding results show that it provides better variance
estimators in the case of § = §. Theorem 3.2 is an extension of Theorem 3.1(i).

THEOREM 3.2. (i) Assume that (2.6) and (3.1) hold. Suppose that g has a
third order Lipschitz-continuous derivative. Let B(v,; ) = Ev;,, — Var B be the
bias of v 4. Then

Ev;q(8) = ve(B)Varf(ve(B))

34) +8(8)Blrye)(VE(B)) + O(n-321172).
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(ii) Under the same conditions as in (i), we have
MSE(7,4,(8)) = O(n"%h,,).

REMARK 3.4. Under the homoscedastic model,
Evya(8) = vg(B)Varf(vg(B)) + O(n=**h?)
since B(v;4,) = 0. In general, B(v,,) = O(n™'h,). Hence
Evya(8) = vg(B)VarB(vg(B)) + O(n'hy,).
From Theorem 2.1, the bias of »,;,(#) in both cases is of an order no higher than

o(n'h,).

REMARK 3.5. The condition on g in Theorem 3.2 can be relaxed so that g
satisfies (2.5) with A satisfying A,;'n~(*%/2 = O(1). The last term on the
right-hand side of (3.4) is then O(n"'h,).

ProOF oF THEOREM 3.2. (i) From a Taylor expansion,
35) b, -8=ve(B)B - B)+27(B - B)vet)(h - B),
where {, is a point on the line segment between ,és and f. Then

”J(d)(a) = Vg(lf)w(d)(vé'(ﬁ))' +T,
where

r=(328) " L el lA - Ayomea (- A
+ve(B) (B, - B)(B. - B)v%()(B. - B)}-

Under the conditions of Theorem 3.2, ET = O(n~%). By Theorem 3.1(i),
Var(tr(v,4)) = O(n~?h,). Since E(tr(v;4,)) = O(n~"), we have E(tr(v,4))? =
O(n~?). Then

E(ve(B) - va(B))vya(ve(B) — ve(B))

< [Elve(h) - ve(B)|'E(tr )] = 0(n~?)

follows from E|vg(B) — vg(B)||* = O(n~2) under the conditions of Theorem
3.2. From

Vg(ﬁ)l'J(d)(Vg(ﬁ))'
= (Vg(ﬁ) - vg(ﬂ))VJ(d)(Vg(ﬁ) - Vg(,B))'
+2(Vg([§) - Vg(.B))”J(d)(Vg(B))' + Vg(ﬂ)”J(d)(Vg(ﬂ))',

what remains to be shown is
(3.6) Evyq(ve(B) — va(B)) = O(n=2/2hY?).
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Since (vg(B) — va(B)Y = v’g(BXB — B) + S with |IS|| < (|8 — B +
| B - B11%) by the Lipschitz- contlnulty of the third order derivative of g, we have

Ev; ;S = O(n~?). Then (3.6) is equivalent to
E["J(d)V%‘J(B)(B\ - B)] = O n_3/2h1/2).

Denote the pth component of v %g(8)M~ x by 7,; and the ( p, g)th element of
Vsiay BY 0pq- Note that |r,,| < 1V (B 1M/ 'S en” /2% and |Ev,qe,| <
cn”lw; for all J by Lemma 3.3. Then (3.6) follows from

. k n
2 Z qu Opq 1)

g=1j=1

k
<e Z Z n-3/2 3/2 < cn—3/2h1/2
g=1j=1

since the pth component of E[»;,, v 25(BY)B - B)] is equal to
Eq—lZ Jj= 1 ( )

(il)) We only sketch the proof for this part. From part (i) and Remark 3.4, it
suffices to show that the variance of »; ;,( 0) is of the order O(n"2h ). By using a
similar argument to that used in the proofs of part (i) and Theorem 3.1, it can be
shown that the order of the variance of vg(8)» J(d)(vg(,B )) [the dominating
term of vJ(d)(ﬁ)] is O(n™%h,).0O

4. Resampling bias estimator. In this section, we focus on estimating
another measure of statistical accuracy: the bias of 8. Three types of resampling
bias estimators are considered. That is, the weighted delete-d jackknife bias
estimator

R — R\ ! PO
B d =(n ) Z ws(os_o)’
HD d-1 sEeS,
the unweighted jackknife bias estimator

=n"(n-1) Z (8, -8),

where 9(,-) = g(ﬁ(i)) and ,B(,-) is the LSE of B after deleting (x,, 3,), and the
bootstrap bias estimator

B,=E.0* -4,
where 0* = g(8*), B* =+ M~'X’e*, e* = (ef,...,e*) and eX are iid.
samples from the normalized residuals {r,/(1 — k/n)/%, i =1,...,n} and E , is
the expectation under the bootstrap distribution. For convenience we assume
that the first element of each x; is 1 when we discuss the bootstrap estimator.
In the following, we study the properties of the resampling bias estimators

(consistency, asymptotic unbiasedness and the order of MSE) by relating the
bias estimation to the estimation of VarB

4.1. The weighted delete-d jackknife bias estimator. Before examining the
properties of B (@) We first consider the simple case of g = a’B, where a is a
known vector. There is no need for bias estimation since B(0) = 0in this case. A
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natural property of a bias estimator B is

(4.1) B=0 ifg=ap.

From Wu [(1986), Theorem 2], (4.1) holds for B yay- We now prove the con-
sistency of B,

THEOREM 4.1. Suppose that h, - 0 and g has a second order derivative
which is continuous in a neighborhood of B. Then

BJ(d) - 2_1tr[V2g(B)Var/§] =o0,(n7").
If we assume (2.7), then
BJ(d) — B(8) = o,(n7Y).
ProoF. From the expansion (3.5) and Theorem 2 of Wu (1986), we have
-1
(4.2) Bwy =276V %(B)a] + (22 %) T wite,

seS,

where 7, is the weighted delete-d jackknife estimator of Varf defined in
Section 3 and

gs = 2—l(ﬁs - ﬁ)l(vzg(gs) - vzg(ﬁ))(és - ﬁ)

From »;,, — Var B= op(n_l) [Shao and Wu (1987), Theorem 3] and the con-
tinuity of v 2g at B,

2‘1tr[vzg(ﬁ)vd(d)] -2 tr[v2g(B)Varf] = o,(n7").
It remains to be shown that
— p\7!
(43) (225 X wt=ofn).
d-1 .8, p
By the continuity of v2g and tr(y,,) = O (n""), a similar argument used in

the proof of Theorem 4 of Shao and Wu (1987) yields (4.3). O

Theorem 4.2 establishes a relation between finding an asymptotically unbi-
ased estimator of B(#) and the existence of an asymptotically unbiased estima-
tor of Var [f

TEEOREM 4.2. Suppose that (2.4) and (3.1) hold. Let B(v;,)) = Ev;,) —
Var 8.

(1) If g satisfies condition (2.5) for some A > 0, then
EB,4 = B(8) + 27'tr[v(8)B(vya)] + O(n~17272).
(ii) If g has a third order Lipschitz-continuous derivative, then
EB; 4, = B(8) + 27'tr[v %8(B)B(r,a)] + O(n~¥?hY?).
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Proor. We prove (ii) only. Since g has a third order Lipschitz-continuous
derivative, (4.2) holds with £, satisfying |£,| < c(||6, — AI> + |18, — BI|*). Hence
by Lemma 3.1,

E(R78) " CakisoBTH) L (n02 Tut e Su)

sES, sES, i€s§ i€s§

n—k\ Yn-1 —3/211/2 - -3/2p1/2
sc(d—l) (d—l)n /%Y w, < en=32pY2,

' i=1
The proof is completed by showing
E[tr((vzg(,é) - V2g(,8))yJ(d))] = O(n_3/2h;/2),

Denote the (p, g)th elements of v2%(f) — v2(B), v 2 and iy BY $ogs og
and »,,, respectively. Since g has a third order Lipschitz-continuous derivative,
$pa = Vieg(BXB — B) + s, with s, | < c|l@ - B||% From Lemma 2.1 and The-
orem 3.1,

1B0yg85ql < ¢ B(tr(r,0))"EIE - BI*] " = O(n~?).

Note that |Vf,(B)M 'x)| < c(x;M~?x;)"* < ecn™?w}’? and |Ee;v,,| <
cn”'w; by Lemma 3.3. Thus,

|E[tr((v8(8) - v2(8))rsa))] |

k
=| T [EVhu(B)(B — B)tyy + Evys,g]
p,g=1
k
< X
»q=

p

|V fo BYM ™', | E(ej0,0) | + O(n™2)

n
1j=1

n
<en™3% Y w?+ 0(n"?)
j=1
= 0(n=32nY/?). a

For the asymptotic unbiasedness of B ), We have

THEOREM 4.3. (i) Under the homoscedastic model, we have
(4.4) EB,, = B(d) + R,

where R = O(n~'"*/2) if (2.5) holds and R = O(n~3/?hY?) if g has a third
order Lipschitz-continuous derivative.

(ii) Under the heteroscedastic model, (4.4) holds with R = O(n"'H,)) if (2.5)
holds, where H, = max{h,, n"*/?}, and with R = O(n"'h,) if g has a third
order Lipschitz-continuous derivative.

PROOF. The results follow directly from Theorem 4.2 and the asymptotic
unbiasedness of v ;. O
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The asymptotic order of the MSE of B ja) 18 given by Theorem 4.4.

THEOREM 4.4. Assume (2.6) and g has a third order Lipschitz-continuous
derivative. Then

MSE(B,,,)) = 0(n"?h,,).

Proor. By Theorem 4.3, it suffices to show
Var B, ,, = O(n"%h,,).

From (2.6), Lemma 3.1 and the condition on g, the variance of the second term
on the right-hand side of (4.2) is of order O(n~2A%). Since Var(v,,) = O(n"?h,,),
the result follows if

A 2 _
E[t(v%(8) - v’8(B))ryw)” = O(nh,).
But this follows from (2.6), the smoothness condition on g and Lemma 4.1. 0O

LEMMA 4.1. If (2.6) and (3.1) hold, then
4 _
E(tr(v,q)) = O(n™*).
The proof is given in the Appendix.

4.2. The unweighted jackknife bias estimator. If the model (1.1) is unbal-
anced, ie., h, is not of the order O(n~!), the unweighted jackknife bias
estimator is not recommended since in general it is inconsistent and has larger
bias and MSE than the weighted jackknife bias estimator. The reason for the
poor performance of B is that the first term in the Taylor expansion of B does
not vanish due to the unbalancedness of the model. As a consequence, the order
of B, does not match that of B(f) unless A, = O(n~/2).

For simplicity, we limit ourselves to the homoscedastlc model in this section.
One cannot expect B ', to perform better in the heteroscedastic case. Let

I =n"(n-1)ve(B) L (K- B)
i=1
Then from a Taylor expansion,
B,=T,+T,,

where T, = O,(n™') under the weak condition that vg is Lipschitz-continuous
in a nelghborhood of B [Shao (1986)]. Note that for g = a’B, B is exactly equal
to I'.. (4.1) is not satisfied since in general I, # 0. Theorem 4. 5 shows that the
order of T, is in general O (n~'/?h,).

THEOREM 4.5. Suppose that Vg is Lipschitz-continuous in a neighborhood
of B. Then

I, = 0,(n""?h,).
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PROOF. Since vg(f) — vg(B) = 0,(1), it suffices to show that

i (ﬁ(i) - ﬁ) = z": (1 - w) 'wM x;r; = O(n™"?h,,).

i=1

This is implied by

n n
(4.5) EY YQ1-w) '(1- w) www, ;r;r; = O(h2)

i=1j=1
since M~ ! = O(n 1), where w; =M™ xJ Since Er;r; equals (1 — w;)a? for
i=jand — o for i # j, the left-hand side of (4.5) is equal to

i1#j

n n n 2
2 Z - wi)_lwi3 - Z a- wi)—l(l - wj)_lwiijg'] < Ch?;( Z wi)
i=1 i=1

= ck?n2. m]

From Theorem 4.5, if the order of %, is higher than O(n“l/ 2), then the order
of T, is hlgher than O,(n~ 1 in general Hence the order of B ; does not match
that of B(0) in view of Theorem 2.1. As a consequence, n( B r — B(8)) does not
converge to zero in probability, i.e., B , is inconsistent. Theorem 4.5 does not
show whether the order of I'; can be lower than O,(n~"). But it is easy to find an
example in which the order of I is higher than O,(n™").

ExamPLE 41. Let k=1, x;, =1fori # n and x,, = a,, where a, > 1. Let
=3 xZ=n-1+a2Then M '=7"Y w,=7"!fori+# nand w, = v 'a?
and h, = 7~ 'a’. By a straightforward calculation, we have

n ay(1 - a7) a,(az - 1)
o) = - ? ARG
1. If a,=n'/? then h,— 1. Since n*%a (a2— 1)/7(r—1)> 1 as n - oo,
the order of T is exactly equal to O, (n~'/?h,) = OP(n‘l/ ).
2. If a, = n®12, then h, is of order n='/5, Since n*“a (a2 — 1)/7(r — 1) - 1,
the order of I, is O (n‘3/4), which is lower than O, (n~"'/?h,) = O, (n_2/3)
but still hlgher than 0 (1)

We now consider the bias of B,. It can'be shown, assuming that g satisfies the
conéﬁtion in part (i) or (ii) of Theorem 2.1, that the dominating term of the bias
of B, is

(46) L=2"%2Y (1-w) 'waM 'vi%(B)M x;=0(n"'h,).
i=1 '

If the model is asymptotica]ly balanced, i.e., A, = O(n~'), then L = O(n"2).
For an unbalanced model, in contrast to the result in Theorem 4.3(i), the order of
the bias of B does not match that of the second order term of B(f). In fact,
Theorem 4.6 gives a lower bound for the order of L.
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THEOREM 4.6. Suppose that M = O(n) and Vv %g(B) is either positive or
negative definite at 8. Then
IL| = cn”™'g,,

= ' 2
where g, = LI w?.

REMARK 4.1. The condition that v2g(B) is either positive or negative
definite is equivalent to v 2%g(B) # 0 if B is a scalar.

REMARK 4.2. Since h% < g,, Theorem 4.6 implies that EB ), — B(@) =o(n™ Y
iff A, — 0. Thus, unlike B () B, is not asymptotically unbiased if 4, does not
converge to zero.

REMARK 4.3. Even if 2, —» 0, L may not be of the order O(n~3/2h}/2). For
example, if g, has the order n~'/2 and &, has the order n~'/% [an example given

in Shao and Wu (1987)], then |L| > cn™*? while n=3/2hl/2 has the order
n-19/12

PrOOF OF THEOREM 4.6. Suppose that v %g(p8) is positive definite. Then
x’v2g(B)x = ex'x for any x and some positive &. Note that M = O(n) implies
x!M~%x; > cn”'w;. Then from (4.6),

IL| =227 %% ) wx/M %, >cn ' Y w?=cn"g,. ]
i=1 i=1

In the proof of Theorem 4.5 we have actually shown that

(4.7) Var( Zn: wiM‘lxiri) = 0(n"'h2).

i=1

Thus, we have

THEOREM 4.7. If (2.6) holds and g satisfies the condition in part (i) or (ii) of
Theorem 2.1, then

MSE(B,) = 0(n"'h2).

PRrOOF. From (4.6) and (4.7), the result is true if g = a’8. For nonlinear g, a
similar argument used in the proof of Theorem 4.4 yields the result. O

Thus, B , will usually have a much larger MSE than the weighted jackknife
bias estimator. The unstable performance of B, is again due to the fact that the

n~'2h, order term in the Taylor expansion does not vanish for the unweighted
jackknife.

4.3. The bootstrap bias estimator. Similar to the jackknife estimators, the
behavior of bootstrap bias estimator ﬁb is closely related to that of bootstrap
variance estimator »,, as the following results indicate. The proofs of Theorems
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4.8-4.10, which employ similar techniques to those of Theorems 4.1-4.4, are
omitted here and can be found in Shao (1986).

THEOREM 4.8. Suppose that (2.4) holds and g satisfies condition (2.5) with
A > 0. Then:

(@) B, = 27'tr[vg(B)r,] + Oy(n™' 7).
() B, = 27 'tr[v2g(B)Varf] + 0,(n"") under the homoscedastic model.
(c) B p is inconsistent under the heteroscedastic model.

THEOREM 4.9. Assume (2.4) and that g has a third order Lipschitz-continu-
ous derivative. Then:

(a) EB, = B(8) + 27't[v8(B)B(v,)] + O(n~*?h}/?), where B(vy) =
Ev, — VarB.

(b) EB, = B(8) + O(n~*?h)/?) under the homoscedastic model.

(c) Under the heteroscedastzc model, EB,, B(8) + O(n™Y) in general.
Therefore B » is not asymptotically unbiased.

(d) If we only assume that g satisfies (2.5), the results still hold with
O(n=%2hY/?) in (a) and (b) replaced by O(n~'~*/%).

THEOREM 4.10. Assume (2.6) and that g has a third order Lipschitz-
continuous derivative. Then:

(a) Var B, = O(n"%h,,).
(b) MSE(B,) = O(n"2h,) under the homoscedastic model.
(c) MSE(B,) = O(n"2) under the heteroscedastic model.

5. Comments on bias reduction. In the previous sections we have shown
that the weighted jackknife is a handy and adequate tool for variance and bias
(also MSE) estimation. We now briefly discuss a closely related problem: bias
reduction. Since bias reduction is mathematically equivalent to asymptotically
unbiased estimation of bias, Theorem 4.3 implies that under the homoscedastic
model, the weighted jackknife estimator

0J(d) =0 - By,
completely removes the leading term of B(?) [i.e., the order of bias of ) )y
matches that of the second order term of B(6#)] no matter whether the model is
balanced or not. Under the heteroscedastic model, the portion of bias removed
by the weighted jackknife depends on the imbalance measure %,. The leading
term of B(9) is completely removed iff the order of n”'h, matches that of the

second order term of B(8).
On the other hand, the unweighted jackknife estimator

cannot eliminate the leading term of B(#) completely, as the results in Theorem
4.6 indicated.
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One can also apply the bootstrap method to reduce bias. The bootstrap
estimator of 0 is

9b=9_Bb’

which eliminates the leading term of B(8) completely under the homoscedastic
model. Under the heteroscedastic model, 8, is not preferred due to the poor
performance of Bb (see Section 4.3).

It is known that reducing the bias may increase the MSE of an estimator. For
example, the weighted jackknife estimator ] Jd) of § may have a larger MSE
than that of the original estimator 8, although it reduces bias. The MSE of 9 is
the sum of Var 8 and (B(0))2 which have orders O(n~!) and O(n~2), respec-
tively. The MSE of 9 )y is equal to, up to the order of O(n~?),

(5.1) Var 8,4, = Var + Var B, — 2Cov(8, B,,)).

From Theorem 4.4, the order of Var B J(d) 18 O(n~%h,). By the Cauchy-Schwarz
inequality, Cov(f, B a@y) = O(n~*2?h/?). Thus, in the worst case [the second
and third terms on the right-hand 31de of (5.1) do not cancel out each other], the
order of VarBJ(d) — 2Cov(#, BJ(d)) is O(n~3/2hY/?), which is equal to O(n™?)
[the order of (B(8))?]if h, = O(n™Y), but higher than O(n~?) in general. Since
the dominating term in the MSE of 8 and 8 yay 18 of the order O(n~ 1), the
increase in MSE by using the jackknife is still asymptotlcally relatively negligi-
ble. If the model is very unbalanced and »n is small, this increase may be large.

However, we should keep in mind that the jackknife estimator  yay Was
originally designed to eliminate bias, i.e., the focus is on the bias of the estimator
rather than other measures of statistical accuracy. Naturally, one may pay the
price for an increased MSE. Thus, whether to use § ) yay @S an estimator of 6
depends on how important bias is in practice. One needs to balance the ad-
vantage of unbiasedness against the drawback of a larger MSE.

APPENDIX

ProoF oF LEMMA 31. For any s €S, let §={j,...,J;}, 8=
{(Jps--nJi}Us, i=1,...,4d, ,BSO B, and Bs ﬁ Noting that s, =s;_, U {],}
and using an updating formula [Miller (1974)], we have

d d
(A]') ﬁ - ’Bs = 2 (Bsz - Bst—l) = Z sjiM-*;lrJ}sz’
i=1 i=1
where §, = (1 — x; M, x D) 1 and r; =y, — x}, ﬁs‘ is the j;th residual from fitting
the subset model ys X .'B + e, Let p,=n— #(s;), i=1,...,d, where #(s)
is the number of elements in s. Then p; + 1 < d. By Lemma 4 of Shao and Wu
(1987),

(A2) xM; %, < (1 - dhn)_lwi
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forany s € S,, d = n — r. Then
(1-xMx;) < [1- (- phy) 'R,

<[1-(p+1)h,] <@ -dn,)"
Hence from (A1),

d d

n N n _ _ q/2

(A3) 1B, - Bl <c T IB, - Bl <cX [ - dh,) %(r) ;M %, ],
i=1 i=1

Then by (3.1), (A2) and Lemma 2.1,
E|B, - BI7 < en™ 92 ¥ wi?E|r;|? < en~2 Y wg/, O

i€§ i€s

Proor oF LEMMA 3.2. The first part of Lemma 3.2 follows directly from
Lemma 3.1. Let m; ; be the (p, q)th element of M, xijlM LEi={l,...,1;)

and tj={l1,...,l}ut J=1,...,d. From (Al),
d
Cov(vs.759) = L X L ¥ 8,8,8,8, m;,my, Cov(rr,, r,n, ).

From (A2), |m; ;| < cn™Y(w,w;)"/? Since Z,nl):,,l(w 2= (Z;’_lw}ﬂ) <

dxrd. Wy, = d¥L;cw;, the second and the third parts of Lemma 3.2 follow if
(A4) ICov T, r,,r,m)l < ch,

when (j;, j;) # (I, 1,), where ¢ is independent of j; and l, Let 7=
min(#(s;), #(t, )), u; bel—x/M; x, if p Jiand —x/ M 'x, if p #J;, and
v,pbel—x,M x, 1fp—land x,M 1fp=ﬁlj.Assumethatj,-sj,and
<1, Then

COV("J}"J':’ rljrlm) Z UjplUpl pvlmp(Ee -9 ) +2 E UjpUjqOLpYi, qop q
p=1 pP*q
Now (A4) follows since if j;#p and [;#p, |u;,| < c(ww,)/? < ch, and
o] < c(w,w,)'/? < ch,.O

PROOF OF LEMMA 3.3. Let v{? be the (p, g)th element of (£, — A)(8, — A,
={se8:jes}and §, S S,.. Then

- -1
(49) Eejo= (%) T wBlep) + (2 75) " T wB(en).
s€S, sES,

For s€8,, jes Let 5={j,...,j;}, s;={Jp..., Ji}Us, i=1,...,4d,

ﬁ ﬁa.,, B = ,é Denote the (p, q)th element of (ﬁs,._, - ,ési)( ﬁsm_l - ﬁsm)' by
bir. Then Eejy (') = X{_Z5-1Ee;byy. Let r; be defined as in the proof of

Ji

Lemma 3.1. Then Eejbyn=8,8, M, 'x, X} M, 'Ee;r;r; . Since j€s, j#j,

J P9
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i=1,...,d,
|Ee;r;r; | —|(x M, x; )(xj'.mMs;lx )Ee l < aw*w?w;,

by (3.1) and (A2). Thus, |Ee;bim| < cn™'w;w; w; and |Ee 71(,2)| < enTrwiE e qw;)
since Z,Es < dh, < 1. Then the first term on the rlght side of (A5) can be
bounded in absolute value by

-k -k Yn-2
cn_le(z_l) Yy zwi5cn_1wj(g_l) (Z_I)Sm‘le.

se§, i€d

For s €8, , j € 5. Suppose that 5 = { Jireees _]d} and j, = j. Denote ,ésd_l by
B( - Using the same notation as before, since for i < m = d, Ee;r;r; = 0 and for
i<m<d, Eejb;,’;' = Ee; Eb"" = 0, we have

® = Z Eebi + » Ee;bim = Ee bdd.

YP‘I J°pPq"*
i=m

Hence the second term on the right side of (A5) can be bounded in absolute
value by

-1 -1
(Z2%) " = mepia<(Z2%) T Eiejihy, - A
sES, sES,,

n—-k\ (n-1 2 _ -
se(g2f) (ai)(Enh, - )" s ey
The last inequality follows from Lemma 3.1. O

Proor oF LEMMA 41. For s, €8S, i =1,2,3,4, by (A3), (3.1) and Lemma
2.1,

E(tr(ve,(d)))4 < cn_“(Z: Ile)_4 ﬁ Y Y w

= ck*n _4(n—k)_4(n—1)4=0(n_4) m|
d-1 d-1 )
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